sun4m.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494
  1. /*
  2. * QEMU Sun4m & Sun4d & Sun4c System Emulator
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu/units.h"
  26. #include "qapi/error.h"
  27. #include "qemu/datadir.h"
  28. #include "cpu.h"
  29. #include "hw/sysbus.h"
  30. #include "qemu/error-report.h"
  31. #include "qemu/timer.h"
  32. #include "hw/sparc/sun4m_iommu.h"
  33. #include "hw/rtc/m48t59.h"
  34. #include "migration/vmstate.h"
  35. #include "hw/sparc/sparc32_dma.h"
  36. #include "hw/block/fdc.h"
  37. #include "sysemu/reset.h"
  38. #include "sysemu/runstate.h"
  39. #include "sysemu/sysemu.h"
  40. #include "net/net.h"
  41. #include "hw/boards.h"
  42. #include "hw/scsi/esp.h"
  43. #include "hw/nvram/sun_nvram.h"
  44. #include "hw/qdev-properties.h"
  45. #include "hw/nvram/chrp_nvram.h"
  46. #include "hw/nvram/fw_cfg.h"
  47. #include "hw/char/escc.h"
  48. #include "hw/misc/empty_slot.h"
  49. #include "hw/misc/unimp.h"
  50. #include "hw/irq.h"
  51. #include "hw/or-irq.h"
  52. #include "hw/loader.h"
  53. #include "elf.h"
  54. #include "trace.h"
  55. #include "qom/object.h"
  56. /*
  57. * Sun4m architecture was used in the following machines:
  58. *
  59. * SPARCserver 6xxMP/xx
  60. * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
  61. * SPARCclassic X (4/10)
  62. * SPARCstation LX/ZX (4/30)
  63. * SPARCstation Voyager
  64. * SPARCstation 10/xx, SPARCserver 10/xx
  65. * SPARCstation 5, SPARCserver 5
  66. * SPARCstation 20/xx, SPARCserver 20
  67. * SPARCstation 4
  68. *
  69. * See for example: http://www.sunhelp.org/faq/sunref1.html
  70. */
  71. #define KERNEL_LOAD_ADDR 0x00004000
  72. #define CMDLINE_ADDR 0x007ff000
  73. #define INITRD_LOAD_ADDR 0x00800000
  74. #define PROM_SIZE_MAX (1 * MiB)
  75. #define PROM_VADDR 0xffd00000
  76. #define PROM_FILENAME "openbios-sparc32"
  77. #define CFG_ADDR 0xd00000510ULL
  78. #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
  79. #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
  80. #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
  81. #define MAX_CPUS 16
  82. #define MAX_PILS 16
  83. #define MAX_VSIMMS 4
  84. #define ESCC_CLOCK 4915200
  85. struct sun4m_hwdef {
  86. hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
  87. hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
  88. hwaddr serial_base, fd_base;
  89. hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
  90. hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
  91. hwaddr bpp_base, dbri_base, sx_base;
  92. struct {
  93. hwaddr reg_base, vram_base;
  94. } vsimm[MAX_VSIMMS];
  95. hwaddr ecc_base;
  96. uint64_t max_mem;
  97. uint32_t ecc_version;
  98. uint32_t iommu_version;
  99. uint16_t machine_id;
  100. uint8_t nvram_machine_id;
  101. };
  102. struct Sun4mMachineClass {
  103. /*< private >*/
  104. MachineClass parent_obj;
  105. /*< public >*/
  106. const struct sun4m_hwdef *hwdef;
  107. };
  108. typedef struct Sun4mMachineClass Sun4mMachineClass;
  109. #define TYPE_SUN4M_MACHINE MACHINE_TYPE_NAME("sun4m-common")
  110. DECLARE_CLASS_CHECKERS(Sun4mMachineClass, SUN4M_MACHINE, TYPE_SUN4M_MACHINE)
  111. const char *fw_cfg_arch_key_name(uint16_t key)
  112. {
  113. static const struct {
  114. uint16_t key;
  115. const char *name;
  116. } fw_cfg_arch_wellknown_keys[] = {
  117. {FW_CFG_SUN4M_DEPTH, "depth"},
  118. {FW_CFG_SUN4M_WIDTH, "width"},
  119. {FW_CFG_SUN4M_HEIGHT, "height"},
  120. };
  121. for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
  122. if (fw_cfg_arch_wellknown_keys[i].key == key) {
  123. return fw_cfg_arch_wellknown_keys[i].name;
  124. }
  125. }
  126. return NULL;
  127. }
  128. static void fw_cfg_boot_set(void *opaque, const char *boot_device,
  129. Error **errp)
  130. {
  131. fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
  132. }
  133. static void nvram_init(Nvram *nvram, uint8_t *macaddr,
  134. const char *cmdline, const char *boot_devices,
  135. ram_addr_t RAM_size, uint32_t kernel_size,
  136. int width, int height, int depth,
  137. int nvram_machine_id, const char *arch)
  138. {
  139. unsigned int i;
  140. int sysp_end;
  141. uint8_t image[0x1ff0];
  142. NvramClass *k = NVRAM_GET_CLASS(nvram);
  143. memset(image, '\0', sizeof(image));
  144. /* OpenBIOS nvram variables partition */
  145. sysp_end = chrp_nvram_create_system_partition(image, 0, 0x1fd0);
  146. /* Free space partition */
  147. chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
  148. Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
  149. nvram_machine_id);
  150. for (i = 0; i < sizeof(image); i++) {
  151. (k->write)(nvram, i, image[i]);
  152. }
  153. }
  154. static void cpu_kick_irq(SPARCCPU *cpu)
  155. {
  156. CPUSPARCState *env = &cpu->env;
  157. CPUState *cs = CPU(cpu);
  158. cs->halted = 0;
  159. cpu_check_irqs(env);
  160. qemu_cpu_kick(cs);
  161. }
  162. static void cpu_set_irq(void *opaque, int irq, int level)
  163. {
  164. SPARCCPU *cpu = opaque;
  165. CPUSPARCState *env = &cpu->env;
  166. if (level) {
  167. trace_sun4m_cpu_set_irq_raise(irq);
  168. env->pil_in |= 1 << irq;
  169. cpu_kick_irq(cpu);
  170. } else {
  171. trace_sun4m_cpu_set_irq_lower(irq);
  172. env->pil_in &= ~(1 << irq);
  173. cpu_check_irqs(env);
  174. }
  175. }
  176. static void dummy_cpu_set_irq(void *opaque, int irq, int level)
  177. {
  178. }
  179. static void sun4m_cpu_reset(void *opaque)
  180. {
  181. SPARCCPU *cpu = opaque;
  182. CPUState *cs = CPU(cpu);
  183. cpu_reset(cs);
  184. }
  185. static void cpu_halt_signal(void *opaque, int irq, int level)
  186. {
  187. if (level && current_cpu) {
  188. cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
  189. }
  190. }
  191. static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
  192. {
  193. return addr - 0xf0000000ULL;
  194. }
