boot.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. /*
  2. * QEMU RISC-V Boot Helper
  3. *
  4. * Copyright (c) 2017 SiFive, Inc.
  5. * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2 or later, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along with
  17. * this program. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu/datadir.h"
  21. #include "qemu/units.h"
  22. #include "qemu/error-report.h"
  23. #include "exec/cpu-defs.h"
  24. #include "hw/boards.h"
  25. #include "hw/loader.h"
  26. #include "hw/riscv/boot.h"
  27. #include "hw/riscv/boot_opensbi.h"
  28. #include "elf.h"
  29. #include "sysemu/device_tree.h"
  30. #include "sysemu/qtest.h"
  31. #include "sysemu/kvm.h"
  32. #include "sysemu/reset.h"
  33. #include <libfdt.h>
  34. bool riscv_is_32bit(RISCVHartArrayState *harts)
  35. {
  36. return harts->harts[0].env.misa_mxl_max == MXL_RV32;
  37. }
  38. /*
  39. * Return the per-socket PLIC hart topology configuration string
  40. * (caller must free with g_free())
  41. */
  42. char *riscv_plic_hart_config_string(int hart_count)
  43. {
  44. g_autofree const char **vals = g_new(const char *, hart_count + 1);
  45. int i;
  46. for (i = 0; i < hart_count; i++) {
  47. CPUState *cs = qemu_get_cpu(i);
  48. CPURISCVState *env = &RISCV_CPU(cs)->env;
  49. if (kvm_enabled()) {
  50. vals[i] = "S";
  51. } else if (riscv_has_ext(env, RVS)) {
  52. vals[i] = "MS";
  53. } else {
  54. vals[i] = "M";
  55. }
  56. }
  57. vals[i] = NULL;
  58. /* g_strjoinv() obliges us to cast away const here */
  59. return g_strjoinv(",", (char **)vals);
  60. }
  61. target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
  62. target_ulong firmware_end_addr) {
  63. if (riscv_is_32bit(harts)) {
  64. return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
  65. } else {
  66. return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
  67. }
  68. }
  69. const char *riscv_default_firmware_name(RISCVHartArrayState *harts)
  70. {
  71. if (riscv_is_32bit(harts)) {
  72. return RISCV32_BIOS_BIN;
  73. }
  74. return RISCV64_BIOS_BIN;
  75. }
  76. static char *riscv_find_bios(const char *bios_filename)
  77. {
  78. char *filename;
  79. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename);
  80. if (filename == NULL) {
  81. if (!qtest_enabled()) {
  82. /*
  83. * We only ship OpenSBI binary bios images in the QEMU source.
  84. * For machines that use images other than the default bios,
  85. * running QEMU test will complain hence let's suppress the error
  86. * report for QEMU testing.
  87. */
  88. error_report("Unable to find the RISC-V BIOS \"%s\"",
  89. bios_filename);
  90. exit(1);
  91. }
  92. }
  93. return filename;
  94. }
  95. char *riscv_find_firmware(const char *firmware_filename,
  96. const char *default_machine_firmware)
  97. {
  98. char *filename = NULL;
  99. if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) {
  100. /*
  101. * The user didn't specify -bios, or has specified "-bios default".
  102. * That means we are going to load the OpenSBI binary included in
  103. * the QEMU source.
  104. */
  105. filename = riscv_find_bios(default_machine_firmware);
  106. } else if (strcmp(firmware_filename, "none")) {
  107. filename = riscv_find_bios(firmware_filename);
  108. }
  109. return filename;
  110. }
  111. target_ulong riscv_find_and_load_firmware(MachineState *machine,
  112. const char *default_machine_firmware,
  113. hwaddr firmware_load_addr,
  114. symbol_fn_t sym_cb)
  115. {
  116. char *firmware_filename;
  117. target_ulong firmware_end_addr = firmware_load_addr;
  118. firmware_filename = riscv_find_firmware(machine->firmware,
  119. default_machine_firmware);
  120. if (firmware_filename) {
  121. /* If not "none" load the firmware */
  122. firmware_end_addr = riscv_load_firmware(firmware_filename,
  123. firmware_load_addr, sym_cb);
  124. g_free(firmware_filename);
  125. }
  126. return firmware_end_addr;
  127. }
  128. target_ulong riscv_load_firmware(const char *firmware_filename,
  129. hwaddr firmware_load_addr,
  130. symbol_fn_t sym_cb)
  131. {
  132. uint64_t firmware_entry, firmware_end;
  133. ssize_t firmware_size;
  134. g_assert(firmware_filename != NULL);
  135. if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
  136. &firmware_entry, NULL, &firmware_end, NULL,
  137. 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
  138. return firmware_end;
  139. }
  140. firmware_size = load_image_targphys_as(firmware_filename,
  141. firmware_load_addr,
  142. current_machine->ram_size, NULL);
  143. if (firmware_size > 0) {
  144. return firmware_load_addr + firmware_size;
  145. }
  146. error_report("could not load firmware '%s'", firmware_filename);
  147. exit(1);
  148. }
  149. static void riscv_load_initrd(MachineState *machine, uint64_t kernel_entry)
  150. {
  151. const char *filename = machine->initrd_filename;
  152. uint64_t mem_size = machine->ram_size;
  153. void *fdt = machine->fdt;
  154. hwaddr start, end;
  155. ssize_t size;
  156. g_assert(filename != NULL);
  157. /*
  158. * We want to put the initrd far enough into RAM that when the
  159. * kernel is uncompressed it will not clobber the initrd. However
  160. * on boards without much RAM we must ensure that we still leave
  161. * enough room for a decent sized initrd, and on boards with large
  162. * amounts of RAM we must avoid the initrd being so far up in RAM
  163. * that it is outside lowmem and inaccessible to the kernel.
