virt.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735
  1. /*
  2. * QEMU RISC-V VirtIO Board
  3. *
  4. * Copyright (c) 2017 SiFive, Inc.
  5. *
  6. * RISC-V machine with 16550a UART and VirtIO MMIO
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2 or later, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include "qemu/osdep.h"
  21. #include "qemu/units.h"
  22. #include "qemu/error-report.h"
  23. #include "qemu/guest-random.h"
  24. #include "qapi/error.h"
  25. #include "hw/boards.h"
  26. #include "hw/loader.h"
  27. #include "hw/sysbus.h"
  28. #include "hw/qdev-properties.h"
  29. #include "hw/char/serial.h"
  30. #include "target/riscv/cpu.h"
  31. #include "hw/core/sysbus-fdt.h"
  32. #include "target/riscv/pmu.h"
  33. #include "hw/riscv/riscv_hart.h"
  34. #include "hw/riscv/virt.h"
  35. #include "hw/riscv/boot.h"
  36. #include "hw/riscv/numa.h"
  37. #include "hw/intc/riscv_aclint.h"
  38. #include "hw/intc/riscv_aplic.h"
  39. #include "hw/intc/riscv_imsic.h"
  40. #include "hw/intc/sifive_plic.h"
  41. #include "hw/misc/sifive_test.h"
  42. #include "hw/platform-bus.h"
  43. #include "chardev/char.h"
  44. #include "sysemu/device_tree.h"
  45. #include "sysemu/sysemu.h"
  46. #include "sysemu/kvm.h"
  47. #include "sysemu/tpm.h"
  48. #include "hw/pci/pci.h"
  49. #include "hw/pci-host/gpex.h"
  50. #include "hw/display/ramfb.h"
  51. #include "hw/acpi/aml-build.h"
  52. #include "qapi/qapi-visit-common.h"
  53. /*
  54. * The virt machine physical address space used by some of the devices
  55. * namely ACLINT, PLIC, APLIC, and IMSIC depend on number of Sockets,
  56. * number of CPUs, and number of IMSIC guest files.
  57. *
  58. * Various limits defined by VIRT_SOCKETS_MAX_BITS, VIRT_CPUS_MAX_BITS,
  59. * and VIRT_IRQCHIP_MAX_GUESTS_BITS are tuned for maximum utilization
  60. * of virt machine physical address space.
  61. */
  62. #define VIRT_IMSIC_GROUP_MAX_SIZE (1U << IMSIC_MMIO_GROUP_MIN_SHIFT)
  63. #if VIRT_IMSIC_GROUP_MAX_SIZE < \
  64. IMSIC_GROUP_SIZE(VIRT_CPUS_MAX_BITS, VIRT_IRQCHIP_MAX_GUESTS_BITS)
  65. #error "Can't accomodate single IMSIC group in address space"
  66. #endif
  67. #define VIRT_IMSIC_MAX_SIZE (VIRT_SOCKETS_MAX * \
  68. VIRT_IMSIC_GROUP_MAX_SIZE)
  69. #if 0x4000000 < VIRT_IMSIC_MAX_SIZE
  70. #error "Can't accomodate all IMSIC groups in address space"
  71. #endif
  72. static const MemMapEntry virt_memmap[] = {
  73. [VIRT_DEBUG] = { 0x0, 0x100 },
  74. [VIRT_MROM] = { 0x1000, 0xf000 },
  75. [VIRT_TEST] = { 0x100000, 0x1000 },
  76. [VIRT_RTC] = { 0x101000, 0x1000 },
  77. [VIRT_CLINT] = { 0x2000000, 0x10000 },
  78. [VIRT_ACLINT_SSWI] = { 0x2F00000, 0x4000 },
  79. [VIRT_PCIE_PIO] = { 0x3000000, 0x10000 },
  80. [VIRT_PLATFORM_BUS] = { 0x4000000, 0x2000000 },
  81. [VIRT_PLIC] = { 0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
  82. [VIRT_APLIC_M] = { 0xc000000, APLIC_SIZE(VIRT_CPUS_MAX) },
  83. [VIRT_APLIC_S] = { 0xd000000, APLIC_SIZE(VIRT_CPUS_MAX) },
  84. [VIRT_UART0] = { 0x10000000, 0x100 },
  85. [VIRT_VIRTIO] = { 0x10001000, 0x1000 },
  86. [VIRT_FW_CFG] = { 0x10100000, 0x18 },
  87. [VIRT_FLASH] = { 0x20000000, 0x4000000 },
  88. [VIRT_IMSIC_M] = { 0x24000000, VIRT_IMSIC_MAX_SIZE },
  89. [VIRT_IMSIC_S] = { 0x28000000, VIRT_IMSIC_MAX_SIZE },
  90. [VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 },
  91. [VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 },
  92. [VIRT_DRAM] = { 0x80000000, 0x0 },
  93. };
  94. /* PCIe high mmio is fixed for RV32 */
  95. #define VIRT32_HIGH_PCIE_MMIO_BASE 0x300000000ULL
  96. #define VIRT32_HIGH_PCIE_MMIO_SIZE (4 * GiB)
  97. /* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
  98. #define VIRT64_HIGH_PCIE_MMIO_SIZE (16 * GiB)
  99. static MemMapEntry virt_high_pcie_memmap;
  100. #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
  101. static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
  102. const char *name,
  103. const char *alias_prop_name)
  104. {
  105. /*
  106. * Create a single flash device. We use the same parameters as
  107. * the flash devices on the ARM virt board.
  108. */
  109. DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
  110. qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
  111. qdev_prop_set_uint8(dev, "width", 4);
  112. qdev_prop_set_uint8(dev, "device-width", 2);
  113. qdev_prop_set_bit(dev, "big-endian", false);
  114. qdev_prop_set_uint16(dev, "id0", 0x89);
  115. qdev_prop_set_uint16(dev, "id1", 0x18);
  116. qdev_prop_set_uint16(dev, "id2", 0x00);
  117. qdev_prop_set_uint16(dev, "id3", 0x00);
  118. qdev_prop_set_string(dev, "name", name);
  119. object_property_add_child(OBJECT(s), name, OBJECT(dev));
  120. object_property_add_alias(OBJECT(s), alias_prop_name,
  121. OBJECT(dev), "drive");
  122. return PFLASH_CFI01(dev);
  123. }
  124. static void virt_flash_create(RISCVVirtState *s)
  125. {
  126. s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
  127. s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
  128. }
  129. static void virt_flash_map1(PFlashCFI01 *flash,
  130. hwaddr base, hwaddr size,
  131. MemoryRegion *sysmem)
  132. {
  133. DeviceState *dev = DEVICE(flash);
  134. assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
  135. assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
  136. qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
  137. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  138. memory_region_add_subregion(sysmem, base,
  139. sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
  140. 0));
  141. }
  142. static void virt_flash_map(RISCVVirtState *s,
  143. MemoryRegion *sysmem)
  144. {
  145. hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
  146. hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
  147. virt_flash_map1(s->flash[0], flashbase, flashsize,
  148. sysmem);
  149. virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
  150. sysmem);
  151. }
  152. static void create_pcie_irq_map(RISCVVirtState *s, void *fdt, char *nodename,
  153. uint32_t irqchip_phandle)
  154. {
  155. int pin, dev;
  156. uint32_t irq_map_stride = 0;
  157. uint32_t full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS *
  158. FDT_MAX_INT_MAP_WIDTH] = {};
  159. uint32_t *irq_map = full_irq_map;
  160. /* This code creates a standard swizzle of interrupts such that
  161. * each device's first interrupt is based on it's PCI_SLOT number.
  162. * (See pci_swizzle_map_irq_fn())
  163. *
  164. * We only need one entry per interrupt in the table (not one per
  165. * possible slot) seeing the interrupt-map-mask will allow the table
  166. * to wrap to any number of devices.