  195. static unsigned long sun4m_load_kernel(const char *kernel_filename,
  196. const char *initrd_filename,
  197. ram_addr_t RAM_size,
  198. uint32_t *initrd_size)
  199. {
  200. int linux_boot;
  201. unsigned int i;
  202. long kernel_size;
  203. uint8_t *ptr;
  204. linux_boot = (kernel_filename != NULL);
  205. kernel_size = 0;
  206. if (linux_boot) {
  207. int bswap_needed;
  208. #ifdef BSWAP_NEEDED
  209. bswap_needed = 1;
  210. #else
  211. bswap_needed = 0;
  212. #endif
  213. kernel_size = load_elf(kernel_filename, NULL,
  214. translate_kernel_address, NULL,
  215. NULL, NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
  216. if (kernel_size < 0)
  217. kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
  218. RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
  219. TARGET_PAGE_SIZE);
  220. if (kernel_size < 0)
  221. kernel_size = load_image_targphys(kernel_filename,
  222. KERNEL_LOAD_ADDR,
  223. RAM_size - KERNEL_LOAD_ADDR);
  224. if (kernel_size < 0) {
  225. error_report("could not load kernel '%s'", kernel_filename);
  226. exit(1);
  227. }
  228. /* load initrd */
  229. *initrd_size = 0;
  230. if (initrd_filename) {
  231. *initrd_size = load_image_targphys(initrd_filename,
  232. INITRD_LOAD_ADDR,
  233. RAM_size - INITRD_LOAD_ADDR);
  234. if ((int)*initrd_size < 0) {
  235. error_report("could not load initial ram disk '%s'",
  236. initrd_filename);
  237. exit(1);
  238. }
  239. }
  240. if (*initrd_size > 0) {
  241. for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
  242. ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
  243. if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
  244. stl_p(ptr + 16, INITRD_LOAD_ADDR);
  245. stl_p(ptr + 20, *initrd_size);
  246. break;
  247. }
  248. }
  249. }
  250. }
  251. return kernel_size;
  252. }
  253. static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
  254. {
  255. DeviceState *dev;
  256. SysBusDevice *s;
  257. dev = qdev_new(TYPE_SUN4M_IOMMU);
  258. qdev_prop_set_uint32(dev, "version", version);
  259. s = SYS_BUS_DEVICE(dev);
  260. sysbus_realize_and_unref(s, &error_fatal);
  261. sysbus_connect_irq(s, 0, irq);
  262. sysbus_mmio_map(s, 0, addr);
  263. return s;
  264. }
  265. static void *sparc32_dma_init(hwaddr dma_base,
  266. hwaddr esp_base, qemu_irq espdma_irq,
  267. hwaddr le_base, qemu_irq ledma_irq, NICInfo *nd)
  268. {
  269. DeviceState *dma;
  270. ESPDMADeviceState *espdma;
  271. LEDMADeviceState *ledma;
  272. SysBusESPState *esp;
  273. SysBusPCNetState *lance;
  274. dma = qdev_new(TYPE_SPARC32_DMA);
  275. espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
  276. OBJECT(dma), "espdma"));
  277. sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
  278. esp = SYSBUS_ESP(object_resolve_path_component(OBJECT(espdma), "esp"));
  279. ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
  280. OBJECT(dma), "ledma"));
  281. sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
  282. lance = SYSBUS_PCNET(object_resolve_path_component(
  283. OBJECT(ledma), "lance"));
  284. qdev_set_nic_properties(DEVICE(lance), nd);
  285. sysbus_realize_and_unref(SYS_BUS_DEVICE(dma), &error_fatal);
  286. sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
  287. sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
  288. scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
  289. sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
  290. return dma;
  291. }
  292. static DeviceState *slavio_intctl_init(hwaddr addr,
  293. hwaddr addrg,
  294. qemu_irq **parent_irq)
  295. {
  296. DeviceState *dev;
  297. SysBusDevice *s;
  298. unsigned int i, j;
  299. dev = qdev_new("slavio_intctl");
  300. s = SYS_BUS_DEVICE(dev);
  301. sysbus_realize_and_unref(s, &error_fatal);
  302. for (i = 0; i < MAX_CPUS; i++) {
  303. for (j = 0; j < MAX_PILS; j++) {
  304. sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
  305. }
  306. }
  307. sysbus_mmio_map(s, 0, addrg);
  308. for (i = 0; i < MAX_CPUS; i++) {
  309. sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
  310. }
  311. return dev;
  312. }
  313. #define SYS_TIMER_OFFSET 0x10000ULL
  314. #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
  315. static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
  316. qemu_irq *cpu_irqs, unsigned int num_cpus)
  317. {
  318. DeviceState *dev;
  319. SysBusDevice *s;
  320. unsigned int i;
  321. dev = qdev_new("slavio_timer");
  322. qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
  323. s = SYS_BUS_DEVICE(dev);
  324. sysbus_realize_and_unref(s, &error_fatal);
  325. sysbus_connect_irq(s, 0, master_irq);
  326. sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
  327. for (i = 0; i < MAX_CPUS; i++) {
  328. sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
  329. sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
  330. }
  331. }
  332. static qemu_irq slavio_system_powerdown;
  333. static void slavio_powerdown_req(Notifier *n, void *opaque)
  334. {
  335. qemu_irq_raise(slavio_system_powerdown);
  336. }
  337. static Notifier slavio_system_powerdown_notifier = {
  338. .notify = slavio_powerdown_req
  339. };
  340. #define MISC_LEDS 0x01600000
  341. #define MISC_CFG 0x01800000
  342. #define MISC_DIAG 0x01a00000
  343. #define MISC_MDM 0x01b00000
  344. #define MISC_SYS 0x01f00000
  345. static void slavio_misc_init(hwaddr base,
  346. hwaddr aux1_base,
  347. hwaddr aux2_base, qemu_irq irq,
  348. qemu_irq fdc_tc)
  349. {
  350. DeviceState *dev;
  351. SysBusDevice *s;
  352. dev = qdev_new("slavio_misc");
  353. s = SYS_BUS_DEVICE(dev);
  354. sysbus_realize_and_unref(s, &error_fatal);
  355. if (base) {
  356. /* 8 bit registers */
  357. /* Slavio control */
  358. sysbus_mmio_map(s, 0, base + MISC_CFG);
  359. /* Diagnostics */
  360. sysbus_mmio_map(s, 1, base + MISC_DIAG);
