2
0

microchip_pfsoc.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683
  1. /*
  2. * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
  3. *
  4. * Copyright (c) 2020 Wind River Systems, Inc.
  5. *
  6. * Author:
  7. * Bin Meng <bin.meng@windriver.com>
  8. *
  9. * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
  10. *
  11. * 0) CLINT (Core Level Interruptor)
  12. * 1) PLIC (Platform Level Interrupt Controller)
  13. * 2) eNVM (Embedded Non-Volatile Memory)
  14. * 3) MMUARTs (Multi-Mode UART)
  15. * 4) Cadence eMMC/SDHC controller and an SD card connected to it
  16. * 5) SiFive Platform DMA (Direct Memory Access Controller)
  17. * 6) GEM (Gigabit Ethernet MAC Controller)
  18. * 7) DMC (DDR Memory Controller)
  19. * 8) IOSCB modules
  20. *
  21. * This board currently generates devicetree dynamically that indicates at least
  22. * two harts and up to five harts.
  23. *
  24. * This program is free software; you can redistribute it and/or modify it
  25. * under the terms and conditions of the GNU General Public License,
  26. * version 2 or later, as published by the Free Software Foundation.
  27. *
  28. * This program is distributed in the hope it will be useful, but WITHOUT
  29. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  30. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  31. * more details.
  32. *
  33. * You should have received a copy of the GNU General Public License along with
  34. * this program. If not, see <http://www.gnu.org/licenses/>.
  35. */
  36. #include "qemu/osdep.h"
  37. #include "qemu/error-report.h"
  38. #include "qemu/units.h"
  39. #include "qemu/cutils.h"
  40. #include "qapi/error.h"
  41. #include "hw/boards.h"
  42. #include "hw/loader.h"
  43. #include "hw/sysbus.h"
  44. #include "chardev/char.h"
  45. #include "hw/cpu/cluster.h"
  46. #include "target/riscv/cpu.h"
  47. #include "hw/misc/unimp.h"
  48. #include "hw/riscv/boot.h"
  49. #include "hw/riscv/riscv_hart.h"
  50. #include "hw/riscv/microchip_pfsoc.h"
  51. #include "hw/intc/riscv_aclint.h"
  52. #include "hw/intc/sifive_plic.h"
  53. #include "sysemu/device_tree.h"
  54. #include "sysemu/sysemu.h"
  55. /*
  56. * The BIOS image used by this machine is called Hart Software Services (HSS).
  57. * See https://github.com/polarfire-soc/hart-software-services
  58. */
  59. #define BIOS_FILENAME "hss.bin"
  60. #define RESET_VECTOR 0x20220000
  61. /* CLINT timebase frequency */
  62. #define CLINT_TIMEBASE_FREQ 1000000
  63. /* GEM version */
  64. #define GEM_REVISION 0x0107010c
  65. /*
  66. * The complete description of the whole PolarFire SoC memory map is scattered
  67. * in different documents. There are several places to look at for memory maps:
  68. *
  69. * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
  70. * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
  71. * https://www.microsemi.com/document-portal/doc_download/
  72. * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
  73. * describes the whole picture of the PolarFire SoC memory map.