  167. */
  168. for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
  169. int devfn = dev * 0x8;
  170. for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
  171. int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
  172. int i = 0;
  173. /* Fill PCI address cells */
  174. irq_map[i] = cpu_to_be32(devfn << 8);
  175. i += FDT_PCI_ADDR_CELLS;
  176. /* Fill PCI Interrupt cells */
  177. irq_map[i] = cpu_to_be32(pin + 1);
  178. i += FDT_PCI_INT_CELLS;
  179. /* Fill interrupt controller phandle and cells */
  180. irq_map[i++] = cpu_to_be32(irqchip_phandle);
  181. irq_map[i++] = cpu_to_be32(irq_nr);
  182. if (s->aia_type != VIRT_AIA_TYPE_NONE) {
  183. irq_map[i++] = cpu_to_be32(0x4);
  184. }
  185. if (!irq_map_stride) {
  186. irq_map_stride = i;
  187. }
  188. irq_map += irq_map_stride;
  189. }
  190. }
  191. qemu_fdt_setprop(fdt, nodename, "interrupt-map", full_irq_map,
  192. GPEX_NUM_IRQS * GPEX_NUM_IRQS *
  193. irq_map_stride * sizeof(uint32_t));
  194. qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
  195. 0x1800, 0, 0, 0x7);
  196. }
  197. static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
  198. char *clust_name, uint32_t *phandle,
  199. uint32_t *intc_phandles)
  200. {
  201. int cpu;
  202. uint32_t cpu_phandle;
  203. MachineState *ms = MACHINE(s);
  204. char *name, *cpu_name, *core_name, *intc_name, *sv_name;
  205. bool is_32_bit = riscv_is_32bit(&s->soc[0]);
  206. uint8_t satp_mode_max;
  207. for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
  208. RISCVCPU *cpu_ptr = &s->soc[socket].harts[cpu];
  209. cpu_phandle = (*phandle)++;
  210. cpu_name = g_strdup_printf("/cpus/cpu@%d",
  211. s->soc[socket].hartid_base + cpu);
  212. qemu_fdt_add_subnode(ms->fdt, cpu_name);
  213. satp_mode_max = satp_mode_max_from_map(
  214. s->soc[socket].harts[cpu].cfg.satp_mode.map);
  215. sv_name = g_strdup_printf("riscv,%s",
  216. satp_mode_str(satp_mode_max, is_32_bit));
  217. qemu_fdt_setprop_string(ms->fdt, cpu_name, "mmu-type", sv_name);
  218. g_free(sv_name);
  219. name = riscv_isa_string(cpu_ptr);
  220. qemu_fdt_setprop_string(ms->fdt, cpu_name, "riscv,isa", name);
  221. g_free(name);
  222. if (cpu_ptr->cfg.ext_icbom) {
  223. qemu_fdt_setprop_cell(ms->fdt, cpu_name, "riscv,cbom-block-size",
  224. cpu_ptr->cfg.cbom_blocksize);
  225. }
  226. if (cpu_ptr->cfg.ext_icboz) {
  227. qemu_fdt_setprop_cell(ms->fdt, cpu_name, "riscv,cboz-block-size",
  228. cpu_ptr->cfg.cboz_blocksize);
  229. }
  230. qemu_fdt_setprop_string(ms->fdt, cpu_name, "compatible", "riscv");
  231. qemu_fdt_setprop_string(ms->fdt, cpu_name, "status", "okay");
  232. qemu_fdt_setprop_cell(ms->fdt, cpu_name, "reg",
  233. s->soc[socket].hartid_base + cpu);
  234. qemu_fdt_setprop_string(ms->fdt, cpu_name, "device_type", "cpu");
  235. riscv_socket_fdt_write_id(ms, cpu_name, socket);
  236. qemu_fdt_setprop_cell(ms->fdt, cpu_name, "phandle", cpu_phandle);
  237. intc_phandles[cpu] = (*phandle)++;
  238. intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
  239. qemu_fdt_add_subnode(ms->fdt, intc_name);
  240. qemu_fdt_setprop_cell(ms->fdt, intc_name, "phandle",
  241. intc_phandles[cpu]);
  242. qemu_fdt_setprop_string(ms->fdt, intc_name, "compatible",
  243. "riscv,cpu-intc");
  244. qemu_fdt_setprop(ms->fdt, intc_name, "interrupt-controller", NULL, 0);
  245. qemu_fdt_setprop_cell(ms->fdt, intc_name, "#interrupt-cells", 1);
  246. core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
  247. qemu_fdt_add_subnode(ms->fdt, core_name);
  248. qemu_fdt_setprop_cell(ms->fdt, core_name, "cpu", cpu_phandle);
  249. g_free(core_name);
  250. g_free(intc_name);
  251. g_free(cpu_name);
  252. }
  253. }
  254. static void create_fdt_socket_memory(RISCVVirtState *s,
  255. const MemMapEntry *memmap, int socket)
  256. {
  257. char *mem_name;
  258. uint64_t addr, size;
  259. MachineState *ms = MACHINE(s);
  260. addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(ms, socket);
  261. size = riscv_socket_mem_size(ms, socket);
  262. mem_name = g_strdup_printf("/memory@%lx", (long)addr);
  263. qemu_fdt_add_subnode(ms->fdt, mem_name);
  264. qemu_fdt_setprop_cells(ms->fdt, mem_name, "reg",
  265. addr >> 32, addr, size >> 32, size);
  266. qemu_fdt_setprop_string(ms->fdt, mem_name, "device_type", "memory");
  267. riscv_socket_fdt_write_id(ms, mem_name, socket);
  268. g_free(mem_name);
  269. }
  270. static void create_fdt_socket_clint(RISCVVirtState *s,
  271. const MemMapEntry *memmap, int socket,
  272. uint32_t *intc_phandles)
  273. {
  274. int cpu;
  275. char *clint_name;
  276. uint32_t *clint_cells;
  277. unsigned long clint_addr;
  278. MachineState *ms = MACHINE(s);
  279. static const char * const clint_compat[2] = {
  280. "sifive,clint0", "riscv,clint0"
  281. };
  282. clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
  283. for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
  284. clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
  285. clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
  286. clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
  287. clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
  288. }
  289. clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
  290. clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
  291. qemu_fdt_add_subnode(ms->fdt, clint_name);
  292. qemu_fdt_setprop_string_array(ms->fdt, clint_name, "compatible",
  293. (char **)&clint_compat,
  294. ARRAY_SIZE(clint_compat));
  295. qemu_fdt_setprop_cells(ms->fdt, clint_name, "reg",
  296. 0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
  297. qemu_fdt_setprop(ms->fdt, clint_name, "interrupts-extended",
  298. clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
  299. riscv_socket_fdt_write_id(ms, clint_name, socket);
  300. g_free(clint_name);
  301. g_free(clint_cells);
  302. }
  303. static void create_fdt_socket_aclint(RISCVVirtState *s,
  304. const MemMapEntry *memmap, int socket,
  305. uint32_t *intc_phandles)
  306. {
  307. int cpu;
  308. char *name;
  309. unsigned long addr, size;
  310. uint32_t aclint_cells_size;
  311. uint32_t *aclint_mswi_cells;
  312. uint32_t *aclint_sswi_cells;
  313. uint32_t *aclint_mtimer_cells;
  314. MachineState *ms = MACHINE(s);
  315. aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
  316. aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
  317. aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
  318. for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
  319. aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  320. aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
  321. aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  322. aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
  323. aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  324. aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
  325. }
  326. aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
  327. if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
  328. addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
  329. name = g_strdup_printf("/soc/mswi@%lx", addr);
  330. qemu_fdt_add_subnode(ms->fdt, name);
  331. qemu_fdt_setprop_string(ms->fdt, name, "compatible",
  332. "riscv,aclint-mswi");
  333. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  334. 0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
  335. qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
  336. aclint_mswi_cells, aclint_cells_size);
  337. qemu_fdt_setprop(ms->fdt, name, "interrupt-controller", NULL, 0);
  338. qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells", 0);
  339. riscv_socket_fdt_write_id(ms, name, socket);
  340. g_free(name);
  341. }
  342. if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
  343. addr = memmap[VIRT_CLINT].base +
  344. (RISCV_ACLINT_DEFAULT_MTIMER_SIZE * socket);
  345. size = RISCV_ACLINT_DEFAULT_MTIMER_SIZE;
  346. } else {
  347. addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
  348. (memmap[VIRT_CLINT].size * socket);
  349. size = memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE;
  350. }