  361. /* Modem control */
  362. sysbus_mmio_map(s, 2, base + MISC_MDM);
  363. /* 16 bit registers */
  364. /* ss600mp diag LEDs */
  365. sysbus_mmio_map(s, 3, base + MISC_LEDS);
  366. /* 32 bit registers */
  367. /* System control */
  368. sysbus_mmio_map(s, 4, base + MISC_SYS);
  369. }
  370. if (aux1_base) {
  371. /* AUX 1 (Misc System Functions) */
  372. sysbus_mmio_map(s, 5, aux1_base);
  373. }
  374. if (aux2_base) {
  375. /* AUX 2 (Software Powerdown Control) */
  376. sysbus_mmio_map(s, 6, aux2_base);
  377. }
  378. sysbus_connect_irq(s, 0, irq);
  379. sysbus_connect_irq(s, 1, fdc_tc);
  380. slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
  381. qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
  382. }
  383. static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
  384. {
  385. DeviceState *dev;
  386. SysBusDevice *s;
  387. dev = qdev_new("eccmemctl");
  388. qdev_prop_set_uint32(dev, "version", version);
  389. s = SYS_BUS_DEVICE(dev);
  390. sysbus_realize_and_unref(s, &error_fatal);
  391. sysbus_connect_irq(s, 0, irq);
  392. sysbus_mmio_map(s, 0, base);
  393. if (version == 0) { // SS-600MP only
  394. sysbus_mmio_map(s, 1, base + 0x1000);
  395. }
  396. }
  397. static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
  398. {
  399. DeviceState *dev;
  400. SysBusDevice *s;
  401. dev = qdev_new("apc");
  402. s = SYS_BUS_DEVICE(dev);
  403. sysbus_realize_and_unref(s, &error_fatal);
  404. /* Power management (APC) XXX: not a Slavio device */
  405. sysbus_mmio_map(s, 0, power_base);
  406. sysbus_connect_irq(s, 0, cpu_halt);
  407. }
  408. static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  409. int height, int depth)
  410. {
  411. DeviceState *dev;
  412. SysBusDevice *s;
  413. dev = qdev_new("sun-tcx");
  414. qdev_prop_set_uint32(dev, "vram_size", vram_size);
  415. qdev_prop_set_uint16(dev, "width", width);
  416. qdev_prop_set_uint16(dev, "height", height);
  417. qdev_prop_set_uint16(dev, "depth", depth);
  418. s = SYS_BUS_DEVICE(dev);
  419. sysbus_realize_and_unref(s, &error_fatal);
  420. /* 10/ROM : FCode ROM */
  421. sysbus_mmio_map(s, 0, addr);
  422. /* 2/STIP : Stipple */
  423. sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
  424. /* 3/BLIT : Blitter */
  425. sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
  426. /* 5/RSTIP : Raw Stipple */
  427. sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
  428. /* 6/RBLIT : Raw Blitter */
  429. sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
  430. /* 7/TEC : Transform Engine */
  431. sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
  432. /* 8/CMAP : DAC */
  433. sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
  434. /* 9/THC : */
  435. if (depth == 8) {
  436. sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
  437. } else {
  438. sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
  439. }
  440. /* 11/DHC : */
  441. sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
  442. /* 12/ALT : */
  443. sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
  444. /* 0/DFB8 : 8-bit plane */
  445. sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
  446. /* 1/DFB24 : 24bit plane */
  447. sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
  448. /* 4/RDFB32: Raw framebuffer. Control plane */
  449. sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
  450. /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
  451. if (depth == 8) {
  452. sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
  453. }
  454. sysbus_connect_irq(s, 0, irq);
  455. }
  456. static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  457. int height, int depth)
  458. {
  459. DeviceState *dev;
  460. SysBusDevice *s;
  461. dev = qdev_new("cgthree");
  462. qdev_prop_set_uint32(dev, "vram-size", vram_size);
  463. qdev_prop_set_uint16(dev, "width", width);
  464. qdev_prop_set_uint16(dev, "height", height);
  465. qdev_prop_set_uint16(dev, "depth", depth);
  466. s = SYS_BUS_DEVICE(dev);
  467. sysbus_realize_and_unref(s, &error_fatal);
  468. /* FCode ROM */
  469. sysbus_mmio_map(s, 0, addr);
  470. /* DAC */
  471. sysbus_mmio_map(s, 1, addr + 0x400000ULL);
  472. /* 8-bit plane */
  473. sysbus_mmio_map(s, 2, addr + 0x800000ULL);
  474. sysbus_connect_irq(s, 0, irq);
  475. }
  476. /* NCR89C100/MACIO Internal ID register */
  477. #define TYPE_MACIO_ID_REGISTER "macio_idreg"
  478. static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
  479. static void idreg_init(hwaddr addr)
  480. {
  481. DeviceState *dev;
  482. SysBusDevice *s;
  483. dev = qdev_new(TYPE_MACIO_ID_REGISTER);
  484. s = SYS_BUS_DEVICE(dev);
  485. sysbus_realize_and_unref(s, &error_fatal);
  486. sysbus_mmio_map(s, 0, addr);
  487. address_space_write_rom(&address_space_memory, addr,
  488. MEMTXATTRS_UNSPECIFIED,
  489. idreg_data, sizeof(idreg_data));
  490. }
  491. OBJECT_DECLARE_SIMPLE_TYPE(IDRegState, MACIO_ID_REGISTER)
  492. struct IDRegState {
  493. SysBusDevice parent_obj;
  494. MemoryRegion mem;
  495. };
  496. static void idreg_realize(DeviceState *ds, Error **errp)
  497. {
  498. IDRegState *s = MACIO_ID_REGISTER(ds);
  499. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  500. Error *local_err = NULL;
  501. memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
  502. sizeof(idreg_data), &local_err);
  503. if (local_err) {
  504. error_propagate(errp, local_err);
  505. return;
  506. }
  507. vmstate_register_ram_global(&s->mem);
  508. memory_region_set_readonly(&s->mem, true);
  509. sysbus_init_mmio(dev, &s->mem);
  510. }
  511. static void idreg_class_init(ObjectClass *oc, void *data)
  512. {
  513. DeviceClass *dc = DEVICE_CLASS(oc);
  514. dc->realize = idreg_realize;
  515. }
  516. static const TypeInfo idreg_info = {
  517. .name = TYPE_MACIO_ID_REGISTER,
  518. .parent = TYPE_SYS_BUS_DEVICE,