  74. *
  75. * 2 A zip file for PolarFire soC memory map, which can be downloaded from
  76. * https://www.microsemi.com/document-portal/doc_download/
  77. * 1244581-polarfire-soc-register-map, contains the following 2 major parts:
  78. * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
  79. * describes the complete integrated peripherals memory map
  80. * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
  81. * describes the complete IOSCB modules memory maps
  82. */
  83. static const MemMapEntry microchip_pfsoc_memmap[] = {
  84. [MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 },
  85. [MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 },
  86. [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
  87. [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
  88. [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
  89. [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
  90. [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
  91. [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
  92. [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
  93. [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
  94. [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
  95. [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
  96. [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
  97. [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
  98. [MICROCHIP_PFSOC_WDOG0] = { 0x20001000, 0x1000 },
  99. [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
  100. [MICROCHIP_PFSOC_AXISW] = { 0x20004000, 0x1000 },
  101. [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
  102. [MICROCHIP_PFSOC_FMETER] = { 0x20006000, 0x1000 },
  103. [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 },
  104. [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
  105. [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 },
  106. [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
  107. [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
  108. [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
  109. [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
  110. [MICROCHIP_PFSOC_WDOG1] = { 0x20101000, 0x1000 },
  111. [MICROCHIP_PFSOC_WDOG2] = { 0x20103000, 0x1000 },
  112. [MICROCHIP_PFSOC_WDOG3] = { 0x20105000, 0x1000 },
  113. [MICROCHIP_PFSOC_WDOG4] = { 0x20106000, 0x1000 },
  114. [MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 },
  115. [MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 },
  116. [MICROCHIP_PFSOC_I2C0] = { 0x2010a000, 0x1000 },
  117. [MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 },
  118. [MICROCHIP_PFSOC_CAN0] = { 0x2010c000, 0x1000 },
  119. [MICROCHIP_PFSOC_CAN1] = { 0x2010d000, 0x1000 },
  120. [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
  121. [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
  122. [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
  123. [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
  124. [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
  125. [MICROCHIP_PFSOC_RTC] = { 0x20124000, 0x1000 },
  126. [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
  127. [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
  128. [MICROCHIP_PFSOC_USB] = { 0x20201000, 0x1000 },
  129. [MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 },
  130. [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 },
  131. [MICROCHIP_PFSOC_FABRIC_FIC0] = { 0x2000000000, 0x1000000000 },
  132. [MICROCHIP_PFSOC_FABRIC_FIC1] = { 0x3000000000, 0x1000000000 },
  133. [MICROCHIP_PFSOC_FABRIC_FIC3] = { 0x40000000, 0x20000000 },
  134. [MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 },
  135. [MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 },
  136. [MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 },
  137. [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 },
  138. };
  139. static void microchip_pfsoc_soc_instance_init(Object *obj)
  140. {
  141. MachineState *ms = MACHINE(qdev_get_machine());
  142. MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
  143. object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
  144. qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
  145. object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
  146. TYPE_RISCV_HART_ARRAY);
  147. qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
  148. qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
  149. qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
  150. TYPE_RISCV_CPU_SIFIVE_E51);
  151. qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
  152. object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
  153. qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
  154. object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
  155. TYPE_RISCV_HART_ARRAY);
  156. qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
  157. qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
  158. qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
  159. TYPE_RISCV_CPU_SIFIVE_U54);
  160. qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
  161. object_initialize_child(obj, "dma-controller", &s->dma,
  162. TYPE_SIFIVE_PDMA);
  163. object_initialize_child(obj, "sysreg", &s->sysreg,
  164. TYPE_MCHP_PFSOC_SYSREG);
  165. object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
  166. TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
  167. object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
  168. TYPE_MCHP_PFSOC_DDR_CFG);
  169. object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
  170. object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
  171. object_initialize_child(obj, "sd-controller", &s->sdhci,
  172. TYPE_CADENCE_SDHCI);
  173. object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
  174. }
  175. static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
  176. {
  177. MachineState *ms = MACHINE(qdev_get_machine());
  178. MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
  179. const MemMapEntry *memmap = microchip_pfsoc_memmap;
  180. MemoryRegion *system_memory = get_system_memory();
  181. MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
  182. MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
  183. MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
  184. MemoryRegion *envm_data = g_new(MemoryRegion, 1);
  185. MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
  186. char *plic_hart_config;
  187. NICInfo *nd;
  188. int i;
  189. sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
  190. sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
  191. /*
  192. * The cluster must be realized after the RISC-V hart array container,
  193. * as the container's CPU object is only created on realize, and the
  194. * CPU must exist and have been parented into the cluster before the
  195. * cluster is realized.
  196. */
  197. qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
  198. qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
  199. /* Reserved Memory at address 0 */
  200. memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
  201. memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
  202. memory_region_add_subregion(system_memory,
  203. memmap[MICROCHIP_PFSOC_RSVD0].base,
  204. rsvd0_mem);
  205. /* E51 DTIM */
  206. memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
  207. memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
  208. memory_region_add_subregion(system_memory,
  209. memmap[MICROCHIP_PFSOC_E51_DTIM].base,
  210. e51_dtim_mem);
  211. /* Bus Error Units */
  212. create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
  213. memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
  214. memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
  215. create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
  216. memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
  217. memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
  218. create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
  219. memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
  220. memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
  221. create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
  222. memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
  223. memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
  224. create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
  225. memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
  226. memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
  227. /* CLINT */
  228. riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
  229. 0, ms->smp.cpus, false);
  230. riscv_aclint_mtimer_create(
  231. memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
  232. RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
  233. RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
  234. CLINT_TIMEBASE_FREQ, false);
  235. /* L2 cache controller */
  236. create_unimplemented_device("microchip.pfsoc.l2cc",
  237. memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
  238. /*
  239. * Add L2-LIM at reset size.