  164. * So for boards with less than 256MB of RAM we put the initrd
  165. * halfway into RAM, and for boards with 256MB of RAM or more we put
  166. * the initrd at 128MB.
  167. */
  168. start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
  169. size = load_ramdisk(filename, start, mem_size - start);
  170. if (size == -1) {
  171. size = load_image_targphys(filename, start, mem_size - start);
  172. if (size == -1) {
  173. error_report("could not load ramdisk '%s'", filename);
  174. exit(1);
  175. }
  176. }
  177. /* Some RISC-V machines (e.g. opentitan) don't have a fdt. */
  178. if (fdt) {
  179. end = start + size;
  180. qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", start);
  181. qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", end);
  182. }
  183. }
  184. target_ulong riscv_load_kernel(MachineState *machine,
  185. RISCVHartArrayState *harts,
  186. target_ulong kernel_start_addr,
  187. bool load_initrd,
  188. symbol_fn_t sym_cb)
  189. {
  190. const char *kernel_filename = machine->kernel_filename;
  191. uint64_t kernel_load_base, kernel_entry;
  192. void *fdt = machine->fdt;
  193. g_assert(kernel_filename != NULL);
  194. /*
  195. * NB: Use low address not ELF entry point to ensure that the fw_dynamic
  196. * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
  197. * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
  198. * the (expected) load address load address. This allows kernels to have
  199. * separate SBI and ELF entry points (used by FreeBSD, for example).
  200. */
  201. if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
  202. NULL, &kernel_load_base, NULL, NULL, 0,
  203. EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
  204. kernel_entry = kernel_load_base;
  205. goto out;
  206. }
  207. if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
  208. NULL, NULL, NULL) > 0) {
  209. goto out;
  210. }
  211. if (load_image_targphys_as(kernel_filename, kernel_start_addr,
  212. current_machine->ram_size, NULL) > 0) {
  213. kernel_entry = kernel_start_addr;
  214. goto out;
  215. }
  216. error_report("could not load kernel '%s'", kernel_filename);
  217. exit(1);
  218. out:
  219. /*
  220. * For 32 bit CPUs 'kernel_entry' can be sign-extended by
  221. * load_elf_ram_sym().
  222. */
  223. if (riscv_is_32bit(harts)) {
  224. kernel_entry = extract64(kernel_entry, 0, 32);
  225. }
  226. if (load_initrd && machine->initrd_filename) {
  227. riscv_load_initrd(machine, kernel_entry);
  228. }
  229. if (fdt && machine->kernel_cmdline && *machine->kernel_cmdline) {
  230. qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
  231. machine->kernel_cmdline);
  232. }
  233. return kernel_entry;
  234. }
  235. /*
  236. * This function makes an assumption that the DRAM interval
  237. * 'dram_base' + 'dram_size' is contiguous.
  238. *
  239. * Considering that 'dram_end' is the lowest value between
  240. * the end of the DRAM block and MachineState->ram_size, the
  241. * FDT location will vary according to 'dram_base':
  242. *
  243. * - if 'dram_base' is less that 3072 MiB, the FDT will be
  244. * put at the lowest value between 3072 MiB and 'dram_end';
  245. *
  246. * - if 'dram_base' is higher than 3072 MiB, the FDT will be
  247. * put at 'dram_end'.
  248. *
  249. * The FDT is fdt_packed() during the calculation.
  250. */
  251. uint64_t riscv_compute_fdt_addr(hwaddr dram_base, hwaddr dram_size,
  252. MachineState *ms)
  253. {
  254. int ret = fdt_pack(ms->fdt);
  255. hwaddr dram_end, temp;
  256. int fdtsize;
  257. /* Should only fail if we've built a corrupted tree */
  258. g_assert(ret == 0);
  259. fdtsize = fdt_totalsize(ms->fdt);
  260. if (fdtsize <= 0) {
  261. error_report("invalid device-tree");
  262. exit(1);
  263. }
  264. /*
  265. * A dram_size == 0, usually from a MemMapEntry[].size element,
  266. * means that the DRAM block goes all the way to ms->ram_size.
  267. */
  268. dram_end = dram_base;
  269. dram_end += dram_size ? MIN(ms->ram_size, dram_size) : ms->ram_size;
  270. /*
  271. * We should put fdt as far as possible to avoid kernel/initrd overwriting
  272. * its content. But it should be addressable by 32 bit system as well.