  351. name = g_strdup_printf("/soc/mtimer@%lx", addr);
  352. qemu_fdt_add_subnode(ms->fdt, name);
  353. qemu_fdt_setprop_string(ms->fdt, name, "compatible",
  354. "riscv,aclint-mtimer");
  355. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  356. 0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
  357. 0x0, size - RISCV_ACLINT_DEFAULT_MTIME,
  358. 0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
  359. 0x0, RISCV_ACLINT_DEFAULT_MTIME);
  360. qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
  361. aclint_mtimer_cells, aclint_cells_size);
  362. riscv_socket_fdt_write_id(ms, name, socket);
  363. g_free(name);
  364. if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
  365. addr = memmap[VIRT_ACLINT_SSWI].base +
  366. (memmap[VIRT_ACLINT_SSWI].size * socket);
  367. name = g_strdup_printf("/soc/sswi@%lx", addr);
  368. qemu_fdt_add_subnode(ms->fdt, name);
  369. qemu_fdt_setprop_string(ms->fdt, name, "compatible",
  370. "riscv,aclint-sswi");
  371. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  372. 0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
  373. qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
  374. aclint_sswi_cells, aclint_cells_size);
  375. qemu_fdt_setprop(ms->fdt, name, "interrupt-controller", NULL, 0);
  376. qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells", 0);
  377. riscv_socket_fdt_write_id(ms, name, socket);
  378. g_free(name);
  379. }
  380. g_free(aclint_mswi_cells);
  381. g_free(aclint_mtimer_cells);
  382. g_free(aclint_sswi_cells);
  383. }
  384. static void create_fdt_socket_plic(RISCVVirtState *s,
  385. const MemMapEntry *memmap, int socket,
  386. uint32_t *phandle, uint32_t *intc_phandles,
  387. uint32_t *plic_phandles)
  388. {
  389. int cpu;
  390. char *plic_name;
  391. uint32_t *plic_cells;
  392. unsigned long plic_addr;
  393. MachineState *ms = MACHINE(s);
  394. static const char * const plic_compat[2] = {
  395. "sifive,plic-1.0.0", "riscv,plic0"
  396. };
  397. if (kvm_enabled()) {
  398. plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
  399. } else {
  400. plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
  401. }
  402. for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
  403. if (kvm_enabled()) {
  404. plic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  405. plic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
  406. } else {
  407. plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
  408. plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
  409. plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
  410. plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
  411. }
  412. }
  413. plic_phandles[socket] = (*phandle)++;
  414. plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
  415. plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
  416. qemu_fdt_add_subnode(ms->fdt, plic_name);
  417. qemu_fdt_setprop_cell(ms->fdt, plic_name,
  418. "#interrupt-cells", FDT_PLIC_INT_CELLS);
  419. qemu_fdt_setprop_cell(ms->fdt, plic_name,
  420. "#address-cells", FDT_PLIC_ADDR_CELLS);
  421. qemu_fdt_setprop_string_array(ms->fdt, plic_name, "compatible",
  422. (char **)&plic_compat,
  423. ARRAY_SIZE(plic_compat));
  424. qemu_fdt_setprop(ms->fdt, plic_name, "interrupt-controller", NULL, 0);
  425. qemu_fdt_setprop(ms->fdt, plic_name, "interrupts-extended",
  426. plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
  427. qemu_fdt_setprop_cells(ms->fdt, plic_name, "reg",
  428. 0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
  429. qemu_fdt_setprop_cell(ms->fdt, plic_name, "riscv,ndev",
  430. VIRT_IRQCHIP_NUM_SOURCES - 1);
  431. riscv_socket_fdt_write_id(ms, plic_name, socket);
  432. qemu_fdt_setprop_cell(ms->fdt, plic_name, "phandle",
  433. plic_phandles[socket]);
  434. if (!socket) {
  435. platform_bus_add_all_fdt_nodes(ms->fdt, plic_name,
  436. memmap[VIRT_PLATFORM_BUS].base,
  437. memmap[VIRT_PLATFORM_BUS].size,
  438. VIRT_PLATFORM_BUS_IRQ);
  439. }
  440. g_free(plic_name);
  441. g_free(plic_cells);
  442. }
  443. static uint32_t imsic_num_bits(uint32_t count)
  444. {
  445. uint32_t ret = 0;
  446. while (BIT(ret) < count) {
  447. ret++;
  448. }
  449. return ret;
  450. }
  451. static void create_fdt_imsic(RISCVVirtState *s, const MemMapEntry *memmap,
  452. uint32_t *phandle, uint32_t *intc_phandles,
  453. uint32_t *msi_m_phandle, uint32_t *msi_s_phandle)
  454. {
  455. int cpu, socket;
  456. char *imsic_name;
  457. MachineState *ms = MACHINE(s);
  458. int socket_count = riscv_socket_count(ms);
  459. uint32_t imsic_max_hart_per_socket, imsic_guest_bits;
  460. uint32_t *imsic_cells, *imsic_regs, imsic_addr, imsic_size;
  461. *msi_m_phandle = (*phandle)++;
  462. *msi_s_phandle = (*phandle)++;
  463. imsic_cells = g_new0(uint32_t, ms->smp.cpus * 2);
  464. imsic_regs = g_new0(uint32_t, socket_count * 4);
  465. /* M-level IMSIC node */
  466. for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
  467. imsic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  468. imsic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_EXT);
  469. }
  470. imsic_max_hart_per_socket = 0;
  471. for (socket = 0; socket < socket_count; socket++) {
  472. imsic_addr = memmap[VIRT_IMSIC_M].base +
  473. socket * VIRT_IMSIC_GROUP_MAX_SIZE;
  474. imsic_size = IMSIC_HART_SIZE(0) * s->soc[socket].num_harts;
  475. imsic_regs[socket * 4 + 0] = 0;
  476. imsic_regs[socket * 4 + 1] = cpu_to_be32(imsic_addr);
  477. imsic_regs[socket * 4 + 2] = 0;
  478. imsic_regs[socket * 4 + 3] = cpu_to_be32(imsic_size);
  479. if (imsic_max_hart_per_socket < s->soc[socket].num_harts) {
  480. imsic_max_hart_per_socket = s->soc[socket].num_harts;
  481. }
  482. }
  483. imsic_name = g_strdup_printf("/soc/imsics@%lx",
  484. (unsigned long)memmap[VIRT_IMSIC_M].base);
  485. qemu_fdt_add_subnode(ms->fdt, imsic_name);
  486. qemu_fdt_setprop_string(ms->fdt, imsic_name, "compatible",
  487. "riscv,imsics");
  488. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "#interrupt-cells",
  489. FDT_IMSIC_INT_CELLS);
  490. qemu_fdt_setprop(ms->fdt, imsic_name, "interrupt-controller",
  491. NULL, 0);
  492. qemu_fdt_setprop(ms->fdt, imsic_name, "msi-controller",
  493. NULL, 0);
  494. qemu_fdt_setprop(ms->fdt, imsic_name, "interrupts-extended",
  495. imsic_cells, ms->smp.cpus * sizeof(uint32_t) * 2);
  496. qemu_fdt_setprop(ms->fdt, imsic_name, "reg", imsic_regs,
  497. socket_count * sizeof(uint32_t) * 4);
  498. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,num-ids",
  499. VIRT_IRQCHIP_NUM_MSIS);
  500. if (socket_count > 1) {
  501. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,hart-index-bits",
  502. imsic_num_bits(imsic_max_hart_per_socket));
  503. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,group-index-bits",
  504. imsic_num_bits(socket_count));
  505. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,group-index-shift",
  506. IMSIC_MMIO_GROUP_MIN_SHIFT);
  507. }
  508. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "phandle", *msi_m_phandle);
  509. g_free(imsic_name);
  510. /* S-level IMSIC node */
  511. for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
  512. imsic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  513. imsic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
  514. }
  515. imsic_guest_bits = imsic_num_bits(s->aia_guests + 1);
  516. imsic_max_hart_per_socket = 0;
  517. for (socket = 0; socket < socket_count; socket++) {
  518. imsic_addr = memmap[VIRT_IMSIC_S].base +
  519. socket * VIRT_IMSIC_GROUP_MAX_SIZE;
  520. imsic_size = IMSIC_HART_SIZE(imsic_guest_bits) *
  521. s->soc[socket].num_harts;
  522. imsic_regs[socket * 4 + 0] = 0;
  523. imsic_regs[socket * 4 + 1] = cpu_to_be32(imsic_addr);
  524. imsic_regs[socket * 4 + 2] = 0;
  525. imsic_regs[socket * 4 + 3] = cpu_to_be32(imsic_size);
  526. if (imsic_max_hart_per_socket < s->soc[socket].num_harts) {
  527. imsic_max_hart_per_socket = s->soc[socket].num_harts;
  528. }
  529. }
  530. imsic_name = g_strdup_printf("/soc/imsics@%lx",
  531. (unsigned long)memmap[VIRT_IMSIC_S].base);
  532. qemu_fdt_add_subnode(ms->fdt, imsic_name);
