123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955 |
- /*
- * Hierarchical Bitmap Data Type
- *
- * Copyright Red Hat, Inc., 2012
- *
- * Author: Paolo Bonzini <pbonzini@redhat.com>
- *
- * This work is licensed under the terms of the GNU GPL, version 2 or
- * later. See the COPYING file in the top-level directory.
- */
- #include "qemu/osdep.h"
- #include "qemu/hbitmap.h"
- #include "qemu/host-utils.h"
- #include "trace.h"
- #include "crypto/hash.h"
- /* HBitmaps provides an array of bits. The bits are stored as usual in an
- * array of unsigned longs, but HBitmap is also optimized to provide fast
- * iteration over set bits; going from one bit to the next is O(logB n)
- * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
- * that the number of levels is in fact fixed.
- *
- * In order to do this, it stacks multiple bitmaps with progressively coarser
- * granularity; in all levels except the last, bit N is set iff the N-th
- * unsigned long is nonzero in the immediately next level. When iteration
- * completes on the last level it can examine the 2nd-last level to quickly
- * skip entire words, and even do so recursively to skip blocks of 64 words or
- * powers thereof (32 on 32-bit machines).
- *
- * Given an index in the bitmap, it can be split in group of bits like
- * this (for the 64-bit case):
- *
- * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word
- * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
- * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
- *
- * So it is easy to move up simply by shifting the index right by
- * log2(BITS_PER_LONG) bits. To move down, you shift the index left
- * similarly, and add the word index within the group. Iteration uses
- * ffs (find first set bit) to find the next word to examine; this
- * operation can be done in constant time in most current architectures.
- *
- * Setting or clearing a range of m bits on all levels, the work to perform
- * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
- *
- * When iterating on a bitmap, each bit (on any level) is only visited
- * once. Hence, The total cost of visiting a bitmap with m bits in it is
- * the number of bits that are set in all bitmaps. Unless the bitmap is
- * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
- * cost of advancing from one bit to the next is usually constant (worst case
- * O(logB n) as in the non-amortized complexity).
- */
- struct HBitmap {
- /*
- * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate.
- */
- uint64_t orig_size;
- /* Number of total bits in the bottom level. */
- uint64_t size;
- /* Number of set bits in the bottom level. */
- uint64_t count;
- /* A scaling factor. Given a granularity of G, each bit in the bitmap will
- * will actually represent a group of 2^G elements. Each operation on a
- * range of bits first rounds the bits to determine which group they land
- * in, and then affect the entire page; iteration will only visit the first
- * bit of each group. Here is an example of operations in a size-16,
- * granularity-1 HBitmap:
- *
- * initial state 00000000
- * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8)
- * reset(start=1, count=3) 00111000 (iter: 4, 6, 8)
- * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10)
- * reset(start=5, count=5) 00000000
- *
- * From an implementation point of view, when setting or resetting bits,
- * the bitmap will scale bit numbers right by this amount of bits. When
- * iterating, the bitmap will scale bit numbers left by this amount of
- * bits.
- */
- int granularity;
- /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
- HBitmap *meta;
- /* A number of progressively less coarse bitmaps (i.e. level 0 is the
- * coarsest). Each bit in level N represents a word in level N+1 that
- * has a set bit, except the last level where each bit represents the
- * actual bitmap.
- *
- * Note that all bitmaps have the same number of levels. Even a 1-bit
- * bitmap will still allocate HBITMAP_LEVELS arrays.
- */
- unsigned long *levels[HBITMAP_LEVELS];
- /* The length of each levels[] array. */
- uint64_t sizes[HBITMAP_LEVELS];
- };
- /* Advance hbi to the next nonzero word and return it. hbi->pos
- * is updated. Returns zero if we reach the end of the bitmap.
- */
- static unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
- {
- size_t pos = hbi->pos;
- const HBitmap *hb = hbi->hb;
- unsigned i = HBITMAP_LEVELS - 1;
- unsigned long cur;
- do {
- i--;
- pos >>= BITS_PER_LEVEL;
- cur = hbi->cur[i] & hb->levels[i][pos];
- } while (cur == 0);
- /* Check for end of iteration. We always use fewer than BITS_PER_LONG
- * bits in the level 0 bitmap; thus we can repurpose the most significant
- * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures
- * that the above loop ends even without an explicit check on i.