  519. .instance_size = sizeof(IDRegState),
  520. .class_init = idreg_class_init,
  521. };
  522. #define TYPE_TCX_AFX "tcx_afx"
  523. OBJECT_DECLARE_SIMPLE_TYPE(AFXState, TCX_AFX)
  524. struct AFXState {
  525. SysBusDevice parent_obj;
  526. MemoryRegion mem;
  527. };
  528. /* SS-5 TCX AFX register */
  529. static void afx_init(hwaddr addr)
  530. {
  531. DeviceState *dev;
  532. SysBusDevice *s;
  533. dev = qdev_new(TYPE_TCX_AFX);
  534. s = SYS_BUS_DEVICE(dev);
  535. sysbus_realize_and_unref(s, &error_fatal);
  536. sysbus_mmio_map(s, 0, addr);
  537. }
  538. static void afx_realize(DeviceState *ds, Error **errp)
  539. {
  540. AFXState *s = TCX_AFX(ds);
  541. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  542. Error *local_err = NULL;
  543. memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4,
  544. &local_err);
  545. if (local_err) {
  546. error_propagate(errp, local_err);
  547. return;
  548. }
  549. vmstate_register_ram_global(&s->mem);
  550. sysbus_init_mmio(dev, &s->mem);
  551. }
  552. static void afx_class_init(ObjectClass *oc, void *data)
  553. {
  554. DeviceClass *dc = DEVICE_CLASS(oc);
  555. dc->realize = afx_realize;
  556. }
  557. static const TypeInfo afx_info = {
  558. .name = TYPE_TCX_AFX,
  559. .parent = TYPE_SYS_BUS_DEVICE,
  560. .instance_size = sizeof(AFXState),
  561. .class_init = afx_class_init,
  562. };
  563. #define TYPE_OPENPROM "openprom"
  564. typedef struct PROMState PROMState;
  565. DECLARE_INSTANCE_CHECKER(PROMState, OPENPROM,
  566. TYPE_OPENPROM)
  567. struct PROMState {
  568. SysBusDevice parent_obj;
  569. MemoryRegion prom;
  570. };
  571. /* Boot PROM (OpenBIOS) */
  572. static uint64_t translate_prom_address(void *opaque, uint64_t addr)
  573. {
  574. hwaddr *base_addr = (hwaddr *)opaque;
  575. return addr + *base_addr - PROM_VADDR;
  576. }
  577. static void prom_init(hwaddr addr, const char *bios_name)
  578. {
  579. DeviceState *dev;
  580. SysBusDevice *s;
  581. char *filename;
  582. int ret;
  583. dev = qdev_new(TYPE_OPENPROM);
  584. s = SYS_BUS_DEVICE(dev);
  585. sysbus_realize_and_unref(s, &error_fatal);
  586. sysbus_mmio_map(s, 0, addr);
  587. /* load boot prom */
  588. if (bios_name == NULL) {
  589. bios_name = PROM_FILENAME;
  590. }
  591. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  592. if (filename) {
  593. ret = load_elf(filename, NULL,
  594. translate_prom_address, &addr, NULL,
  595. NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
  596. if (ret < 0 || ret > PROM_SIZE_MAX) {
  597. ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
  598. }
  599. g_free(filename);
  600. } else {
  601. ret = -1;
  602. }
  603. if (ret < 0 || ret > PROM_SIZE_MAX) {
  604. error_report("could not load prom '%s'", bios_name);
  605. exit(1);
  606. }
  607. }
  608. static void prom_realize(DeviceState *ds, Error **errp)
  609. {
  610. PROMState *s = OPENPROM(ds);
  611. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  612. Error *local_err = NULL;
  613. memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
  614. PROM_SIZE_MAX, &local_err);
  615. if (local_err) {
  616. error_propagate(errp, local_err);
  617. return;
  618. }
  619. vmstate_register_ram_global(&s->prom);
  620. memory_region_set_readonly(&s->prom, true);
  621. sysbus_init_mmio(dev, &s->prom);
  622. }
  623. static Property prom_properties[] = {
  624. {/* end of property list */},
  625. };
  626. static void prom_class_init(ObjectClass *klass, void *data)
  627. {
  628. DeviceClass *dc = DEVICE_CLASS(klass);
  629. device_class_set_props(dc, prom_properties);
  630. dc->realize = prom_realize;
  631. }
  632. static const TypeInfo prom_info = {
  633. .name = TYPE_OPENPROM,
  634. .parent = TYPE_SYS_BUS_DEVICE,
  635. .instance_size = sizeof(PROMState),
  636. .class_init = prom_class_init,
  637. };
  638. #define TYPE_SUN4M_MEMORY "memory"
  639. typedef struct RamDevice RamDevice;
  640. DECLARE_INSTANCE_CHECKER(RamDevice, SUN4M_RAM,
  641. TYPE_SUN4M_MEMORY)
  642. struct RamDevice {
  643. SysBusDevice parent_obj;
  644. HostMemoryBackend *memdev;
  645. };
  646. /* System RAM */
  647. static void ram_realize(DeviceState *dev, Error **errp)
  648. {
  649. RamDevice *d = SUN4M_RAM(dev);
  650. MemoryRegion *ram = host_memory_backend_get_memory(d->memdev);
  651. sysbus_init_mmio(SYS_BUS_DEVICE(dev), ram);
  652. }
  653. static void ram_initfn(Object *obj)
  654. {
  655. RamDevice *d = SUN4M_RAM(obj);
  656. object_property_add_link(obj, "memdev", TYPE_MEMORY_BACKEND,
  657. (Object **)&d->memdev,
  658. object_property_allow_set_link,
  659. OBJ_PROP_LINK_STRONG);
  660. object_property_set_description(obj, "memdev", "Set RAM backend"
  661. "Valid value is ID of a hostmem backend");
  662. }
  663. static void ram_class_init(ObjectClass *klass, void *data)
  664. {
  665. DeviceClass *dc = DEVICE_CLASS(klass);
  666. dc->realize = ram_realize;
  667. }
  668. static const TypeInfo ram_info = {
  669. .name = TYPE_SUN4M_MEMORY,
  670. .parent = TYPE_SYS_BUS_DEVICE,
  671. .instance_size = sizeof(RamDevice),
  672. .instance_init = ram_initfn,
  673. .class_init = ram_class_init,
  674. };
  675. static void cpu_devinit(const char *cpu_type, unsigned int id,
  676. uint64_t prom_addr, qemu_irq **cpu_irqs)
  677. {
  678. SPARCCPU *cpu;
  679. CPUSPARCState *env;
  680. cpu = SPARC_CPU(object_new(cpu_type));
  681. env = &cpu->env;
  682. qemu_register_reset(sun4m_cpu_reset, cpu);
  683. object_property_set_bool(OBJECT(cpu), "start-powered-off", id != 0,
  684. &error_fatal);
  685. qdev_realize_and_unref(DEVICE(cpu), NULL, &error_fatal);
  686. cpu_sparc_set_id(env, id);
  687. *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
  688. env->prom_addr = prom_addr;
  689. }
  690. static void dummy_fdc_tc(void *opaque, int irq, int level)
  691. {
  692. }