  533. qemu_fdt_setprop_string(ms->fdt, imsic_name, "compatible",
  534. "riscv,imsics");
  535. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "#interrupt-cells",
  536. FDT_IMSIC_INT_CELLS);
  537. qemu_fdt_setprop(ms->fdt, imsic_name, "interrupt-controller",
  538. NULL, 0);
  539. qemu_fdt_setprop(ms->fdt, imsic_name, "msi-controller",
  540. NULL, 0);
  541. qemu_fdt_setprop(ms->fdt, imsic_name, "interrupts-extended",
  542. imsic_cells, ms->smp.cpus * sizeof(uint32_t) * 2);
  543. qemu_fdt_setprop(ms->fdt, imsic_name, "reg", imsic_regs,
  544. socket_count * sizeof(uint32_t) * 4);
  545. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,num-ids",
  546. VIRT_IRQCHIP_NUM_MSIS);
  547. if (imsic_guest_bits) {
  548. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,guest-index-bits",
  549. imsic_guest_bits);
  550. }
  551. if (socket_count > 1) {
  552. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,hart-index-bits",
  553. imsic_num_bits(imsic_max_hart_per_socket));
  554. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,group-index-bits",
  555. imsic_num_bits(socket_count));
  556. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,group-index-shift",
  557. IMSIC_MMIO_GROUP_MIN_SHIFT);
  558. }
  559. qemu_fdt_setprop_cell(ms->fdt, imsic_name, "phandle", *msi_s_phandle);
  560. g_free(imsic_name);
  561. g_free(imsic_regs);
  562. g_free(imsic_cells);
  563. }
  564. static void create_fdt_socket_aplic(RISCVVirtState *s,
  565. const MemMapEntry *memmap, int socket,
  566. uint32_t msi_m_phandle,
  567. uint32_t msi_s_phandle,
  568. uint32_t *phandle,
  569. uint32_t *intc_phandles,
  570. uint32_t *aplic_phandles)
  571. {
  572. int cpu;
  573. char *aplic_name;
  574. uint32_t *aplic_cells;
  575. unsigned long aplic_addr;
  576. MachineState *ms = MACHINE(s);
  577. uint32_t aplic_m_phandle, aplic_s_phandle;
  578. aplic_m_phandle = (*phandle)++;
  579. aplic_s_phandle = (*phandle)++;
  580. aplic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
  581. /* M-level APLIC node */
  582. for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
  583. aplic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  584. aplic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_EXT);
  585. }
  586. aplic_addr = memmap[VIRT_APLIC_M].base +
  587. (memmap[VIRT_APLIC_M].size * socket);
  588. aplic_name = g_strdup_printf("/soc/aplic@%lx", aplic_addr);
  589. qemu_fdt_add_subnode(ms->fdt, aplic_name);
  590. qemu_fdt_setprop_string(ms->fdt, aplic_name, "compatible", "riscv,aplic");
  591. qemu_fdt_setprop_cell(ms->fdt, aplic_name,
  592. "#interrupt-cells", FDT_APLIC_INT_CELLS);
  593. qemu_fdt_setprop(ms->fdt, aplic_name, "interrupt-controller", NULL, 0);
  594. if (s->aia_type == VIRT_AIA_TYPE_APLIC) {
  595. qemu_fdt_setprop(ms->fdt, aplic_name, "interrupts-extended",
  596. aplic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 2);
  597. } else {
  598. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "msi-parent",
  599. msi_m_phandle);
  600. }
  601. qemu_fdt_setprop_cells(ms->fdt, aplic_name, "reg",
  602. 0x0, aplic_addr, 0x0, memmap[VIRT_APLIC_M].size);
  603. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "riscv,num-sources",
  604. VIRT_IRQCHIP_NUM_SOURCES);
  605. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "riscv,children",
  606. aplic_s_phandle);
  607. qemu_fdt_setprop_cells(ms->fdt, aplic_name, "riscv,delegate",
  608. aplic_s_phandle, 0x1, VIRT_IRQCHIP_NUM_SOURCES);
  609. riscv_socket_fdt_write_id(ms, aplic_name, socket);
  610. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "phandle", aplic_m_phandle);
  611. g_free(aplic_name);
  612. /* S-level APLIC node */
  613. for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
  614. aplic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
  615. aplic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
  616. }
  617. aplic_addr = memmap[VIRT_APLIC_S].base +
  618. (memmap[VIRT_APLIC_S].size * socket);
  619. aplic_name = g_strdup_printf("/soc/aplic@%lx", aplic_addr);
  620. qemu_fdt_add_subnode(ms->fdt, aplic_name);
  621. qemu_fdt_setprop_string(ms->fdt, aplic_name, "compatible", "riscv,aplic");
  622. qemu_fdt_setprop_cell(ms->fdt, aplic_name,
  623. "#interrupt-cells", FDT_APLIC_INT_CELLS);
  624. qemu_fdt_setprop(ms->fdt, aplic_name, "interrupt-controller", NULL, 0);
  625. if (s->aia_type == VIRT_AIA_TYPE_APLIC) {
  626. qemu_fdt_setprop(ms->fdt, aplic_name, "interrupts-extended",
  627. aplic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 2);
  628. } else {
  629. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "msi-parent",
  630. msi_s_phandle);
  631. }
  632. qemu_fdt_setprop_cells(ms->fdt, aplic_name, "reg",
  633. 0x0, aplic_addr, 0x0, memmap[VIRT_APLIC_S].size);
  634. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "riscv,num-sources",
  635. VIRT_IRQCHIP_NUM_SOURCES);
  636. riscv_socket_fdt_write_id(ms, aplic_name, socket);
  637. qemu_fdt_setprop_cell(ms->fdt, aplic_name, "phandle", aplic_s_phandle);
  638. if (!socket) {
  639. platform_bus_add_all_fdt_nodes(ms->fdt, aplic_name,
  640. memmap[VIRT_PLATFORM_BUS].base,
  641. memmap[VIRT_PLATFORM_BUS].size,
  642. VIRT_PLATFORM_BUS_IRQ);
  643. }
  644. g_free(aplic_name);
  645. g_free(aplic_cells);
  646. aplic_phandles[socket] = aplic_s_phandle;
  647. }
  648. static void create_fdt_pmu(RISCVVirtState *s)
  649. {
  650. char *pmu_name;
  651. MachineState *ms = MACHINE(s);
  652. RISCVCPU hart = s->soc[0].harts[0];
  653. pmu_name = g_strdup_printf("/soc/pmu");
  654. qemu_fdt_add_subnode(ms->fdt, pmu_name);
  655. qemu_fdt_setprop_string(ms->fdt, pmu_name, "compatible", "riscv,pmu");
  656. riscv_pmu_generate_fdt_node(ms->fdt, hart.cfg.pmu_num, pmu_name);
  657. g_free(pmu_name);
  658. }
  659. static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
  660. uint32_t *phandle,
  661. uint32_t *irq_mmio_phandle,
  662. uint32_t *irq_pcie_phandle,
  663. uint32_t *irq_virtio_phandle,
  664. uint32_t *msi_pcie_phandle)
  665. {
  666. char *clust_name;
  667. int socket, phandle_pos;
  668. MachineState *ms = MACHINE(s);
  669. uint32_t msi_m_phandle = 0, msi_s_phandle = 0;
  670. uint32_t *intc_phandles, xplic_phandles[MAX_NODES];
  671. int socket_count = riscv_socket_count(ms);
  672. qemu_fdt_add_subnode(ms->fdt, "/cpus");
  673. qemu_fdt_setprop_cell(ms->fdt, "/cpus", "timebase-frequency",
  674. RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
  675. qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
  676. qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", 0x1);
  677. qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
  678. intc_phandles = g_new0(uint32_t, ms->smp.cpus);
  679. phandle_pos = ms->smp.cpus;
  680. for (socket = (socket_count - 1); socket >= 0; socket--) {
  681. phandle_pos -= s->soc[socket].num_harts;
  682. clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
  683. qemu_fdt_add_subnode(ms->fdt, clust_name);
  684. create_fdt_socket_cpus(s, socket, clust_name, phandle,
  685. &intc_phandles[phandle_pos]);
  686. create_fdt_socket_memory(s, memmap, socket);
  687. g_free(clust_name);
  688. if (!kvm_enabled()) {
  689. if (s->have_aclint) {
  690. create_fdt_socket_aclint(s, memmap, socket,
  691. &intc_phandles[phandle_pos]);
  692. } else {
  693. create_fdt_socket_clint(s, memmap, socket,
  694. &intc_phandles[phandle_pos]);
  695. }
  696. }
  697. }
  698. if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
  699. create_fdt_imsic(s, memmap, phandle, intc_phandles,
  700. &msi_m_phandle, &msi_s_phandle);
  701. *msi_pcie_phandle = msi_s_phandle;
  702. }
  703. phandle_pos = ms->smp.cpus;
  704. for (socket = (socket_count - 1); socket >= 0; socket--) {
  705. phandle_pos -= s->soc[socket].num_harts;
  706. if (s->aia_type == VIRT_AIA_TYPE_NONE) {
  707. create_fdt_socket_plic(s, memmap, socket, phandle,
  708. &intc_phandles[phandle_pos], xplic_phandles);
  709. } else {
  710. create_fdt_socket_aplic(s, memmap, socket,
  711. msi_m_phandle, msi_s_phandle, phandle,
  712. &intc_phandles[phandle_pos], xplic_phandles);
  713. }
  714. }
  715. g_free(intc_phandles);