- */
- if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
- return 0;
- }
- for (; i < HBITMAP_LEVELS - 1; i++) {
- /* Shift back pos to the left, matching the right shifts above.
- * The index of this word's least significant set bit provides
- * the low-order bits.
- */
- assert(cur);
- pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
- hbi->cur[i] = cur & (cur - 1);
- /* Set up next level for iteration. */
- cur = hb->levels[i + 1][pos];
- }
- hbi->pos = pos;
- trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
- assert(cur);
- return cur;
- }
- int64_t hbitmap_iter_next(HBitmapIter *hbi)
- {
- unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
- hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
- int64_t item;
- if (cur == 0) {
- cur = hbitmap_iter_skip_words(hbi);
- if (cur == 0) {
- return -1;
- }
- }
- /* The next call will resume work from the next bit. */
- hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
- item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
- return item << hbi->granularity;
- }
- void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
- {
- unsigned i, bit;
- uint64_t pos;
- hbi->hb = hb;
- pos = first >> hb->granularity;
- assert(pos < hb->size);
- hbi->pos = pos >> BITS_PER_LEVEL;
- hbi->granularity = hb->granularity;
- for (i = HBITMAP_LEVELS; i-- > 0; ) {
- bit = pos & (BITS_PER_LONG - 1);
- pos >>= BITS_PER_LEVEL;
- /* Drop bits representing items before first. */
- hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
- /* We have already added level i+1, so the lowest set bit has
- * been processed. Clear it.
- */
- if (i != HBITMAP_LEVELS - 1) {
- hbi->cur[i] &= ~(1UL << bit);
- }
- }
- }
- int64_t hbitmap_next_dirty(const HBitmap *hb, int64_t start, int64_t count)
- {
- HBitmapIter hbi;
- int64_t first_dirty_off;
- uint64_t end;
- assert(start >= 0 && count >= 0);
- if (start >= hb->orig_size || count == 0) {
- return -1;
- }
- end = count > hb->orig_size - start ? hb->orig_size : start + count;
- hbitmap_iter_init(&hbi, hb, start);
- first_dirty_off = hbitmap_iter_next(&hbi);
- if (first_dirty_off < 0 || first_dirty_off >= end) {
- return -1;
- }
- return MAX(start, first_dirty_off);
- }
- int64_t hbitmap_next_zero(const HBitmap *hb, int64_t start, int64_t count)
- {
- size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
- unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
- unsigned long cur = last_lev[pos];
- unsigned start_bit_offset;
- uint64_t end_bit, sz;
- int64_t res;
- assert(start >= 0 && count >= 0);
- if (start >= hb->orig_size || count == 0) {
- return -1;
- }
- end_bit = count > hb->orig_size - start ?
- hb->size :
- ((start + count - 1) >> hb->granularity) + 1;
- sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL;
- /* There may be some zero bits in @cur before @start. We are not interested
- * in them, let's set them.