  693. static void sun4m_hw_init(MachineState *machine)
  694. {
  695. const struct sun4m_hwdef *hwdef = SUN4M_MACHINE_GET_CLASS(machine)->hwdef;
  696. DeviceState *slavio_intctl;
  697. unsigned int i;
  698. Nvram *nvram;
  699. qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
  700. qemu_irq fdc_tc;
  701. unsigned long kernel_size;
  702. uint32_t initrd_size;
  703. DriveInfo *fd[MAX_FD];
  704. FWCfgState *fw_cfg;
  705. DeviceState *dev, *ms_kb_orgate, *serial_orgate;
  706. SysBusDevice *s;
  707. unsigned int smp_cpus = machine->smp.cpus;
  708. unsigned int max_cpus = machine->smp.max_cpus;
  709. HostMemoryBackend *ram_memdev = machine->memdev;
  710. NICInfo *nd = &nd_table[0];
  711. if (machine->ram_size > hwdef->max_mem) {
  712. error_report("Too much memory for this machine: %" PRId64 ","
  713. " maximum %" PRId64,
  714. machine->ram_size / MiB, hwdef->max_mem / MiB);
  715. exit(1);
  716. }
  717. /* init CPUs */
  718. for(i = 0; i < smp_cpus; i++) {
  719. cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
  720. }
  721. for (i = smp_cpus; i < MAX_CPUS; i++)
  722. cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
  723. /* Create and map RAM frontend */
  724. dev = qdev_new("memory");
  725. object_property_set_link(OBJECT(dev), "memdev", OBJECT(ram_memdev), &error_fatal);
  726. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  727. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0);
  728. /* models without ECC don't trap when missing ram is accessed */
  729. if (!hwdef->ecc_base) {
  730. empty_slot_init("ecc", machine->ram_size,
  731. hwdef->max_mem - machine->ram_size);
  732. }
  733. prom_init(hwdef->slavio_base, machine->firmware);
  734. slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
  735. hwdef->intctl_base + 0x10000ULL,
  736. cpu_irqs);
  737. for (i = 0; i < 32; i++) {
  738. slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
  739. }
  740. for (i = 0; i < MAX_CPUS; i++) {
  741. slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
  742. }
  743. if (hwdef->idreg_base) {
  744. idreg_init(hwdef->idreg_base);
  745. }
  746. if (hwdef->afx_base) {
  747. afx_init(hwdef->afx_base);
  748. }
  749. iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
  750. if (hwdef->iommu_pad_base) {
  751. /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
  752. Software shouldn't use aliased addresses, neither should it crash
  753. when does. Using empty_slot instead of aliasing can help with
  754. debugging such accesses */
  755. empty_slot_init("iommu.alias",
  756. hwdef->iommu_pad_base, hwdef->iommu_pad_len);
  757. }
  758. qemu_check_nic_model(nd, TYPE_LANCE);
  759. sparc32_dma_init(hwdef->dma_base,
  760. hwdef->esp_base, slavio_irq[18],
  761. hwdef->le_base, slavio_irq[16], nd);
  762. if (graphic_depth != 8 && graphic_depth != 24) {
  763. error_report("Unsupported depth: %d", graphic_depth);
  764. exit (1);
  765. }
  766. if (vga_interface_type != VGA_NONE) {
  767. if (vga_interface_type == VGA_CG3) {
  768. if (graphic_depth != 8) {
  769. error_report("Unsupported depth: %d", graphic_depth);
  770. exit(1);
  771. }
  772. if (!(graphic_width == 1024 && graphic_height == 768) &&
  773. !(graphic_width == 1152 && graphic_height == 900)) {
  774. error_report("Unsupported resolution: %d x %d", graphic_width,
  775. graphic_height);
  776. exit(1);
  777. }
  778. /* sbus irq 5 */
  779. cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  780. graphic_width, graphic_height, graphic_depth);
  781. vga_interface_created = true;
  782. } else {
  783. /* If no display specified, default to TCX */
  784. if (graphic_depth != 8 && graphic_depth != 24) {
  785. error_report("Unsupported depth: %d", graphic_depth);
  786. exit(1);
  787. }
  788. if (!(graphic_width == 1024 && graphic_height == 768)) {
  789. error_report("Unsupported resolution: %d x %d",
  790. graphic_width, graphic_height);
  791. exit(1);
  792. }
  793. tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  794. graphic_width, graphic_height, graphic_depth);
  795. vga_interface_created = true;
  796. }
  797. }
  798. for (i = 0; i < MAX_VSIMMS; i++) {
  799. /* vsimm registers probed by OBP */
  800. if (hwdef->vsimm[i].reg_base) {
  801. char *name = g_strdup_printf("vsimm[%d]", i);
  802. empty_slot_init(name, hwdef->vsimm[i].reg_base, 0x2000);
  803. g_free(name);
  804. }
  805. }
  806. if (hwdef->sx_base) {
  807. create_unimplemented_device("sun-sx", hwdef->sx_base, 0x2000);
  808. }
  809. dev = qdev_new("sysbus-m48t08");
  810. qdev_prop_set_int32(dev, "base-year", 1968);
  811. s = SYS_BUS_DEVICE(dev);
  812. sysbus_realize_and_unref(s, &error_fatal);
  813. sysbus_connect_irq(s, 0, slavio_irq[0]);
  814. sysbus_mmio_map(s, 0, hwdef->nvram_base);
  815. nvram = NVRAM(dev);
  816. slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
  817. /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
  818. Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
  819. dev = qdev_new(TYPE_ESCC);
  820. qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
  821. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  822. qdev_prop_set_uint32(dev, "it_shift", 1);
  823. qdev_prop_set_chr(dev, "chrB", NULL);
  824. qdev_prop_set_chr(dev, "chrA", NULL);
  825. qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
  826. qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
  827. s = SYS_BUS_DEVICE(dev);
  828. sysbus_realize_and_unref(s, &error_fatal);
  829. sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
  830. /* Logically OR both its IRQs together */
  831. ms_kb_orgate = DEVICE(object_new(TYPE_OR_IRQ));
  832. object_property_set_int(OBJECT(ms_kb_orgate), "num-lines", 2, &error_fatal);
  833. qdev_realize_and_unref(ms_kb_orgate, NULL, &error_fatal);
  834. sysbus_connect_irq(s, 0, qdev_get_gpio_in(ms_kb_orgate, 0));