  716. for (socket = 0; socket < socket_count; socket++) {
  717. if (socket == 0) {
  718. *irq_mmio_phandle = xplic_phandles[socket];
  719. *irq_virtio_phandle = xplic_phandles[socket];
  720. *irq_pcie_phandle = xplic_phandles[socket];
  721. }
  722. if (socket == 1) {
  723. *irq_virtio_phandle = xplic_phandles[socket];
  724. *irq_pcie_phandle = xplic_phandles[socket];
  725. }
  726. if (socket == 2) {
  727. *irq_pcie_phandle = xplic_phandles[socket];
  728. }
  729. }
  730. riscv_socket_fdt_write_distance_matrix(ms);
  731. }
  732. static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
  733. uint32_t irq_virtio_phandle)
  734. {
  735. int i;
  736. char *name;
  737. MachineState *ms = MACHINE(s);
  738. for (i = 0; i < VIRTIO_COUNT; i++) {
  739. name = g_strdup_printf("/soc/virtio_mmio@%lx",
  740. (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
  741. qemu_fdt_add_subnode(ms->fdt, name);
  742. qemu_fdt_setprop_string(ms->fdt, name, "compatible", "virtio,mmio");
  743. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  744. 0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
  745. 0x0, memmap[VIRT_VIRTIO].size);
  746. qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent",
  747. irq_virtio_phandle);
  748. if (s->aia_type == VIRT_AIA_TYPE_NONE) {
  749. qemu_fdt_setprop_cell(ms->fdt, name, "interrupts",
  750. VIRTIO_IRQ + i);
  751. } else {
  752. qemu_fdt_setprop_cells(ms->fdt, name, "interrupts",
  753. VIRTIO_IRQ + i, 0x4);
  754. }
  755. g_free(name);
  756. }
  757. }
  758. static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
  759. uint32_t irq_pcie_phandle,
  760. uint32_t msi_pcie_phandle)
  761. {
  762. char *name;
  763. MachineState *ms = MACHINE(s);
  764. name = g_strdup_printf("/soc/pci@%lx",
  765. (long) memmap[VIRT_PCIE_ECAM].base);
  766. qemu_fdt_add_subnode(ms->fdt, name);
  767. qemu_fdt_setprop_cell(ms->fdt, name, "#address-cells",
  768. FDT_PCI_ADDR_CELLS);
  769. qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells",
  770. FDT_PCI_INT_CELLS);
  771. qemu_fdt_setprop_cell(ms->fdt, name, "#size-cells", 0x2);
  772. qemu_fdt_setprop_string(ms->fdt, name, "compatible",
  773. "pci-host-ecam-generic");
  774. qemu_fdt_setprop_string(ms->fdt, name, "device_type", "pci");
  775. qemu_fdt_setprop_cell(ms->fdt, name, "linux,pci-domain", 0);
  776. qemu_fdt_setprop_cells(ms->fdt, name, "bus-range", 0,
  777. memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
  778. qemu_fdt_setprop(ms->fdt, name, "dma-coherent", NULL, 0);
  779. if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
  780. qemu_fdt_setprop_cell(ms->fdt, name, "msi-parent", msi_pcie_phandle);
  781. }
  782. qemu_fdt_setprop_cells(ms->fdt, name, "reg", 0,
  783. memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
  784. qemu_fdt_setprop_sized_cells(ms->fdt, name, "ranges",
  785. 1, FDT_PCI_RANGE_IOPORT, 2, 0,
  786. 2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
  787. 1, FDT_PCI_RANGE_MMIO,
  788. 2, memmap[VIRT_PCIE_MMIO].base,
  789. 2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
  790. 1, FDT_PCI_RANGE_MMIO_64BIT,
  791. 2, virt_high_pcie_memmap.base,
  792. 2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
  793. create_pcie_irq_map(s, ms->fdt, name, irq_pcie_phandle);
  794. g_free(name);
  795. }
  796. static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
  797. uint32_t *phandle)
  798. {
  799. char *name;
  800. uint32_t test_phandle;
  801. MachineState *ms = MACHINE(s);
  802. test_phandle = (*phandle)++;
  803. name = g_strdup_printf("/soc/test@%lx",
  804. (long)memmap[VIRT_TEST].base);
  805. qemu_fdt_add_subnode(ms->fdt, name);
  806. {
  807. static const char * const compat[3] = {
  808. "sifive,test1", "sifive,test0", "syscon"
  809. };
  810. qemu_fdt_setprop_string_array(ms->fdt, name, "compatible",
  811. (char **)&compat, ARRAY_SIZE(compat));
  812. }
  813. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  814. 0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
  815. qemu_fdt_setprop_cell(ms->fdt, name, "phandle", test_phandle);
  816. test_phandle = qemu_fdt_get_phandle(ms->fdt, name);
  817. g_free(name);
  818. name = g_strdup_printf("/reboot");
  819. qemu_fdt_add_subnode(ms->fdt, name);
  820. qemu_fdt_setprop_string(ms->fdt, name, "compatible", "syscon-reboot");
  821. qemu_fdt_setprop_cell(ms->fdt, name, "regmap", test_phandle);
  822. qemu_fdt_setprop_cell(ms->fdt, name, "offset", 0x0);
  823. qemu_fdt_setprop_cell(ms->fdt, name, "value", FINISHER_RESET);
  824. g_free(name);
  825. name = g_strdup_printf("/poweroff");
  826. qemu_fdt_add_subnode(ms->fdt, name);
  827. qemu_fdt_setprop_string(ms->fdt, name, "compatible", "syscon-poweroff");
  828. qemu_fdt_setprop_cell(ms->fdt, name, "regmap", test_phandle);
  829. qemu_fdt_setprop_cell(ms->fdt, name, "offset", 0x0);
  830. qemu_fdt_setprop_cell(ms->fdt, name, "value", FINISHER_PASS);
  831. g_free(name);
  832. }
  833. static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
  834. uint32_t irq_mmio_phandle)
  835. {
  836. char *name;
  837. MachineState *ms = MACHINE(s);
  838. name = g_strdup_printf("/soc/serial@%lx", (long)memmap[VIRT_UART0].base);
  839. qemu_fdt_add_subnode(ms->fdt, name);
  840. qemu_fdt_setprop_string(ms->fdt, name, "compatible", "ns16550a");
  841. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  842. 0x0, memmap[VIRT_UART0].base,
  843. 0x0, memmap[VIRT_UART0].size);
  844. qemu_fdt_setprop_cell(ms->fdt, name, "clock-frequency", 3686400);
  845. qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent", irq_mmio_phandle);
  846. if (s->aia_type == VIRT_AIA_TYPE_NONE) {
  847. qemu_fdt_setprop_cell(ms->fdt, name, "interrupts", UART0_IRQ);
  848. } else {
  849. qemu_fdt_setprop_cells(ms->fdt, name, "interrupts", UART0_IRQ, 0x4);
  850. }
  851. qemu_fdt_add_subnode(ms->fdt, "/chosen");
  852. qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", name);
  853. g_free(name);
  854. }
  855. static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
  856. uint32_t irq_mmio_phandle)
  857. {
  858. char *name;
  859. MachineState *ms = MACHINE(s);
  860. name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
  861. qemu_fdt_add_subnode(ms->fdt, name);
  862. qemu_fdt_setprop_string(ms->fdt, name, "compatible",
  863. "google,goldfish-rtc");
  864. qemu_fdt_setprop_cells(ms->fdt, name, "reg",
  865. 0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
  866. qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent",
  867. irq_mmio_phandle);
  868. if (s->aia_type == VIRT_AIA_TYPE_NONE) {
  869. qemu_fdt_setprop_cell(ms->fdt, name, "interrupts", RTC_IRQ);
  870. } else {
  871. qemu_fdt_setprop_cells(ms->fdt, name, "interrupts", RTC_IRQ, 0x4);
  872. }
  873. g_free(name);
  874. }
  875. static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
  876. {
  877. char *name;
  878. MachineState *ms = MACHINE(s);
  879. hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
  880. hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
  881. name = g_strdup_printf("/flash@%" PRIx64, flashbase);
  882. qemu_fdt_add_subnode(ms->fdt, name);
  883. qemu_fdt_setprop_string(ms->fdt, name, "compatible", "cfi-flash");
  884. qemu_fdt_setprop_sized_cells(ms->fdt, name, "reg",
  885. 2, flashbase, 2, flashsize,
  886. 2, flashbase + flashsize, 2, flashsize);
  887. qemu_fdt_setprop_cell(ms->fdt, name, "bank-width", 4);
  888. g_free(name);
  889. }
  890. static void create_fdt_fw_cfg(RISCVVirtState *s, const MemMapEntry *memmap)
  891. {
  892. char *nodename;
  893. MachineState *ms = MACHINE(s);
  894. hwaddr base = memmap[VIRT_FW_CFG].base;
  895. hwaddr size = memmap[VIRT_FW_CFG].size;
  896. nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
  897. qemu_fdt_add_subnode(ms->fdt, nodename);
  898. qemu_fdt_setprop_string(ms->fdt, nodename,
  899. "compatible", "qemu,fw-cfg-mmio");
  900. qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
  901. 2, base, 2, size);
  902. qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
  903. g_free(nodename);
  904. }
  905. static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap)