  240. * This should be reduced in size as the L2 Cache Controller WayEnable
  241. * register is incremented. Unfortunately I don't see a nice (or any) way
  242. * to handle reducing or blocking out the L2 LIM while still allowing it
  243. * be re returned to all enabled after a reset. For the time being, just
  244. * leave it enabled all the time. This won't break anything, but will be
  245. * too generous to misbehaving guests.
  246. */
  247. memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
  248. memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
  249. memory_region_add_subregion(system_memory,
  250. memmap[MICROCHIP_PFSOC_L2LIM].base,
  251. l2lim_mem);
  252. /* create PLIC hart topology configuration string */
  253. plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus);
  254. /* PLIC */
  255. s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
  256. plic_hart_config, ms->smp.cpus, 0,
  257. MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
  258. MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
  259. MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
  260. MICROCHIP_PFSOC_PLIC_PENDING_BASE,
  261. MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
  262. MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
  263. MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
  264. MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
  265. memmap[MICROCHIP_PFSOC_PLIC].size);
  266. g_free(plic_hart_config);
  267. /* DMA */
  268. sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
  269. sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
  270. memmap[MICROCHIP_PFSOC_DMA].base);
  271. for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
  272. sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
  273. qdev_get_gpio_in(DEVICE(s->plic),
  274. MICROCHIP_PFSOC_DMA_IRQ0 + i));
  275. }
  276. /* SYSREG */
  277. sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
  278. sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
  279. memmap[MICROCHIP_PFSOC_SYSREG].base);
  280. sysbus_connect_irq(SYS_BUS_DEVICE(&s->sysreg), 0,
  281. qdev_get_gpio_in(DEVICE(s->plic),
  282. MICROCHIP_PFSOC_MAILBOX_IRQ));
  283. /* AXISW */
  284. create_unimplemented_device("microchip.pfsoc.axisw",
  285. memmap[MICROCHIP_PFSOC_AXISW].base,
  286. memmap[MICROCHIP_PFSOC_AXISW].size);
  287. /* MPUCFG */
  288. create_unimplemented_device("microchip.pfsoc.mpucfg",
  289. memmap[MICROCHIP_PFSOC_MPUCFG].base,
  290. memmap[MICROCHIP_PFSOC_MPUCFG].size);
  291. /* FMETER */
  292. create_unimplemented_device("microchip.pfsoc.fmeter",
  293. memmap[MICROCHIP_PFSOC_FMETER].base,
  294. memmap[MICROCHIP_PFSOC_FMETER].size);
  295. /* DDR SGMII PHY */
  296. sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
  297. sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
  298. memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
  299. /* DDR CFG */
  300. sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
  301. sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
  302. memmap[MICROCHIP_PFSOC_DDR_CFG].base);
  303. /* SDHCI */
  304. sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
  305. sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
  306. memmap[MICROCHIP_PFSOC_EMMC_SD].base);
  307. sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
  308. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
  309. /* MMUARTs */
  310. s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
  311. memmap[MICROCHIP_PFSOC_MMUART0].base,
  312. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
  313. serial_hd(0));
  314. s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
  315. memmap[MICROCHIP_PFSOC_MMUART1].base,
  316. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
  317. serial_hd(1));
  318. s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
  319. memmap[MICROCHIP_PFSOC_MMUART2].base,
  320. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
  321. serial_hd(2));
  322. s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
  323. memmap[MICROCHIP_PFSOC_MMUART3].base,
  324. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
  325. serial_hd(3));
  326. s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
  327. memmap[MICROCHIP_PFSOC_MMUART4].base,
  328. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
  329. serial_hd(4));
  330. /* Watchdogs */