  835. sysbus_connect_irq(s, 1, qdev_get_gpio_in(ms_kb_orgate, 1));
  836. qdev_connect_gpio_out(DEVICE(ms_kb_orgate), 0, slavio_irq[14]);
  837. dev = qdev_new(TYPE_ESCC);
  838. qdev_prop_set_uint32(dev, "disabled", 0);
  839. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  840. qdev_prop_set_uint32(dev, "it_shift", 1);
  841. qdev_prop_set_chr(dev, "chrB", serial_hd(1));
  842. qdev_prop_set_chr(dev, "chrA", serial_hd(0));
  843. qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
  844. qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
  845. s = SYS_BUS_DEVICE(dev);
  846. sysbus_realize_and_unref(s, &error_fatal);
  847. sysbus_mmio_map(s, 0, hwdef->serial_base);
  848. /* Logically OR both its IRQs together */
  849. serial_orgate = DEVICE(object_new(TYPE_OR_IRQ));
  850. object_property_set_int(OBJECT(serial_orgate), "num-lines", 2,
  851. &error_fatal);
  852. qdev_realize_and_unref(serial_orgate, NULL, &error_fatal);
  853. sysbus_connect_irq(s, 0, qdev_get_gpio_in(serial_orgate, 0));
  854. sysbus_connect_irq(s, 1, qdev_get_gpio_in(serial_orgate, 1));
  855. qdev_connect_gpio_out(DEVICE(serial_orgate), 0, slavio_irq[15]);
  856. if (hwdef->apc_base) {
  857. apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
  858. }
  859. if (hwdef->fd_base) {
  860. /* there is zero or one floppy drive */
  861. memset(fd, 0, sizeof(fd));
  862. fd[0] = drive_get(IF_FLOPPY, 0, 0);
  863. sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
  864. &fdc_tc);
  865. } else {
  866. fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
  867. }
  868. slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
  869. slavio_irq[30], fdc_tc);
  870. if (hwdef->cs_base) {
  871. sysbus_create_simple("sun-CS4231", hwdef->cs_base,
  872. slavio_irq[5]);
  873. }
  874. if (hwdef->dbri_base) {
  875. /* ISDN chip with attached CS4215 audio codec */
  876. /* prom space */
  877. create_unimplemented_device("sun-DBRI.prom",
  878. hwdef->dbri_base + 0x1000, 0x30);
  879. /* reg space */
  880. create_unimplemented_device("sun-DBRI",
  881. hwdef->dbri_base + 0x10000, 0x100);
  882. }
  883. if (hwdef->bpp_base) {
  884. /* parallel port */
  885. create_unimplemented_device("sun-bpp", hwdef->bpp_base, 0x20);
  886. }
  887. initrd_size = 0;
  888. kernel_size = sun4m_load_kernel(machine->kernel_filename,
  889. machine->initrd_filename,
  890. machine->ram_size, &initrd_size);
  891. nvram_init(nvram, (uint8_t *)&nd->macaddr, machine->kernel_cmdline,
  892. machine->boot_config.order, machine->ram_size, kernel_size,
  893. graphic_width, graphic_height, graphic_depth,
  894. hwdef->nvram_machine_id, "Sun4m");
  895. if (hwdef->ecc_base)
  896. ecc_init(hwdef->ecc_base, slavio_irq[28],
  897. hwdef->ecc_version);
  898. dev = qdev_new(TYPE_FW_CFG_MEM);
  899. fw_cfg = FW_CFG(dev);
  900. qdev_prop_set_uint32(dev, "data_width", 1);
  901. qdev_prop_set_bit(dev, "dma_enabled", false);
  902. object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
  903. OBJECT(fw_cfg));
  904. s = SYS_BUS_DEVICE(dev);
  905. sysbus_realize_and_unref(s, &error_fatal);
  906. sysbus_mmio_map(s, 0, CFG_ADDR);
  907. sysbus_mmio_map(s, 1, CFG_ADDR + 2);
  908. fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
  909. fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
  910. fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size);
  911. fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
  912. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
  913. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
  914. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
  915. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
  916. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
  917. if (machine->kernel_cmdline) {
  918. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
  919. pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
  920. machine->kernel_cmdline);
  921. fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
  922. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  923. strlen(machine->kernel_cmdline) + 1);
  924. } else {
  925. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
  926. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
  927. }
  928. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
  929. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
  930. fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_config.order[0]);
  931. qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
  932. }
  933. enum {
  934. ss5_id = 32,
  935. vger_id,
  936. lx_id,
  937. ss4_id,
  938. scls_id,
  939. sbook_id,
  940. ss10_id = 64,
  941. ss20_id,
  942. ss600mp_id,
  943. };
  944. static void sun4m_machine_class_init(ObjectClass *oc, void *data)
  945. {
  946. MachineClass *mc = MACHINE_CLASS(oc);
  947. mc->init = sun4m_hw_init;
  948. mc->block_default_type = IF_SCSI;
  949. mc->default_boot_order = "c";
  950. mc->default_display = "tcx";
  951. mc->default_ram_id = "sun4m.ram";
  952. }
  953. static void ss5_class_init(ObjectClass *oc, void *data)
  954. {
  955. MachineClass *mc = MACHINE_CLASS(oc);
  956. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  957. static const struct sun4m_hwdef ss5_hwdef = {
  958. .iommu_base = 0x10000000,
  959. .iommu_pad_base = 0x10004000,
  960. .iommu_pad_len = 0x0fffb000,
  961. .tcx_base = 0x50000000,
  962. .cs_base = 0x6c000000,
  963. .slavio_base = 0x70000000,
  964. .ms_kb_base = 0x71000000,
  965. .serial_base = 0x71100000,
  966. .nvram_base = 0x71200000,
  967. .fd_base = 0x71400000,
  968. .counter_base = 0x71d00000,
  969. .intctl_base = 0x71e00000,
  970. .idreg_base = 0x78000000,
  971. .dma_base = 0x78400000,
  972. .esp_base = 0x78800000,
  973. .le_base = 0x78c00000,
  974. .apc_base = 0x6a000000,
  975. .afx_base = 0x6e000000,
  976. .aux1_base = 0x71900000,
  977. .aux2_base = 0x71910000,