  906. {
  907. MachineState *ms = MACHINE(s);
  908. uint32_t phandle = 1, irq_mmio_phandle = 1, msi_pcie_phandle = 1;
  909. uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
  910. uint8_t rng_seed[32];
  911. ms->fdt = create_device_tree(&s->fdt_size);
  912. if (!ms->fdt) {
  913. error_report("create_device_tree() failed");
  914. exit(1);
  915. }
  916. qemu_fdt_setprop_string(ms->fdt, "/", "model", "riscv-virtio,qemu");
  917. qemu_fdt_setprop_string(ms->fdt, "/", "compatible", "riscv-virtio");
  918. qemu_fdt_setprop_cell(ms->fdt, "/", "#size-cells", 0x2);
  919. qemu_fdt_setprop_cell(ms->fdt, "/", "#address-cells", 0x2);
  920. qemu_fdt_add_subnode(ms->fdt, "/soc");
  921. qemu_fdt_setprop(ms->fdt, "/soc", "ranges", NULL, 0);
  922. qemu_fdt_setprop_string(ms->fdt, "/soc", "compatible", "simple-bus");
  923. qemu_fdt_setprop_cell(ms->fdt, "/soc", "#size-cells", 0x2);
  924. qemu_fdt_setprop_cell(ms->fdt, "/soc", "#address-cells", 0x2);
  925. create_fdt_sockets(s, memmap, &phandle, &irq_mmio_phandle,
  926. &irq_pcie_phandle, &irq_virtio_phandle,
  927. &msi_pcie_phandle);
  928. create_fdt_virtio(s, memmap, irq_virtio_phandle);
  929. create_fdt_pcie(s, memmap, irq_pcie_phandle, msi_pcie_phandle);
  930. create_fdt_reset(s, memmap, &phandle);
  931. create_fdt_uart(s, memmap, irq_mmio_phandle);
  932. create_fdt_rtc(s, memmap, irq_mmio_phandle);
  933. create_fdt_flash(s, memmap);
  934. create_fdt_fw_cfg(s, memmap);
  935. create_fdt_pmu(s);
  936. /* Pass seed to RNG */
  937. qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
  938. qemu_fdt_setprop(ms->fdt, "/chosen", "rng-seed",
  939. rng_seed, sizeof(rng_seed));
  940. }
  941. static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
  942. hwaddr ecam_base, hwaddr ecam_size,
  943. hwaddr mmio_base, hwaddr mmio_size,
  944. hwaddr high_mmio_base,
  945. hwaddr high_mmio_size,
  946. hwaddr pio_base,
  947. DeviceState *irqchip)
  948. {
  949. DeviceState *dev;
  950. MemoryRegion *ecam_alias, *ecam_reg;
  951. MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
  952. qemu_irq irq;
  953. int i;
  954. dev = qdev_new(TYPE_GPEX_HOST);
  955. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  956. ecam_alias = g_new0(MemoryRegion, 1);
  957. ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
  958. memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
  959. ecam_reg, 0, ecam_size);
  960. memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
  961. mmio_alias = g_new0(MemoryRegion, 1);
  962. mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
  963. memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
  964. mmio_reg, mmio_base, mmio_size);
  965. memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
  966. /* Map high MMIO space */
  967. high_mmio_alias = g_new0(MemoryRegion, 1);
  968. memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
  969. mmio_reg, high_mmio_base, high_mmio_size);
  970. memory_region_add_subregion(get_system_memory(), high_mmio_base,
  971. high_mmio_alias);
  972. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
  973. for (i = 0; i < GPEX_NUM_IRQS; i++) {
  974. irq = qdev_get_gpio_in(irqchip, PCIE_IRQ + i);
  975. sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
  976. gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
  977. }
  978. return dev;
  979. }
  980. static FWCfgState *create_fw_cfg(const MachineState *ms)
  981. {
  982. hwaddr base = virt_memmap[VIRT_FW_CFG].base;
  983. FWCfgState *fw_cfg;
  984. fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
  985. &address_space_memory);
  986. fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
  987. return fw_cfg;
  988. }
  989. static DeviceState *virt_create_plic(const MemMapEntry *memmap, int socket,
  990. int base_hartid, int hart_count)
  991. {
  992. DeviceState *ret;
  993. char *plic_hart_config;
  994. /* Per-socket PLIC hart topology configuration string */
  995. plic_hart_config = riscv_plic_hart_config_string(hart_count);
  996. /* Per-socket PLIC */
  997. ret = sifive_plic_create(
  998. memmap[VIRT_PLIC].base + socket * memmap[VIRT_PLIC].size,
  999. plic_hart_config, hart_count, base_hartid,
  1000. VIRT_IRQCHIP_NUM_SOURCES,
  1001. ((1U << VIRT_IRQCHIP_NUM_PRIO_BITS) - 1),
  1002. VIRT_PLIC_PRIORITY_BASE,
  1003. VIRT_PLIC_PENDING_BASE,
  1004. VIRT_PLIC_ENABLE_BASE,
  1005. VIRT_PLIC_ENABLE_STRIDE,
  1006. VIRT_PLIC_CONTEXT_BASE,
  1007. VIRT_PLIC_CONTEXT_STRIDE,
  1008. memmap[VIRT_PLIC].size);
  1009. g_free(plic_hart_config);
  1010. return ret;
  1011. }
  1012. static DeviceState *virt_create_aia(RISCVVirtAIAType aia_type, int aia_guests,
  1013. const MemMapEntry *memmap, int socket,
  1014. int base_hartid, int hart_count)
  1015. {
  1016. int i;
  1017. hwaddr addr;
  1018. uint32_t guest_bits;
  1019. DeviceState *aplic_m;
  1020. bool msimode = (aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) ? true : false;
  1021. if (msimode) {
  1022. /* Per-socket M-level IMSICs */
  1023. addr = memmap[VIRT_IMSIC_M].base + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
  1024. for (i = 0; i < hart_count; i++) {
  1025. riscv_imsic_create(addr + i * IMSIC_HART_SIZE(0),
  1026. base_hartid + i, true, 1,
  1027. VIRT_IRQCHIP_NUM_MSIS);
  1028. }
  1029. /* Per-socket S-level IMSICs */
  1030. guest_bits = imsic_num_bits(aia_guests + 1);
  1031. addr = memmap[VIRT_IMSIC_S].base + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
  1032. for (i = 0; i < hart_count; i++) {
  1033. riscv_imsic_create(addr + i * IMSIC_HART_SIZE(guest_bits),
  1034. base_hartid + i, false, 1 + aia_guests,
  1035. VIRT_IRQCHIP_NUM_MSIS);
  1036. }
  1037. }
  1038. /* Per-socket M-level APLIC */
  1039. aplic_m = riscv_aplic_create(
  1040. memmap[VIRT_APLIC_M].base + socket * memmap[VIRT_APLIC_M].size,
  1041. memmap[VIRT_APLIC_M].size,
  1042. (msimode) ? 0 : base_hartid,
  1043. (msimode) ? 0 : hart_count,
  1044. VIRT_IRQCHIP_NUM_SOURCES,
  1045. VIRT_IRQCHIP_NUM_PRIO_BITS,
  1046. msimode, true, NULL);
  1047. if (aplic_m) {
  1048. /* Per-socket S-level APLIC */
  1049. riscv_aplic_create(
  1050. memmap[VIRT_APLIC_S].base + socket * memmap[VIRT_APLIC_S].size,
  1051. memmap[VIRT_APLIC_S].size,
  1052. (msimode) ? 0 : base_hartid,
  1053. (msimode) ? 0 : hart_count,
  1054. VIRT_IRQCHIP_NUM_SOURCES,
  1055. VIRT_IRQCHIP_NUM_PRIO_BITS,
  1056. msimode, false, aplic_m);
  1057. }
  1058. return aplic_m;
  1059. }
  1060. static void create_platform_bus(RISCVVirtState *s, DeviceState *irqchip)
  1061. {
  1062. DeviceState *dev;
  1063. SysBusDevice *sysbus;
  1064. const MemMapEntry *memmap = virt_memmap;
  1065. int i;
  1066. MemoryRegion *sysmem = get_system_memory();
  1067. dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
  1068. dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
  1069. qdev_prop_set_uint32(dev, "num_irqs", VIRT_PLATFORM_BUS_NUM_IRQS);
  1070. qdev_prop_set_uint32(dev, "mmio_size", memmap[VIRT_PLATFORM_BUS].size);
  1071. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  1072. s->platform_bus_dev = dev;
  1073. sysbus = SYS_BUS_DEVICE(dev);
  1074. for (i = 0; i < VIRT_PLATFORM_BUS_NUM_IRQS; i++) {
  1075. int irq = VIRT_PLATFORM_BUS_IRQ + i;
  1076. sysbus_connect_irq(sysbus, i, qdev_get_gpio_in(irqchip, irq));
  1077. }
  1078. memory_region_add_subregion(sysmem,
  1079. memmap[VIRT_PLATFORM_BUS].base,
  1080. sysbus_mmio_get_region(sysbus, 0));
  1081. }
  1082. static void virt_machine_done(Notifier *notifier, void *data)
  1083. {
  1084. RISCVVirtState *s = container_of(notifier, RISCVVirtState,
  1085. machine_done);
  1086. const MemMapEntry *memmap = virt_memmap;
  1087. MachineState *machine = MACHINE(s);
  1088. target_ulong start_addr = memmap[VIRT_DRAM].base;
  1089. target_ulong firmware_end_addr, kernel_start_addr;
  1090. const char *firmware_name = riscv_default_firmware_name(&s->soc[0]);
  1091. uint32_t fdt_load_addr;
  1092. uint64_t kernel_entry;
  1093. /*
  1094. * Only direct boot kernel is currently supported for KVM VM,
  1095. * so the "-bios" parameter is not supported when KVM is enabled.