  331. create_unimplemented_device("microchip.pfsoc.watchdog0",
  332. memmap[MICROCHIP_PFSOC_WDOG0].base,
  333. memmap[MICROCHIP_PFSOC_WDOG0].size);
  334. create_unimplemented_device("microchip.pfsoc.watchdog1",
  335. memmap[MICROCHIP_PFSOC_WDOG1].base,
  336. memmap[MICROCHIP_PFSOC_WDOG1].size);
  337. create_unimplemented_device("microchip.pfsoc.watchdog2",
  338. memmap[MICROCHIP_PFSOC_WDOG2].base,
  339. memmap[MICROCHIP_PFSOC_WDOG2].size);
  340. create_unimplemented_device("microchip.pfsoc.watchdog3",
  341. memmap[MICROCHIP_PFSOC_WDOG3].base,
  342. memmap[MICROCHIP_PFSOC_WDOG3].size);
  343. create_unimplemented_device("microchip.pfsoc.watchdog4",
  344. memmap[MICROCHIP_PFSOC_WDOG4].base,
  345. memmap[MICROCHIP_PFSOC_WDOG4].size);
  346. /* SPI */
  347. create_unimplemented_device("microchip.pfsoc.spi0",
  348. memmap[MICROCHIP_PFSOC_SPI0].base,
  349. memmap[MICROCHIP_PFSOC_SPI0].size);
  350. create_unimplemented_device("microchip.pfsoc.spi1",
  351. memmap[MICROCHIP_PFSOC_SPI1].base,
  352. memmap[MICROCHIP_PFSOC_SPI1].size);
  353. /* I2C */
  354. create_unimplemented_device("microchip.pfsoc.i2c0",
  355. memmap[MICROCHIP_PFSOC_I2C0].base,
  356. memmap[MICROCHIP_PFSOC_I2C0].size);
  357. create_unimplemented_device("microchip.pfsoc.i2c1",
  358. memmap[MICROCHIP_PFSOC_I2C1].base,
  359. memmap[MICROCHIP_PFSOC_I2C1].size);
  360. /* CAN */
  361. create_unimplemented_device("microchip.pfsoc.can0",
  362. memmap[MICROCHIP_PFSOC_CAN0].base,
  363. memmap[MICROCHIP_PFSOC_CAN0].size);
  364. create_unimplemented_device("microchip.pfsoc.can1",
  365. memmap[MICROCHIP_PFSOC_CAN1].base,
  366. memmap[MICROCHIP_PFSOC_CAN1].size);
  367. /* USB */
  368. create_unimplemented_device("microchip.pfsoc.usb",
  369. memmap[MICROCHIP_PFSOC_USB].base,
  370. memmap[MICROCHIP_PFSOC_USB].size);
  371. /* GEMs */
  372. nd = &nd_table[0];
  373. if (nd->used) {
  374. qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
  375. qdev_set_nic_properties(DEVICE(&s->gem0), nd);
  376. }
  377. nd = &nd_table[1];
  378. if (nd->used) {
  379. qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
  380. qdev_set_nic_properties(DEVICE(&s->gem1), nd);
  381. }
  382. object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
  383. object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
  384. sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
  385. sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
  386. memmap[MICROCHIP_PFSOC_GEM0].base);
  387. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
  388. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
  389. object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
  390. object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
  391. sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
  392. sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
  393. memmap[MICROCHIP_PFSOC_GEM1].base);
  394. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
  395. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
  396. /* GPIOs */
  397. create_unimplemented_device("microchip.pfsoc.gpio0",
  398. memmap[MICROCHIP_PFSOC_GPIO0].base,
  399. memmap[MICROCHIP_PFSOC_GPIO0].size);
  400. create_unimplemented_device("microchip.pfsoc.gpio1",
  401. memmap[MICROCHIP_PFSOC_GPIO1].base,
  402. memmap[MICROCHIP_PFSOC_GPIO1].size);
  403. create_unimplemented_device("microchip.pfsoc.gpio2",
  404. memmap[MICROCHIP_PFSOC_GPIO2].base,
  405. memmap[MICROCHIP_PFSOC_GPIO2].size);
  406. /* eNVM */
  407. memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
  408. memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
  409. &error_fatal);
  410. memory_region_add_subregion(system_memory,
  411. memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
  412. envm_data);
  413. /* IOSCB */
  414. sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
  415. sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
  416. memmap[MICROCHIP_PFSOC_IOSCB].base);
  417. sysbus_connect_irq(SYS_BUS_DEVICE(&s->ioscb), 0,
  418. qdev_get_gpio_in(DEVICE(s->plic),
  419. MICROCHIP_PFSOC_MAILBOX_IRQ));
  420. /* FPGA Fabric */
  421. create_unimplemented_device("microchip.pfsoc.fabricfic3",
  422. memmap[MICROCHIP_PFSOC_FABRIC_FIC3].base,
  423. memmap[MICROCHIP_PFSOC_FABRIC_FIC3].size);
  424. /* FPGA Fabric */
  425. create_unimplemented_device("microchip.pfsoc.fabricfic0",
  426. memmap[MICROCHIP_PFSOC_FABRIC_FIC0].base,