  978. .nvram_machine_id = 0x80,
  979. .machine_id = ss5_id,
  980. .iommu_version = 0x05000000,
  981. .max_mem = 0x10000000,
  982. };
  983. mc->desc = "Sun4m platform, SPARCstation 5";
  984. mc->is_default = true;
  985. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  986. smc->hwdef = &ss5_hwdef;
  987. }
  988. static void ss10_class_init(ObjectClass *oc, void *data)
  989. {
  990. MachineClass *mc = MACHINE_CLASS(oc);
  991. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  992. static const struct sun4m_hwdef ss10_hwdef = {
  993. .iommu_base = 0xfe0000000ULL,
  994. .tcx_base = 0xe20000000ULL,
  995. .slavio_base = 0xff0000000ULL,
  996. .ms_kb_base = 0xff1000000ULL,
  997. .serial_base = 0xff1100000ULL,
  998. .nvram_base = 0xff1200000ULL,
  999. .fd_base = 0xff1700000ULL,
  1000. .counter_base = 0xff1300000ULL,
  1001. .intctl_base = 0xff1400000ULL,
  1002. .idreg_base = 0xef0000000ULL,
  1003. .dma_base = 0xef0400000ULL,
  1004. .esp_base = 0xef0800000ULL,
  1005. .le_base = 0xef0c00000ULL,
  1006. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1007. .aux1_base = 0xff1800000ULL,
  1008. .aux2_base = 0xff1a01000ULL,
  1009. .ecc_base = 0xf00000000ULL,
  1010. .ecc_version = 0x10000000, /* version 0, implementation 1 */
  1011. .nvram_machine_id = 0x72,
  1012. .machine_id = ss10_id,
  1013. .iommu_version = 0x03000000,
  1014. .max_mem = 0xf00000000ULL,
  1015. };
  1016. mc->desc = "Sun4m platform, SPARCstation 10";
  1017. mc->max_cpus = 4;
  1018. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1019. smc->hwdef = &ss10_hwdef;
  1020. }
  1021. static void ss600mp_class_init(ObjectClass *oc, void *data)
  1022. {
  1023. MachineClass *mc = MACHINE_CLASS(oc);
  1024. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1025. static const struct sun4m_hwdef ss600mp_hwdef = {
  1026. .iommu_base = 0xfe0000000ULL,
  1027. .tcx_base = 0xe20000000ULL,
  1028. .slavio_base = 0xff0000000ULL,
  1029. .ms_kb_base = 0xff1000000ULL,
  1030. .serial_base = 0xff1100000ULL,
  1031. .nvram_base = 0xff1200000ULL,
  1032. .counter_base = 0xff1300000ULL,
  1033. .intctl_base = 0xff1400000ULL,
  1034. .dma_base = 0xef0081000ULL,
  1035. .esp_base = 0xef0080000ULL,
  1036. .le_base = 0xef0060000ULL,
  1037. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1038. .aux1_base = 0xff1800000ULL,
  1039. .aux2_base = 0xff1a01000ULL, /* XXX should not exist */
  1040. .ecc_base = 0xf00000000ULL,
  1041. .ecc_version = 0x00000000, /* version 0, implementation 0 */
  1042. .nvram_machine_id = 0x71,
  1043. .machine_id = ss600mp_id,
  1044. .iommu_version = 0x01000000,
  1045. .max_mem = 0xf00000000ULL,
  1046. };
  1047. mc->desc = "Sun4m platform, SPARCserver 600MP";
  1048. mc->max_cpus = 4;
  1049. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1050. smc->hwdef = &ss600mp_hwdef;
  1051. }
  1052. static void ss20_class_init(ObjectClass *oc, void *data)
  1053. {
  1054. MachineClass *mc = MACHINE_CLASS(oc);
  1055. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1056. static const struct sun4m_hwdef ss20_hwdef = {
  1057. .iommu_base = 0xfe0000000ULL,
  1058. .tcx_base = 0xe20000000ULL,
  1059. .slavio_base = 0xff0000000ULL,
  1060. .ms_kb_base = 0xff1000000ULL,
  1061. .serial_base = 0xff1100000ULL,
  1062. .nvram_base = 0xff1200000ULL,
  1063. .fd_base = 0xff1700000ULL,
  1064. .counter_base = 0xff1300000ULL,
  1065. .intctl_base = 0xff1400000ULL,
  1066. .idreg_base = 0xef0000000ULL,
  1067. .dma_base = 0xef0400000ULL,
  1068. .esp_base = 0xef0800000ULL,
  1069. .le_base = 0xef0c00000ULL,
  1070. .bpp_base = 0xef4800000ULL,
  1071. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1072. .aux1_base = 0xff1800000ULL,
  1073. .aux2_base = 0xff1a01000ULL,
  1074. .dbri_base = 0xee0000000ULL,
  1075. .sx_base = 0xf80000000ULL,
  1076. .vsimm = {
  1077. {
  1078. .reg_base = 0x9c000000ULL,
  1079. .vram_base = 0xfc000000ULL
  1080. }, {
  1081. .reg_base = 0x90000000ULL,
  1082. .vram_base = 0xf0000000ULL
  1083. }, {
  1084. .reg_base = 0x94000000ULL
  1085. }, {
  1086. .reg_base = 0x98000000ULL
  1087. }
  1088. },
  1089. .ecc_base = 0xf00000000ULL,
  1090. .ecc_version = 0x20000000, /* version 0, implementation 2 */
  1091. .nvram_machine_id = 0x72,
  1092. .machine_id = ss20_id,
  1093. .iommu_version = 0x13000000,
  1094. .max_mem = 0xf00000000ULL,
  1095. };
  1096. mc->desc = "Sun4m platform, SPARCstation 20";
  1097. mc->max_cpus = 4;
  1098. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1099. smc->hwdef = &ss20_hwdef;
  1100. }
  1101. static void voyager_class_init(ObjectClass *oc, void *data)
  1102. {
  1103. MachineClass *mc = MACHINE_CLASS(oc);
  1104. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1105. static const struct sun4m_hwdef voyager_hwdef = {
  1106. .iommu_base = 0x10000000,
  1107. .tcx_base = 0x50000000,
  1108. .slavio_base = 0x70000000,
  1109. .ms_kb_base = 0x71000000,
  1110. .serial_base = 0x71100000,
  1111. .nvram_base = 0x71200000,
  1112. .fd_base = 0x71400000,
  1113. .counter_base = 0x71d00000,
  1114. .intctl_base = 0x71e00000,
  1115. .idreg_base = 0x78000000,
  1116. .dma_base = 0x78400000,
  1117. .esp_base = 0x78800000,
  1118. .le_base = 0x78c00000,
  1119. .apc_base = 0x71300000, /* pmc */
  1120. .aux1_base = 0x71900000,
  1121. .aux2_base = 0x71910000,
  1122. .nvram_machine_id = 0x80,
  1123. .machine_id = vger_id,
  1124. .iommu_version = 0x05000000,
  1125. .max_mem = 0x10000000,
  1126. };
  1127. mc->desc = "Sun4m platform, SPARCstation Voyager";
  1128. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1129. smc->hwdef = &voyager_hwdef;
  1130. }
  1131. static void ss_lx_class_init(ObjectClass *oc, void *data)
  1132. {
  1133. MachineClass *mc = MACHINE_CLASS(oc);
  1134. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1135. static const struct sun4m_hwdef ss_lx_hwdef = {
  1136. .iommu_base = 0x10000000,
