1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657 |
- #!/usr/bin/env python3
- # Copyright (c) 2018 Linaro Limited
- #
- # This library is free software; you can redistribute it and/or
- # modify it under the terms of the GNU Lesser General Public
- # License as published by the Free Software Foundation; either
- # version 2.1 of the License, or (at your option) any later version.
- #
- # This library is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- # Lesser General Public License for more details.
- #
- # You should have received a copy of the GNU Lesser General Public
- # License along with this library; if not, see <http://www.gnu.org/licenses/>.
- #
- #
- # Generate a decoding tree from a specification file.
- # See the syntax and semantics in docs/devel/decodetree.rst.
- #
- import io
- import os
- import re
- import sys
- import getopt
- insnwidth = 32
- bitop_width = 32
- insnmask = 0xffffffff
- variablewidth = False
- fields = {}
- arguments = {}
- formats = {}
- allpatterns = []
- anyextern = False
- testforerror = False
- translate_prefix = 'trans'
- translate_scope = 'static '
- input_file = ''
- output_file = None
- output_fd = None
- output_null = False
- insntype = 'uint32_t'
- decode_function = 'decode'
- # An identifier for C.
- re_C_ident = '[a-zA-Z][a-zA-Z0-9_]*'
- # Identifiers for Arguments, Fields, Formats and Patterns.
- re_arg_ident = '&[a-zA-Z0-9_]*'
- re_fld_ident = '%[a-zA-Z0-9_]*'
- re_fmt_ident = '@[a-zA-Z0-9_]*'
- re_pat_ident = '[a-zA-Z0-9_]*'
- # Local implementation of a topological sort. We use the same API that
- # the Python graphlib does, so that when QEMU moves forward to a
- # baseline of Python 3.9 or newer this code can all be dropped and
- # replaced with:
- # from graphlib import TopologicalSorter, CycleError
- #
- # https://docs.python.org/3.9/library/graphlib.html#graphlib.TopologicalSorter
- #
- # We only implement the parts of TopologicalSorter we care about:
- # ts = TopologicalSorter(graph=None)
- # create the sorter. graph is a dictionary whose keys are
- # nodes and whose values are lists of the predecessors of that node.
- # (That is, if graph contains "A" -> ["B", "C"] then we must output
- # B and C before A.)
- # ts.static_order()
- # returns a list of all the nodes in sorted order, or raises CycleError
- # CycleError
- # exception raised if there are cycles in the graph. The second
- # element in the args attribute is a list of nodes which form a
- # cycle; the first and last element are the same, eg [a, b, c, a]
- # (Our implementation doesn't give the order correctly.)
- #
- # For our purposes we can assume that the data set is always small
- # (typically 10 nodes or less, actual links in the graph very rare),
- # so we don't need to worry about efficiency of implementation.
- #
- # The core of this implementation is from
- # https://code.activestate.com/recipes/578272-topological-sort/
- # (but updated to Python 3), and is under the MIT license.
- class CycleError(ValueError):
- """Subclass of ValueError raised if cycles exist in the graph"""
- pass
- class TopologicalSorter:
- """Topologically sort a graph"""
- def __init__(self, graph=None):
- self.graph = graph
- def static_order(self):
- # We do the sort right here, unlike the stdlib version
- from functools import reduce
- data = {}
- r = []
- if not self.graph:
- return []
- # This code wants the values in the dict to be specifically sets
- for k, v in self.graph.items():
- data[k] = set(v)
- # Find all items that don't depend on anything.
- extra_items_in_deps = (reduce(set.union, data.values())
- - set(data.keys()))
- # Add empty dependencies where needed
- data.update({item:{} for item in extra_items_in_deps})
- while True:
- ordered = set(item for item, dep in data.items() if not dep)
- if not ordered:
- break
- r.extend(ordered)
- data = {item: (dep - ordered)
- for item, dep in data.items()
- if item not in ordered}
- if data:
- # This doesn't give as nice results as the stdlib, which
- # gives you the cycle by listing the nodes in order. Here
- # we only know the nodes in the cycle but not their order.
- raise CycleError(f'nodes are in a cycle', list(data.keys()))
- return r
- # end TopologicalSorter
- def error_with_file(file, lineno, *args):
- """Print an error message from file:line and args and exit."""
- global output_file
- global output_fd
- # For the test suite expected-errors case, don't print the
- # string "error: ", so they don't turn up as false positives
- # if you grep the meson logs for strings like that.
- end = 'error: ' if not testforerror else 'detected: '
- prefix = ''
- if file:
- prefix += f'{file}:'
- if lineno:
- prefix += f'{lineno}:'
- if prefix:
- prefix += ' '
- print(prefix, end=end, file=sys.stderr)
- print(*args, file=sys.stderr)
- if output_file and output_fd:
- output_fd.close()
- os.remove(output_file)
- exit(0 if testforerror else 1)
- # end error_with_file
- def error(lineno, *args):
- error_with_file(input_file, lineno, *args)
- # end error
- def output(*args):
- global output_fd
- for a in args:
- output_fd.write(a)
- def output_autogen():
- output('/* This file is autogenerated by scripts/decodetree.py. */\n\n')
- def str_indent(c):
- """Return a string with C spaces"""
- return ' ' * c
- def str_fields(fields):
- """Return a string uniquely identifying FIELDS"""
- r = ''
- for n in sorted(fields.keys()):
- r += '_' + n
- return r[1:]
- def whex(val):
- """Return a hex string for val padded for insnwidth"""
- global insnwidth
- return f'0x{val:0{insnwidth // 4}x}'
- def whexC(val):
- """Return a hex string for val padded for insnwidth,
- and with the proper suffix for a C constant."""