  427. memmap[MICROCHIP_PFSOC_FABRIC_FIC0].size);
  428. /* FPGA Fabric */
  429. create_unimplemented_device("microchip.pfsoc.fabricfic1",
  430. memmap[MICROCHIP_PFSOC_FABRIC_FIC1].base,
  431. memmap[MICROCHIP_PFSOC_FABRIC_FIC1].size);
  432. /* QSPI Flash */
  433. memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
  434. "microchip.pfsoc.qspi_xip",
  435. memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
  436. &error_fatal);
  437. memory_region_add_subregion(system_memory,
  438. memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
  439. qspi_xip_mem);
  440. }
  441. static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
  442. {
  443. DeviceClass *dc = DEVICE_CLASS(oc);
  444. dc->realize = microchip_pfsoc_soc_realize;
  445. /* Reason: Uses serial_hds in realize function, thus can't be used twice */
  446. dc->user_creatable = false;
  447. }
  448. static const TypeInfo microchip_pfsoc_soc_type_info = {
  449. .name = TYPE_MICROCHIP_PFSOC,
  450. .parent = TYPE_DEVICE,
  451. .instance_size = sizeof(MicrochipPFSoCState),
  452. .instance_init = microchip_pfsoc_soc_instance_init,
  453. .class_init = microchip_pfsoc_soc_class_init,
  454. };
  455. static void microchip_pfsoc_soc_register_types(void)
  456. {
  457. type_register_static(&microchip_pfsoc_soc_type_info);
  458. }
  459. type_init(microchip_pfsoc_soc_register_types)
  460. static void microchip_icicle_kit_machine_init(MachineState *machine)
  461. {
  462. MachineClass *mc = MACHINE_GET_CLASS(machine);
  463. const MemMapEntry *memmap = microchip_pfsoc_memmap;
  464. MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
  465. MemoryRegion *system_memory = get_system_memory();
  466. MemoryRegion *mem_low = g_new(MemoryRegion, 1);
  467. MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
  468. MemoryRegion *mem_high = g_new(MemoryRegion, 1);
  469. MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
  470. uint64_t mem_low_size, mem_high_size;
  471. hwaddr firmware_load_addr;
  472. const char *firmware_name;
  473. bool kernel_as_payload = false;
  474. target_ulong firmware_end_addr, kernel_start_addr;
  475. uint64_t kernel_entry;
  476. uint32_t fdt_load_addr;
  477. DriveInfo *dinfo = drive_get(IF_SD, 0, 0);
  478. /* Sanity check on RAM size */
  479. if (machine->ram_size < mc->default_ram_size) {
  480. char *sz = size_to_str(mc->default_ram_size);
  481. error_report("Invalid RAM size, should be bigger than %s", sz);
  482. g_free(sz);
  483. exit(EXIT_FAILURE);
  484. }
  485. /* Initialize SoC */
  486. object_initialize_child(OBJECT(machine), "soc", &s->soc,
  487. TYPE_MICROCHIP_PFSOC);
  488. qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
  489. /* Split RAM into low and high regions using aliases to machine->ram */
  490. mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size;
  491. mem_high_size = machine->ram_size - mem_low_size;
  492. memory_region_init_alias(mem_low, NULL,
  493. "microchip.icicle.kit.ram_low", machine->ram,
  494. 0, mem_low_size);
  495. memory_region_init_alias(mem_high, NULL,
  496. "microchip.icicle.kit.ram_high", machine->ram,
  497. mem_low_size, mem_high_size);
  498. /* Register RAM */
  499. memory_region_add_subregion(system_memory,
  500. memmap[MICROCHIP_PFSOC_DRAM_LO].base,
  501. mem_low);
  502. memory_region_add_subregion(system_memory,
  503. memmap[MICROCHIP_PFSOC_DRAM_HI].base,
  504. mem_high);
  505. /* Create aliases for the low and high RAM regions */
  506. memory_region_init_alias(mem_low_alias, NULL,
  507. "microchip.icicle.kit.ram_low.alias",
  508. mem_low, 0, mem_low_size);
  509. memory_region_add_subregion(system_memory,
  510. memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
  511. mem_low_alias);
  512. memory_region_init_alias(mem_high_alias, NULL,
  513. "microchip.icicle.kit.ram_high.alias",
  514. mem_high, 0, mem_high_size);
  515. memory_region_add_subregion(system_memory,
  516. memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
  517. mem_high_alias);
  518. /* Attach an SD card */
  519. if (dinfo) {
  520. CadenceSDHCIState *sdhci = &(s->soc.sdhci);
  521. DeviceState *card = qdev_new(TYPE_SD_CARD);
  522. qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
  523. &error_fatal);
  524. qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
  525. }
  526. /*
  527. * We follow the following table to select which payload we execute.