  1137. .iommu_pad_base = 0x10004000,
  1138. .iommu_pad_len = 0x0fffb000,
  1139. .tcx_base = 0x50000000,
  1140. .slavio_base = 0x70000000,
  1141. .ms_kb_base = 0x71000000,
  1142. .serial_base = 0x71100000,
  1143. .nvram_base = 0x71200000,
  1144. .fd_base = 0x71400000,
  1145. .counter_base = 0x71d00000,
  1146. .intctl_base = 0x71e00000,
  1147. .idreg_base = 0x78000000,
  1148. .dma_base = 0x78400000,
  1149. .esp_base = 0x78800000,
  1150. .le_base = 0x78c00000,
  1151. .aux1_base = 0x71900000,
  1152. .aux2_base = 0x71910000,
  1153. .nvram_machine_id = 0x80,
  1154. .machine_id = lx_id,
  1155. .iommu_version = 0x04000000,
  1156. .max_mem = 0x10000000,
  1157. };
  1158. mc->desc = "Sun4m platform, SPARCstation LX";
  1159. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1160. smc->hwdef = &ss_lx_hwdef;
  1161. }
  1162. static void ss4_class_init(ObjectClass *oc, void *data)
  1163. {
  1164. MachineClass *mc = MACHINE_CLASS(oc);
  1165. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1166. static const struct sun4m_hwdef ss4_hwdef = {
  1167. .iommu_base = 0x10000000,
  1168. .tcx_base = 0x50000000,
  1169. .cs_base = 0x6c000000,
  1170. .slavio_base = 0x70000000,
  1171. .ms_kb_base = 0x71000000,
  1172. .serial_base = 0x71100000,
  1173. .nvram_base = 0x71200000,
  1174. .fd_base = 0x71400000,
  1175. .counter_base = 0x71d00000,
  1176. .intctl_base = 0x71e00000,
  1177. .idreg_base = 0x78000000,
  1178. .dma_base = 0x78400000,
  1179. .esp_base = 0x78800000,
  1180. .le_base = 0x78c00000,
  1181. .apc_base = 0x6a000000,
  1182. .aux1_base = 0x71900000,
  1183. .aux2_base = 0x71910000,
  1184. .nvram_machine_id = 0x80,
  1185. .machine_id = ss4_id,
  1186. .iommu_version = 0x05000000,
  1187. .max_mem = 0x10000000,
  1188. };
  1189. mc->desc = "Sun4m platform, SPARCstation 4";
  1190. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1191. smc->hwdef = &ss4_hwdef;
  1192. }
  1193. static void scls_class_init(ObjectClass *oc, void *data)
  1194. {
  1195. MachineClass *mc = MACHINE_CLASS(oc);
  1196. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1197. static const struct sun4m_hwdef scls_hwdef = {
  1198. .iommu_base = 0x10000000,
  1199. .tcx_base = 0x50000000,
  1200. .slavio_base = 0x70000000,
  1201. .ms_kb_base = 0x71000000,
  1202. .serial_base = 0x71100000,
  1203. .nvram_base = 0x71200000,
  1204. .fd_base = 0x71400000,
  1205. .counter_base = 0x71d00000,
  1206. .intctl_base = 0x71e00000,
  1207. .idreg_base = 0x78000000,
  1208. .dma_base = 0x78400000,
  1209. .esp_base = 0x78800000,
  1210. .le_base = 0x78c00000,
  1211. .apc_base = 0x6a000000,
  1212. .aux1_base = 0x71900000,
  1213. .aux2_base = 0x71910000,
  1214. .nvram_machine_id = 0x80,
  1215. .machine_id = scls_id,
  1216. .iommu_version = 0x05000000,
  1217. .max_mem = 0x10000000,
  1218. };
  1219. mc->desc = "Sun4m platform, SPARCClassic";
  1220. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1221. smc->hwdef = &scls_hwdef;
  1222. }
  1223. static void sbook_class_init(ObjectClass *oc, void *data)
  1224. {
  1225. MachineClass *mc = MACHINE_CLASS(oc);
  1226. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1227. static const struct sun4m_hwdef sbook_hwdef = {
  1228. .iommu_base = 0x10000000,
  1229. .tcx_base = 0x50000000, /* XXX */
  1230. .slavio_base = 0x70000000,
  1231. .ms_kb_base = 0x71000000,
  1232. .serial_base = 0x71100000,
  1233. .nvram_base = 0x71200000,
  1234. .fd_base = 0x71400000,
  1235. .counter_base = 0x71d00000,
  1236. .intctl_base = 0x71e00000,
  1237. .idreg_base = 0x78000000,
  1238. .dma_base = 0x78400000,
  1239. .esp_base = 0x78800000,
  1240. .le_base = 0x78c00000,
  1241. .apc_base = 0x6a000000,
  1242. .aux1_base = 0x71900000,
  1243. .aux2_base = 0x71910000,
  1244. .nvram_machine_id = 0x80,
  1245. .machine_id = sbook_id,
  1246. .iommu_version = 0x05000000,
  1247. .max_mem = 0x10000000,
  1248. };
  1249. mc->desc = "Sun4m platform, SPARCbook";
  1250. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1251. smc->hwdef = &sbook_hwdef;
  1252. }
  1253. static const TypeInfo sun4m_machine_types[] = {
  1254. {
  1255. .name = MACHINE_TYPE_NAME("SS-5"),
  1256. .parent = TYPE_SUN4M_MACHINE,
  1257. .class_init = ss5_class_init,
  1258. }, {
  1259. .name = MACHINE_TYPE_NAME("SS-10"),
  1260. .parent = TYPE_SUN4M_MACHINE,
  1261. .class_init = ss10_class_init,
  1262. }, {
  1263. .name = MACHINE_TYPE_NAME("SS-600MP"),
  1264. .parent = TYPE_SUN4M_MACHINE,
  1265. .class_init = ss600mp_class_init,
  1266. }, {
  1267. .name = MACHINE_TYPE_NAME("SS-20"),
  1268. .parent = TYPE_SUN4M_MACHINE,
  1269. .class_init = ss20_class_init,
  1270. }, {
  1271. .name = MACHINE_TYPE_NAME("Voyager"),
  1272. .parent = TYPE_SUN4M_MACHINE,
  1273. .class_init = voyager_class_init,
  1274. }, {
  1275. .name = MACHINE_TYPE_NAME("LX"),
  1276. .parent = TYPE_SUN4M_MACHINE,
  1277. .class_init = ss_lx_class_init,
  1278. }, {
  1279. .name = MACHINE_TYPE_NAME("SS-4"),
  1280. .parent = TYPE_SUN4M_MACHINE,
  1281. .class_init = ss4_class_init,
  1282. }, {
  1283. .name = MACHINE_TYPE_NAME("SPARCClassic"),
  1284. .parent = TYPE_SUN4M_MACHINE,
  1285. .class_init = scls_class_init,
  1286. }, {
  1287. .name = MACHINE_TYPE_NAME("SPARCbook"),
  1288. .parent = TYPE_SUN4M_MACHINE,
  1289. .class_init = sbook_class_init,
  1290. }, {
  1291. .name = TYPE_SUN4M_MACHINE,
  1292. .parent = TYPE_MACHINE,
  1293. .class_size = sizeof(Sun4mMachineClass),
  1294. .class_init = sun4m_machine_class_init,
  1295. .abstract = true,
  1296. }
  1297. };
  1298. DEFINE_TYPES(sun4m_machine_types)
  1299. static void sun4m_register_types(void)
  1300. {
  1301. type_register_static(&idreg_info);
  1302. type_register_static(&afx_info);
  1303. type_register_static(&prom_info);
  1304. type_register_static(&ram_info);
  1305. }
  1306. type_init(sun4m_register_types)