- */
- start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1);
- cur |= (1UL << start_bit_offset) - 1;
- assert((start >> hb->granularity) < hb->size);
- if (cur == (unsigned long)-1) {
- do {
- pos++;
- } while (pos < sz && last_lev[pos] == (unsigned long)-1);
- if (pos >= sz) {
- return -1;
- }
- cur = last_lev[pos];
- }
- res = (pos << BITS_PER_LEVEL) + ctol(cur);
- if (res >= end_bit) {
- return -1;
- }
- res = res << hb->granularity;
- if (res < start) {
- assert(((start - res) >> hb->granularity) == 0);
- return start;
- }
- return res;
- }
- bool hbitmap_next_dirty_area(const HBitmap *hb, int64_t start, int64_t end,
- int64_t max_dirty_count,
- int64_t *dirty_start, int64_t *dirty_count)
- {
- int64_t next_zero;
- assert(start >= 0 && end >= 0 && max_dirty_count > 0);
- end = MIN(end, hb->orig_size);
- if (start >= end) {
- return false;
- }
- start = hbitmap_next_dirty(hb, start, end - start);
- if (start < 0) {
- return false;
- }
- end = start + MIN(end - start, max_dirty_count);
- next_zero = hbitmap_next_zero(hb, start, end - start);
- if (next_zero >= 0) {
- end = next_zero;
- }
- *dirty_start = start;
- *dirty_count = end - start;
- return true;
- }
- bool hbitmap_status(const HBitmap *hb, int64_t start, int64_t count,
- int64_t *pnum)
- {
- int64_t next_dirty, next_zero;
- assert(start >= 0);
- assert(count > 0);
- assert(start + count <= hb->orig_size);
- next_dirty = hbitmap_next_dirty(hb, start, count);
- if (next_dirty == -1) {
- *pnum = count;
- return false;
- }
- if (next_dirty > start) {
- *pnum = next_dirty - start;
- return false;
- }
- assert(next_dirty == start);
- next_zero = hbitmap_next_zero(hb, start, count);
- if (next_zero == -1) {
- *pnum = count;
- return true;
- }
- assert(next_zero > start);
- *pnum = next_zero - start;
- return true;
- }
- bool hbitmap_empty(const HBitmap *hb)
- {
- return hb->count == 0;
- }
- int hbitmap_granularity(const HBitmap *hb)
- {
- return hb->granularity;
- }
- uint64_t hbitmap_count(const HBitmap *hb)
- {
- return hb->count << hb->granularity;
- }
- /**
- * hbitmap_iter_next_word:
- * @hbi: HBitmapIter to operate on.
- * @p_cur: Location where to store the next non-zero word.
- *
- * Return the index of the next nonzero word that is set in @hbi's
- * associated HBitmap, and set *p_cur to the content of that word
- * (bits before the index that was passed to hbitmap_iter_init are
- * trimmed on the first call). Return -1, and set *p_cur to zero,
- * if all remaining words are zero.
- */
- static size_t hbitmap_iter_next_word(HBitmapIter *hbi, unsigned long *p_cur)
- {
- unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1];
- if (cur == 0) {
- cur = hbitmap_iter_skip_words(hbi);
- if (cur == 0) {
- *p_cur = 0;
- return -1;
- }
- }
- /* The next call will resume work from the next word. */
- hbi->cur[HBITMAP_LEVELS - 1] = 0;
- *p_cur = cur;
- return hbi->pos;
- }
- /* Count the number of set bits between start and end, not accounting for
- * the granularity. Also an example of how to use hbitmap_iter_next_word.
- */
- static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
- {
- HBitmapIter hbi;
- uint64_t count = 0;
- uint64_t end = last + 1;
- unsigned long cur;
- size_t pos;
- hbitmap_iter_init(&hbi, hb, start << hb->granularity);
- for (;;) {
- pos = hbitmap_iter_next_word(&hbi, &cur);
- if (pos >= (end >> BITS_PER_LEVEL)) {
- break;
- }
- count += ctpopl(cur);
- }
- if (pos == (end >> BITS_PER_LEVEL)) {
- /* Drop bits representing the END-th and subsequent items. */
- int bit = end & (BITS_PER_LONG - 1);
- cur &= (1UL << bit) - 1;
- count += ctpopl(cur);
- }
- return count;
- }
- /* Setting starts at the last layer and propagates up if an element
- * changes.
- */
- static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
- {
- unsigned long mask;
- unsigned long old;
- assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
- assert(start <= last);
- mask = 2UL << (last & (BITS_PER_LONG - 1));
- mask -= 1UL << (start & (BITS_PER_LONG - 1));
- old = *elem;
- *elem |= mask;
- return old != *elem;
- }
- /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
- * Returns true if at least one bit is changed. */
- static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
- uint64_t last)
- {
- size_t pos = start >> BITS_PER_LEVEL;
- size_t lastpos = last >> BITS_PER_LEVEL;
- bool changed = false;
- size_t i;
- i = pos;
- if (i < lastpos) {
- uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
- changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
- for (;;) {
- start = next;
- next += BITS_PER_LONG;
- if (++i == lastpos) {
- break;
- }
- changed |= (hb->levels[level][i] == 0);
- hb->levels[level][i] = ~0UL;
- }
- }
- changed |= hb_set_elem(&hb->levels[level][i], start, last);
- /* If there was any change in this layer, we may have to update
- * the one above.