  528. *
  529. * -bios | -kernel | payload
  530. * -------+------------+--------
  531. * N | N | HSS
  532. * Y | don't care | HSS
  533. * N | Y | kernel
  534. *
  535. * This ensures backwards compatibility with how we used to expose -bios
  536. * to users but allows them to run through direct kernel booting as well.
  537. *
  538. * When -kernel is used for direct boot, -dtb must be present to provide
  539. * a valid device tree for the board, as we don't generate device tree.
  540. */
  541. if (machine->kernel_filename && machine->dtb) {
  542. int fdt_size;
  543. machine->fdt = load_device_tree(machine->dtb, &fdt_size);
  544. if (!machine->fdt) {
  545. error_report("load_device_tree() failed");
  546. exit(1);
  547. }
  548. firmware_name = RISCV64_BIOS_BIN;
  549. firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
  550. kernel_as_payload = true;
  551. }
  552. if (!kernel_as_payload) {
  553. firmware_name = BIOS_FILENAME;
  554. firmware_load_addr = RESET_VECTOR;
  555. }
  556. /* Load the firmware */
  557. firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
  558. firmware_load_addr, NULL);
  559. if (kernel_as_payload) {
  560. kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
  561. firmware_end_addr);
  562. kernel_entry = riscv_load_kernel(machine, &s->soc.u_cpus,
  563. kernel_start_addr, true, NULL);
  564. /* Compute the fdt load address in dram */
  565. fdt_load_addr = riscv_compute_fdt_addr(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
  566. memmap[MICROCHIP_PFSOC_DRAM_LO].size,
  567. machine);
  568. riscv_load_fdt(fdt_load_addr, machine->fdt);
  569. /* Load the reset vector */
  570. riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
  571. memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
  572. memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
  573. kernel_entry, fdt_load_addr);
  574. }
  575. }
  576. static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
  577. {
  578. MachineClass *mc = MACHINE_CLASS(oc);
  579. mc->desc = "Microchip PolarFire SoC Icicle Kit";
  580. mc->init = microchip_icicle_kit_machine_init;
  581. mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
  582. MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
  583. mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
  584. mc->default_cpus = mc->min_cpus;
  585. mc->default_ram_id = "microchip.icicle.kit.ram";
  586. /*
  587. * Map 513 MiB high memory, the mimimum required high memory size, because
  588. * HSS will do memory test against the high memory address range regardless
  589. * of physical memory installed.
  590. *
  591. * See memory_tests() in mss_ddr.c in the HSS source code.
  592. */
  593. mc->default_ram_size = 1537 * MiB;
  594. }
  595. static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
  596. .name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
  597. .parent = TYPE_MACHINE,
  598. .class_init = microchip_icicle_kit_machine_class_init,
  599. .instance_size = sizeof(MicrochipIcicleKitState),
  600. };
  601. static void microchip_icicle_kit_machine_init_register_types(void)
  602. {
  603. type_register_static(&microchip_icicle_kit_machine_typeinfo);
  604. }
  605. type_init(microchip_icicle_kit_machine_init_register_types)