  1096. */
  1097. if (kvm_enabled()) {
  1098. if (machine->firmware) {
  1099. if (strcmp(machine->firmware, "none")) {
  1100. error_report("Machine mode firmware is not supported in "
  1101. "combination with KVM.");
  1102. exit(1);
  1103. }
  1104. } else {
  1105. machine->firmware = g_strdup("none");
  1106. }
  1107. }
  1108. firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
  1109. start_addr, NULL);
  1110. if (drive_get(IF_PFLASH, 0, 1)) {
  1111. /*
  1112. * S-mode FW like EDK2 will be kept in second plash (unit 1).
  1113. * When both kernel, initrd and pflash options are provided in the
  1114. * command line, the kernel and initrd will be copied to the fw_cfg
  1115. * table and opensbi will jump to the flash address which is the
  1116. * entry point of S-mode FW. It is the job of the S-mode FW to load
  1117. * the kernel and initrd using fw_cfg table.
  1118. *
  1119. * If only pflash is given but not -kernel, then it is the job of
  1120. * of the S-mode firmware to locate and load the kernel.
  1121. * In either case, the next_addr for opensbi will be the flash address.
  1122. */
  1123. riscv_setup_firmware_boot(machine);
  1124. kernel_entry = virt_memmap[VIRT_FLASH].base +
  1125. virt_memmap[VIRT_FLASH].size / 2;
  1126. } else if (machine->kernel_filename) {
  1127. kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
  1128. firmware_end_addr);
  1129. kernel_entry = riscv_load_kernel(machine, &s->soc[0],
  1130. kernel_start_addr, true, NULL);
  1131. } else {
  1132. /*
  1133. * If dynamic firmware is used, it doesn't know where is the next mode
  1134. * if kernel argument is not set.
  1135. */
  1136. kernel_entry = 0;
  1137. }
  1138. if (drive_get(IF_PFLASH, 0, 0)) {
  1139. /*
  1140. * Pflash was supplied, let's overwrite the address we jump to after
  1141. * reset to the base of the flash.
  1142. */
  1143. start_addr = virt_memmap[VIRT_FLASH].base;
  1144. }
  1145. fdt_load_addr = riscv_compute_fdt_addr(memmap[VIRT_DRAM].base,
  1146. memmap[VIRT_DRAM].size,
  1147. machine);
  1148. riscv_load_fdt(fdt_load_addr, machine->fdt);
  1149. /* load the reset vector */
  1150. riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
  1151. virt_memmap[VIRT_MROM].base,
  1152. virt_memmap[VIRT_MROM].size, kernel_entry,
  1153. fdt_load_addr);
  1154. /*
  1155. * Only direct boot kernel is currently supported for KVM VM,
  1156. * So here setup kernel start address and fdt address.
  1157. * TODO:Support firmware loading and integrate to TCG start
  1158. */
  1159. if (kvm_enabled()) {
  1160. riscv_setup_direct_kernel(kernel_entry, fdt_load_addr);
  1161. }
  1162. if (virt_is_acpi_enabled(s)) {
  1163. virt_acpi_setup(s);
  1164. }
  1165. }
  1166. static void virt_machine_init(MachineState *machine)
  1167. {
  1168. const MemMapEntry *memmap = virt_memmap;
  1169. RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
  1170. MemoryRegion *system_memory = get_system_memory();
  1171. MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
  1172. char *soc_name;
  1173. DeviceState *mmio_irqchip, *virtio_irqchip, *pcie_irqchip;
  1174. int i, base_hartid, hart_count;
  1175. int socket_count = riscv_socket_count(machine);
  1176. /* Check socket count limit */
  1177. if (VIRT_SOCKETS_MAX < socket_count) {
  1178. error_report("number of sockets/nodes should be less than %d",
  1179. VIRT_SOCKETS_MAX);
  1180. exit(1);
  1181. }
  1182. /* Initialize sockets */
  1183. mmio_irqchip = virtio_irqchip = pcie_irqchip = NULL;
  1184. for (i = 0; i < socket_count; i++) {
  1185. if (!riscv_socket_check_hartids(machine, i)) {
  1186. error_report("discontinuous hartids in socket%d", i);
  1187. exit(1);
  1188. }
  1189. base_hartid = riscv_socket_first_hartid(machine, i);
  1190. if (base_hartid < 0) {
  1191. error_report("can't find hartid base for socket%d", i);
  1192. exit(1);
  1193. }
  1194. hart_count = riscv_socket_hart_count(machine, i);
  1195. if (hart_count < 0) {
  1196. error_report("can't find hart count for socket%d", i);
  1197. exit(1);
  1198. }
  1199. soc_name = g_strdup_printf("soc%d", i);
  1200. object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
  1201. TYPE_RISCV_HART_ARRAY);
  1202. g_free(soc_name);
  1203. object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
  1204. machine->cpu_type, &error_abort);
  1205. object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
  1206. base_hartid, &error_abort);
  1207. object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
  1208. hart_count, &error_abort);
  1209. sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
  1210. if (!kvm_enabled()) {
  1211. if (s->have_aclint) {
  1212. if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
  1213. /* Per-socket ACLINT MTIMER */
  1214. riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
  1215. i * RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
  1216. RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
  1217. base_hartid, hart_count,
  1218. RISCV_ACLINT_DEFAULT_MTIMECMP,
  1219. RISCV_ACLINT_DEFAULT_MTIME,
  1220. RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
  1221. } else {
  1222. /* Per-socket ACLINT MSWI, MTIMER, and SSWI */
  1223. riscv_aclint_swi_create(memmap[VIRT_CLINT].base +
  1224. i * memmap[VIRT_CLINT].size,
  1225. base_hartid, hart_count, false);
  1226. riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
  1227. i * memmap[VIRT_CLINT].size +
  1228. RISCV_ACLINT_SWI_SIZE,
  1229. RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
  1230. base_hartid, hart_count,
  1231. RISCV_ACLINT_DEFAULT_MTIMECMP,
  1232. RISCV_ACLINT_DEFAULT_MTIME,
  1233. RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
  1234. riscv_aclint_swi_create(memmap[VIRT_ACLINT_SSWI].base +
  1235. i * memmap[VIRT_ACLINT_SSWI].size,
  1236. base_hartid, hart_count, true);
  1237. }
  1238. } else {
  1239. /* Per-socket SiFive CLINT */
  1240. riscv_aclint_swi_create(
  1241. memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
  1242. base_hartid, hart_count, false);
  1243. riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
  1244. i * memmap[VIRT_CLINT].size + RISCV_ACLINT_SWI_SIZE,
  1245. RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
  1246. RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
  1247. RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
  1248. }
  1249. }
  1250. /* Per-socket interrupt controller */
  1251. if (s->aia_type == VIRT_AIA_TYPE_NONE) {
  1252. s->irqchip[i] = virt_create_plic(memmap, i,
  1253. base_hartid, hart_count);
  1254. } else {
  1255. s->irqchip[i] = virt_create_aia(s->aia_type, s->aia_guests,
  1256. memmap, i, base_hartid,
  1257. hart_count);
  1258. }
  1259. /* Try to use different IRQCHIP instance based device type */
  1260. if (i == 0) {
  1261. mmio_irqchip = s->irqchip[i];
  1262. virtio_irqchip = s->irqchip[i];
  1263. pcie_irqchip = s->irqchip[i];
  1264. }
  1265. if (i == 1) {
  1266. virtio_irqchip = s->irqchip[i];
  1267. pcie_irqchip = s->irqchip[i];
  1268. }
  1269. if (i == 2) {
  1270. pcie_irqchip = s->irqchip[i];
  1271. }
  1272. }
  1273. if (riscv_is_32bit(&s->soc[0])) {
  1274. #if HOST_LONG_BITS == 64
  1275. /* limit RAM size in a 32-bit system */
  1276. if (machine->ram_size > 10 * GiB) {
  1277. machine->ram_size = 10 * GiB;
  1278. error_report("Limiting RAM size to 10 GiB");
  1279. }
  1280. #endif
  1281. virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
  1282. virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
  1283. } else {
  1284. virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
  1285. virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
  1286. virt_high_pcie_memmap.base =
  1287. ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
  1288. }
  1289. s->memmap = virt_memmap;
  1290. /* register system main memory (actual RAM) */
  1291. memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
  1292. machine->ram);
  1293. /* boot rom */
  1294. memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
  1295. memmap[VIRT_MROM].size, &error_fatal);
  1296. memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
  1297. mask_rom);
  1298. /*
  1299. * Init fw_cfg. Must be done before riscv_load_fdt, otherwise the
  1300. * device tree cannot be altered and we get FDT_ERR_NOSPACE.