- */
- if (level > 0 && changed) {
- hb_set_between(hb, level - 1, pos, lastpos);
- }
- return changed;
- }
- void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
- {
- /* Compute range in the last layer. */
- uint64_t first, n;
- uint64_t last = start + count - 1;
- if (count == 0) {
- return;
- }
- trace_hbitmap_set(hb, start, count,
- start >> hb->granularity, last >> hb->granularity);
- first = start >> hb->granularity;
- last >>= hb->granularity;
- assert(last < hb->size);
- n = last - first + 1;
- hb->count += n - hb_count_between(hb, first, last);
- if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
- hb->meta) {
- hbitmap_set(hb->meta, start, count);
- }
- }
- /* Resetting works the other way round: propagate up if the new
- * value is zero.
- */
- static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
- {
- unsigned long mask;
- bool blanked;
- assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
- assert(start <= last);
- mask = 2UL << (last & (BITS_PER_LONG - 1));
- mask -= 1UL << (start & (BITS_PER_LONG - 1));
- blanked = *elem != 0 && ((*elem & ~mask) == 0);
- *elem &= ~mask;
- return blanked;
- }
- /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
- * Returns true if at least one bit is changed. */
- static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
- uint64_t last)
- {
- size_t pos = start >> BITS_PER_LEVEL;
- size_t lastpos = last >> BITS_PER_LEVEL;
- bool changed = false;
- size_t i;
- i = pos;
- if (i < lastpos) {
- uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
- /* Here we need a more complex test than when setting bits. Even if
- * something was changed, we must not blank bits in the upper level
- * unless the lower-level word became entirely zero. So, remove pos
- * from the upper-level range if bits remain set.
- */
- if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
- changed = true;
- } else {
- pos++;
- }
- for (;;) {
- start = next;
- next += BITS_PER_LONG;
- if (++i == lastpos) {
- break;
- }
- changed |= (hb->levels[level][i] != 0);
- hb->levels[level][i] = 0UL;
- }
- }
- /* Same as above, this time for lastpos. */
- if (hb_reset_elem(&hb->levels[level][i], start, last)) {
- changed = true;
- } else {
- lastpos--;
- }
- if (level > 0 && changed) {
- hb_reset_between(hb, level - 1, pos, lastpos);
- }
- return changed;
- }
- void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
- {
- /* Compute range in the last layer. */
- uint64_t first;
- uint64_t last = start + count - 1;
- uint64_t gran = 1ULL << hb->granularity;
- if (count == 0) {
- return;
- }
- assert(QEMU_IS_ALIGNED(start, gran));
- assert(QEMU_IS_ALIGNED(count, gran) || (start + count == hb->orig_size));
- trace_hbitmap_reset(hb, start, count,
- start >> hb->granularity, last >> hb->granularity);
- first = start >> hb->granularity;
- last >>= hb->granularity;
- assert(last < hb->size);
- hb->count -= hb_count_between(hb, first, last);
- if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
- hb->meta) {
- hbitmap_set(hb->meta, start, count);
- }
- }
- void hbitmap_reset_all(HBitmap *hb)
- {
- unsigned int i;
- /* Same as hbitmap_alloc() except for memset() instead of malloc() */
- for (i = HBITMAP_LEVELS; --i >= 1; ) {
- memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
- }
- hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
- hb->count = 0;
- }
- bool hbitmap_is_serializable(const HBitmap *hb)
- {
- /* Every serialized chunk must be aligned to 64 bits so that endianness
- * requirements can be fulfilled on both 64 bit and 32 bit hosts.
- * We have hbitmap_serialization_align() which converts this
- * alignment requirement from bitmap bits to items covered (e.g. sectors).