  273. * Thus, put it at an 2MB aligned address that less than fdt size from the
  274. * end of dram or 3GB whichever is lesser.
  275. */
  276. temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
  277. return QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
  278. }
  279. /*
  280. * 'fdt_addr' is received as hwaddr because boards might put
  281. * the FDT beyond 32-bit addressing boundary.
  282. */
  283. void riscv_load_fdt(hwaddr fdt_addr, void *fdt)
  284. {
  285. uint32_t fdtsize = fdt_totalsize(fdt);
  286. /* copy in the device tree */
  287. qemu_fdt_dumpdtb(fdt, fdtsize);
  288. rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
  289. &address_space_memory);
  290. qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
  291. rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
  292. }
  293. void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
  294. hwaddr rom_size, uint32_t reset_vec_size,
  295. uint64_t kernel_entry)
  296. {
  297. struct fw_dynamic_info dinfo;
  298. size_t dinfo_len;
  299. if (sizeof(dinfo.magic) == 4) {
  300. dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
  301. dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
  302. dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
  303. dinfo.next_addr = cpu_to_le32(kernel_entry);
  304. } else {
  305. dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
  306. dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
  307. dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
  308. dinfo.next_addr = cpu_to_le64(kernel_entry);
  309. }
  310. dinfo.options = 0;
  311. dinfo.boot_hart = 0;
  312. dinfo_len = sizeof(dinfo);
  313. /**
  314. * copy the dynamic firmware info. This information is specific to
  315. * OpenSBI but doesn't break any other firmware as long as they don't
  316. * expect any certain value in "a2" register.
  317. */
  318. if (dinfo_len > (rom_size - reset_vec_size)) {
  319. error_report("not enough space to store dynamic firmware info");
  320. exit(1);
  321. }
  322. rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
  323. rom_base + reset_vec_size,
  324. &address_space_memory);
  325. }
  326. void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
  327. hwaddr start_addr,
  328. hwaddr rom_base, hwaddr rom_size,
  329. uint64_t kernel_entry,
  330. uint64_t fdt_load_addr)
  331. {
  332. int i;
  333. uint32_t start_addr_hi32 = 0x00000000;
  334. uint32_t fdt_load_addr_hi32 = 0x00000000;
  335. if (!riscv_is_32bit(harts)) {
  336. start_addr_hi32 = start_addr >> 32;
  337. fdt_load_addr_hi32 = fdt_load_addr >> 32;
  338. }
  339. /* reset vector */
  340. uint32_t reset_vec[10] = {
  341. 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
  342. 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
  343. 0xf1402573, /* csrr a0, mhartid */
  344. 0,
  345. 0,
  346. 0x00028067, /* jr t0 */
  347. start_addr, /* start: .dword */
  348. start_addr_hi32,
  349. fdt_load_addr, /* fdt_laddr: .dword */
  350. fdt_load_addr_hi32,
  351. /* fw_dyn: */
  352. };
  353. if (riscv_is_32bit(harts)) {
  354. reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
  355. reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
  356. } else {
  357. reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
  358. reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
  359. }
  360. if (!harts->harts[0].cfg.ext_icsr) {
  361. /*
  362. * The Zicsr extension has been disabled, so let's ensure we don't
  363. * run the CSR instruction. Let's fill the address with a non
  364. * compressed nop.
  365. */
  366. reset_vec[2] = 0x00000013; /* addi x0, x0, 0 */
  367. }
  368. /* copy in the reset vector in little_endian byte order */
  369. for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
  370. reset_vec[i] = cpu_to_le32(reset_vec[i]);
  371. }
  372. rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
  373. rom_base, &address_space_memory);
  374. riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
  375. kernel_entry);
  376. }
  377. void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
  378. {
  379. CPUState *cs;
  380. for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
  381. RISCVCPU *riscv_cpu = RISCV_CPU(cs);
  382. riscv_cpu->env.kernel_addr = kernel_addr;
  383. riscv_cpu->env.fdt_addr = fdt_addr;
  384. }
  385. }
  386. void riscv_setup_firmware_boot(MachineState *machine)
  387. {
  388. if (machine->kernel_filename) {
  389. FWCfgState *fw_cfg;
  390. fw_cfg = fw_cfg_find();
  391. assert(fw_cfg);
  392. /*
  393. * Expose the kernel, the command line, and the initrd in fw_cfg.
  394. * We don't process them here at all, it's all left to the
  395. * firmware.
  396. */
  397. load_image_to_fw_cfg(fw_cfg,
  398. FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
  399. machine->kernel_filename,
  400. true);
  401. load_image_to_fw_cfg(fw_cfg,
  402. FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
  403. machine->initrd_filename, false);
  404. if (machine->kernel_cmdline) {
  405. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  406. strlen(machine->kernel_cmdline) + 1);
  407. fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
  408. machine->kernel_cmdline);
  409. }
  410. }
  411. }