  1301. */
  1302. s->fw_cfg = create_fw_cfg(machine);
  1303. rom_set_fw(s->fw_cfg);
  1304. /* SiFive Test MMIO device */
  1305. sifive_test_create(memmap[VIRT_TEST].base);
  1306. /* VirtIO MMIO devices */
  1307. for (i = 0; i < VIRTIO_COUNT; i++) {
  1308. sysbus_create_simple("virtio-mmio",
  1309. memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
  1310. qdev_get_gpio_in(DEVICE(virtio_irqchip), VIRTIO_IRQ + i));
  1311. }
  1312. gpex_pcie_init(system_memory,
  1313. memmap[VIRT_PCIE_ECAM].base,
  1314. memmap[VIRT_PCIE_ECAM].size,
  1315. memmap[VIRT_PCIE_MMIO].base,
  1316. memmap[VIRT_PCIE_MMIO].size,
  1317. virt_high_pcie_memmap.base,
  1318. virt_high_pcie_memmap.size,
  1319. memmap[VIRT_PCIE_PIO].base,
  1320. DEVICE(pcie_irqchip));
  1321. create_platform_bus(s, DEVICE(mmio_irqchip));
  1322. serial_mm_init(system_memory, memmap[VIRT_UART0].base,
  1323. 0, qdev_get_gpio_in(DEVICE(mmio_irqchip), UART0_IRQ), 399193,
  1324. serial_hd(0), DEVICE_LITTLE_ENDIAN);
  1325. sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
  1326. qdev_get_gpio_in(DEVICE(mmio_irqchip), RTC_IRQ));
  1327. virt_flash_create(s);
  1328. for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
  1329. /* Map legacy -drive if=pflash to machine properties */
  1330. pflash_cfi01_legacy_drive(s->flash[i],
  1331. drive_get(IF_PFLASH, 0, i));
  1332. }
  1333. virt_flash_map(s, system_memory);
  1334. /* load/create device tree */
  1335. if (machine->dtb) {
  1336. machine->fdt = load_device_tree(machine->dtb, &s->fdt_size);
  1337. if (!machine->fdt) {
  1338. error_report("load_device_tree() failed");
  1339. exit(1);
  1340. }
  1341. } else {
  1342. create_fdt(s, memmap);
  1343. }
  1344. s->machine_done.notify = virt_machine_done;
  1345. qemu_add_machine_init_done_notifier(&s->machine_done);
  1346. }
  1347. static void virt_machine_instance_init(Object *obj)
  1348. {
  1349. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1350. s->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
  1351. s->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
  1352. s->acpi = ON_OFF_AUTO_AUTO;
  1353. }
  1354. static char *virt_get_aia_guests(Object *obj, Error **errp)
  1355. {
  1356. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1357. char val[32];
  1358. sprintf(val, "%d", s->aia_guests);
  1359. return g_strdup(val);
  1360. }
  1361. static void virt_set_aia_guests(Object *obj, const char *val, Error **errp)
  1362. {
  1363. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1364. s->aia_guests = atoi(val);
  1365. if (s->aia_guests < 0 || s->aia_guests > VIRT_IRQCHIP_MAX_GUESTS) {
  1366. error_setg(errp, "Invalid number of AIA IMSIC guests");
  1367. error_append_hint(errp, "Valid values be between 0 and %d.\n",
  1368. VIRT_IRQCHIP_MAX_GUESTS);
  1369. }
  1370. }
  1371. static char *virt_get_aia(Object *obj, Error **errp)
  1372. {
  1373. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1374. const char *val;
  1375. switch (s->aia_type) {
  1376. case VIRT_AIA_TYPE_APLIC:
  1377. val = "aplic";
  1378. break;
  1379. case VIRT_AIA_TYPE_APLIC_IMSIC:
  1380. val = "aplic-imsic";
  1381. break;
  1382. default:
  1383. val = "none";
  1384. break;
  1385. };
  1386. return g_strdup(val);
  1387. }
  1388. static void virt_set_aia(Object *obj, const char *val, Error **errp)
  1389. {
  1390. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1391. if (!strcmp(val, "none")) {
  1392. s->aia_type = VIRT_AIA_TYPE_NONE;
  1393. } else if (!strcmp(val, "aplic")) {
  1394. s->aia_type = VIRT_AIA_TYPE_APLIC;
  1395. } else if (!strcmp(val, "aplic-imsic")) {
  1396. s->aia_type = VIRT_AIA_TYPE_APLIC_IMSIC;
  1397. } else {
  1398. error_setg(errp, "Invalid AIA interrupt controller type");
  1399. error_append_hint(errp, "Valid values are none, aplic, and "
  1400. "aplic-imsic.\n");
  1401. }
  1402. }
  1403. static bool virt_get_aclint(Object *obj, Error **errp)
  1404. {
  1405. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1406. return s->have_aclint;
  1407. }
  1408. static void virt_set_aclint(Object *obj, bool value, Error **errp)
  1409. {
  1410. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1411. s->have_aclint = value;
  1412. }
  1413. bool virt_is_acpi_enabled(RISCVVirtState *s)
  1414. {
  1415. return s->acpi != ON_OFF_AUTO_OFF;
  1416. }
  1417. static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
  1418. void *opaque, Error **errp)
  1419. {
  1420. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1421. OnOffAuto acpi = s->acpi;
  1422. visit_type_OnOffAuto(v, name, &acpi, errp);
  1423. }
  1424. static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
  1425. void *opaque, Error **errp)
  1426. {
  1427. RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
  1428. visit_type_OnOffAuto(v, name, &s->acpi, errp);
  1429. }
  1430. static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
  1431. DeviceState *dev)
  1432. {
  1433. MachineClass *mc = MACHINE_GET_CLASS(machine);
  1434. if (device_is_dynamic_sysbus(mc, dev)) {
  1435. return HOTPLUG_HANDLER(machine);
  1436. }
  1437. return NULL;
  1438. }
  1439. static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
  1440. DeviceState *dev, Error **errp)
  1441. {
  1442. RISCVVirtState *s = RISCV_VIRT_MACHINE(hotplug_dev);
  1443. if (s->platform_bus_dev) {
  1444. MachineClass *mc = MACHINE_GET_CLASS(s);
  1445. if (device_is_dynamic_sysbus(mc, dev)) {
  1446. platform_bus_link_device(PLATFORM_BUS_DEVICE(s->platform_bus_dev),
  1447. SYS_BUS_DEVICE(dev));
  1448. }
  1449. }
  1450. }
  1451. static void virt_machine_class_init(ObjectClass *oc, void *data)
  1452. {
  1453. char str[128];
  1454. MachineClass *mc = MACHINE_CLASS(oc);
  1455. HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
  1456. mc->desc = "RISC-V VirtIO board";
  1457. mc->init = virt_machine_init;
  1458. mc->max_cpus = VIRT_CPUS_MAX;
  1459. mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
  1460. mc->pci_allow_0_address = true;
  1461. mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
  1462. mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
  1463. mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
  1464. mc->numa_mem_supported = true;
  1465. mc->default_ram_id = "riscv_virt_board.ram";
  1466. assert(!mc->get_hotplug_handler);
  1467. mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
  1468. hc->plug = virt_machine_device_plug_cb;
  1469. machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
  1470. #ifdef CONFIG_TPM
  1471. machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
  1472. #endif
  1473. object_class_property_add_bool(oc, "aclint", virt_get_aclint,
  1474. virt_set_aclint);
  1475. object_class_property_set_description(oc, "aclint",
  1476. "Set on/off to enable/disable "
  1477. "emulating ACLINT devices");
  1478. object_class_property_add_str(oc, "aia", virt_get_aia,
  1479. virt_set_aia);
  1480. object_class_property_set_description(oc, "aia",
  1481. "Set type of AIA interrupt "
  1482. "conttoller. Valid values are "
  1483. "none, aplic, and aplic-imsic.");
  1484. object_class_property_add_str(oc, "aia-guests",
  1485. virt_get_aia_guests,
  1486. virt_set_aia_guests);
  1487. sprintf(str, "Set number of guest MMIO pages for AIA IMSIC. Valid value "
  1488. "should be between 0 and %d.", VIRT_IRQCHIP_MAX_GUESTS);
  1489. object_class_property_set_description(oc, "aia-guests", str);
  1490. object_class_property_add(oc, "acpi", "OnOffAuto",
  1491. virt_get_acpi, virt_set_acpi,
  1492. NULL, NULL);
  1493. object_class_property_set_description(oc, "acpi",
  1494. "Enable ACPI");
  1495. }
  1496. static const TypeInfo virt_machine_typeinfo = {
  1497. .name = MACHINE_TYPE_NAME("virt"),
  1498. .parent = TYPE_MACHINE,
  1499. .class_init = virt_machine_class_init,
  1500. .instance_init = virt_machine_instance_init,
  1501. .instance_size = sizeof(RISCVVirtState),
  1502. .interfaces = (InterfaceInfo[]) {
  1503. { TYPE_HOTPLUG_HANDLER },
  1504. { }
  1505. },
  1506. };
  1507. static void virt_machine_init_register_types(void)
  1508. {
  1509. type_register_static(&virt_machine_typeinfo);
  1510. }
  1511. type_init(virt_machine_init_register_types)