- * That value is:
- * 64 << hb->granularity
- * Since this value must not exceed UINT64_MAX, hb->granularity must be
- * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
- *
- * In order for hbitmap_serialization_align() to always return a
- * meaningful value, bitmaps that are to be serialized must have a
- * granularity of less than 58. */
- return hb->granularity < 58;
- }
- bool hbitmap_get(const HBitmap *hb, uint64_t item)
- {
- /* Compute position and bit in the last layer. */
- uint64_t pos = item >> hb->granularity;
- unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
- assert(pos < hb->size);
- return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
- }
- uint64_t hbitmap_serialization_align(const HBitmap *hb)
- {
- assert(hbitmap_is_serializable(hb));
- /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
- * hosts. */
- return UINT64_C(64) << hb->granularity;
- }
- /* Start should be aligned to serialization granularity, chunk size should be
- * aligned to serialization granularity too, except for last chunk.
- */
- static void serialization_chunk(const HBitmap *hb,
- uint64_t start, uint64_t count,
- unsigned long **first_el, uint64_t *el_count)
- {
- uint64_t last = start + count - 1;
- uint64_t gran = hbitmap_serialization_align(hb);
- assert((start & (gran - 1)) == 0);
- assert((last >> hb->granularity) < hb->size);
- if ((last >> hb->granularity) != hb->size - 1) {
- assert((count & (gran - 1)) == 0);
- }
- start = (start >> hb->granularity) >> BITS_PER_LEVEL;
- last = (last >> hb->granularity) >> BITS_PER_LEVEL;
- *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
- *el_count = last - start + 1;
- }
- uint64_t hbitmap_serialization_size(const HBitmap *hb,
- uint64_t start, uint64_t count)
- {
- uint64_t el_count;
- unsigned long *cur;
- if (!count) {
- return 0;
- }
- serialization_chunk(hb, start, count, &cur, &el_count);
- return el_count * sizeof(unsigned long);
- }
- void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
- uint64_t start, uint64_t count)
- {
- uint64_t el_count;
- unsigned long *cur, *end;
- if (!count) {
- return;
- }
- serialization_chunk(hb, start, count, &cur, &el_count);
- end = cur + el_count;
- while (cur != end) {
- unsigned long el =
- (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
- memcpy(buf, &el, sizeof(el));
- buf += sizeof(el);
- cur++;
- }
- }
- void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
- uint64_t start, uint64_t count,
- bool finish)
- {
- uint64_t el_count;
- unsigned long *cur, *end;
- if (!count) {
- return;
- }
- serialization_chunk(hb, start, count, &cur, &el_count);
- end = cur + el_count;
- while (cur != end) {
- memcpy(cur, buf, sizeof(*cur));
- if (BITS_PER_LONG == 32) {
- le32_to_cpus((uint32_t *)cur);
- } else {
- le64_to_cpus((uint64_t *)cur);
- }
- buf += sizeof(unsigned long);
- cur++;
- }
- if (finish) {
- hbitmap_deserialize_finish(hb);
- }
- }
- void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
- bool finish)
- {
- uint64_t el_count;
- unsigned long *first;
- if (!count) {
- return;
- }
- serialization_chunk(hb, start, count, &first, &el_count);
- memset(first, 0, el_count * sizeof(unsigned long));
- if (finish) {
- hbitmap_deserialize_finish(hb);
- }
- }
- void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
- bool finish)
- {
- uint64_t el_count;
- unsigned long *first;
- if (!count) {
- return;
- }
- serialization_chunk(hb, start, count, &first, &el_count);
- memset(first, 0xff, el_count * sizeof(unsigned long));
- if (finish) {
- hbitmap_deserialize_finish(hb);
- }
- }
- void hbitmap_deserialize_finish(HBitmap *bitmap)
- {
- int64_t i, size, prev_size;
- int lev;
- /* restore levels starting from penultimate to zero level, assuming
- * that the last level is ok */
- size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
- for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
- prev_size = size;
- size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
- memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
- for (i = 0; i < prev_size; ++i) {
- if (bitmap->levels[lev + 1][i]) {
- bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
- 1UL << (i & (BITS_PER_LONG - 1));
- }
- }
- }
- bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
- bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
- }
- void hbitmap_free(HBitmap *hb)
- {
- unsigned i;
- assert(!hb->meta);
- for (i = HBITMAP_LEVELS; i-- > 0; ) {
- g_free(hb->levels[i]);
- }
- g_free(hb);
- }
- HBitmap *hbitmap_alloc(uint64_t size, int granularity)
- {
- HBitmap *hb = g_new0(struct HBitmap, 1);
- unsigned i;
- assert(size <= INT64_MAX);
- hb->orig_size = size;
- assert(granularity >= 0 && granularity < 64);
- size = (size + (1ULL << granularity) - 1) >> granularity;
- assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
- hb->size = size;
- hb->granularity = granularity;
- for (i = HBITMAP_LEVELS; i-- > 0; ) {
- size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
- hb->sizes[i] = size;
- hb->levels[i] = g_new0(unsigned long, size);
- }
- /* We necessarily have free bits in level 0 due to the definition
- * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up
- * hbitmap_iter_skip_words.
- */
- assert(size == 1);
- hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
- return hb;
- }
- void hbitmap_truncate(HBitmap *hb, uint64_t size)
- {
- bool shrink;
- unsigned i;
- uint64_t num_elements = size;
- uint64_t old;
- assert(size <= INT64_MAX);
- hb->orig_size = size;
- /* Size comes in as logical elements, adjust for granularity. */
- size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
- assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
- shrink = size < hb->size;
- /* bit sizes are identical; nothing to do. */
- if (size == hb->size) {
- return;
- }
- /* If we're losing bits, let's clear those bits before we invalidate all of
- * our invariants. This helps keep the bitcount consistent, and will prevent
- * us from carrying around garbage bits beyond the end of the map.
- */
- if (shrink) {
- /* Don't clear partial granularity groups;
- * start at the first full one. */
- uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
- uint64_t fix_count = (hb->size << hb->granularity) - start;
- assert(fix_count);
- hbitmap_reset(hb, start, fix_count);
- }
- hb->size = size;
- for (i = HBITMAP_LEVELS; i-- > 0; ) {
- size = MAX(BITS_TO_LONGS(size), 1);
- if (hb->sizes[i] == size) {
- break;
- }
- old = hb->sizes[i];
- hb->sizes[i] = size;
- hb->levels[i] = g_renew(unsigned long, hb->levels[i], size);
- if (!shrink) {
- memset(&hb->levels[i][old], 0x00,
- (size - old) * sizeof(*hb->levels[i]));
- }
- }
- if (hb->meta) {
- hbitmap_truncate(hb->meta, hb->size << hb->granularity);
- }
- }
- /**
- * hbitmap_sparse_merge: performs dst = dst | src
- * works with differing granularities.
- * best used when src is sparsely populated.
- */
- static void hbitmap_sparse_merge(HBitmap *dst, const HBitmap *src)
- {
- int64_t offset;
- int64_t count;
- for (offset = 0;
- hbitmap_next_dirty_area(src, offset, src->orig_size, INT64_MAX,
- &offset, &count);
- offset += count)
- {
- hbitmap_set(dst, offset, count);
- }
- }
- /**
- * Given HBitmaps A and B, let R := A (BITOR) B.
- * Bitmaps A and B will not be modified,
- * except when bitmap R is an alias of A or B.
- * Bitmaps must have same size.
- */
- void hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result)
- {
- int i;
- uint64_t j;
- assert(a->orig_size == result->orig_size);
- assert(b->orig_size == result->orig_size);
- if ((!hbitmap_count(a) && result == b) ||
- (!hbitmap_count(b) && result == a)) {
- return;
- }
- if (!hbitmap_count(a) && !hbitmap_count(b)) {
- hbitmap_reset_all(result);
- return;
- }
- if (a->granularity != b->granularity) {
- if ((a != result) && (b != result)) {
- hbitmap_reset_all(result);
- }
- if (a != result) {
- hbitmap_sparse_merge(result, a);
- }
- if (b != result) {
- hbitmap_sparse_merge(result, b);
- }
- return;
- }
- /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
- * It may be possible to improve running times for sparsely populated maps
- * by using hbitmap_iter_next, but this is suboptimal for dense maps.
- */
- assert(a->size == b->size);
- for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
- for (j = 0; j < a->sizes[i]; j++) {
- result->levels[i][j] = a->levels[i][j] | b->levels[i][j];
- }
- }
- /* Recompute the dirty count */
- result->count = hb_count_between(result, 0, result->size - 1);
- }
- char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
- {
- size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
- char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
- char *hash = NULL;
- qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
- return hash;
- }
|