- suffix = ''
- if val >= 0x100000000:
- suffix = 'ull'
- elif val >= 0x80000000:
- suffix = 'u'
- return whex(val) + suffix
- def str_match_bits(bits, mask):
- """Return a string pretty-printing BITS/MASK"""
- global insnwidth
- i = 1 << (insnwidth - 1)
- space = 0x01010100
- r = ''
- while i != 0:
- if i & mask:
- if i & bits:
- r += '1'
- else:
- r += '0'
- else:
- r += '.'
- if i & space:
- r += ' '
- i >>= 1
- return r
- def is_pow2(x):
- """Return true iff X is equal to a power of 2."""
- return (x & (x - 1)) == 0
- def ctz(x):
- """Return the number of times 2 factors into X."""
- assert x != 0
- r = 0
- while ((x >> r) & 1) == 0:
- r += 1
- return r
- def is_contiguous(bits):
- if bits == 0:
- return -1
- shift = ctz(bits)
- if is_pow2((bits >> shift) + 1):
- return shift
- else:
- return -1
- def eq_fields_for_args(flds_a, arg):
- if len(flds_a) != len(arg.fields):
- return False
- # Only allow inference on default types
- for t in arg.types:
- if t != 'int':
- return False
- for k, a in flds_a.items():
- if k not in arg.fields:
- return False
- return True
- def eq_fields_for_fmts(flds_a, flds_b):
- if len(flds_a) != len(flds_b):
- return False
- for k, a in flds_a.items():
- if k not in flds_b:
- return False
- b = flds_b[k]
- if a.__class__ != b.__class__ or a != b:
- return False
- return True
- class Field:
- """Class representing a simple instruction field"""
- def __init__(self, sign, pos, len):
- self.sign = sign
- self.pos = pos
- self.len = len
- self.mask = ((1 << len) - 1) << pos
- def __str__(self):
- if self.sign:
- s = 's'
- else:
- s = ''
- return str(self.pos) + ':' + s + str(self.len)
- def str_extract(self, lvalue_formatter):
- global bitop_width
- s = 's' if self.sign else ''
- return f'{s}extract{bitop_width}(insn, {self.pos}, {self.len})'
- def referenced_fields(self):
- return []
- def __eq__(self, other):
- return self.sign == other.sign and self.mask == other.mask
- def __ne__(self, other):
- return not self.__eq__(other)
- # end Field
- class MultiField:
- """Class representing a compound instruction field"""
- def __init__(self, subs, mask):
- self.subs = subs
- self.sign = subs[0].sign
- self.mask = mask
- def __str__(self):
- return str(self.subs)
- def str_extract(self, lvalue_formatter):
- global bitop_width
- ret = '0'
- pos = 0
- for f in reversed(self.subs):
- ext = f.str_extract(lvalue_formatter)
- if pos == 0:
- ret = ext
- else:
- ret = f'deposit{bitop_width}({ret}, {pos}, {bitop_width - pos}, {ext})'
- pos += f.len
- return ret
- def referenced_fields(self):
- l = []
- for f in self.subs:
- l.extend(f.referenced_fields())
- return l
- def __ne__(self, other):
- if len(self.subs) != len(other.subs):
- return True
- for a, b in zip(self.subs, other.subs):
- if a.__class__ != b.__class__ or a != b:
- return True
- return False
- def __eq__(self, other):
- return not self.__ne__(other)
- # end MultiField
- class ConstField:
- """Class representing an argument field with constant value"""
- def __init__(self, value):
- self.value = value
- self.mask = 0
- self.sign = value < 0
- def __str__(self):
- return str(self.value)
- def str_extract(self, lvalue_formatter):
- return str(self.value)
- def referenced_fields(self):
- return []
- def __cmp__(self, other):
- return self.value - other.value
- # end ConstField
- class FunctionField:
- """Class representing a field passed through a function"""
- def __init__(self, func, base):
- self.mask = base.mask
- self.sign = base.sign
- self.base = base
- self.func = func
- def __str__(self):
- return self.func + '(' + str(self.base) + ')'
- def str_extract(self, lvalue_formatter):
- return (self.func + '(ctx, '
- + self.base.str_extract(lvalue_formatter) + ')')
- def referenced_fields(self):
- return self.base.referenced_fields()
- def __eq__(self, other):
- return self.func == other.func and self.base == other.base
- def __ne__(self, other):
- return not self.__eq__(other)
- # end FunctionField
- class ParameterField:
- """Class representing a pseudo-field read from a function"""
- def __init__(self, func):
- self.mask = 0
- self.sign = 0
- self.func = func
- def __str__(self):
- return self.func
- def str_extract(self, lvalue_formatter):
- return self.func + '(ctx)'
- def referenced_fields(self):
- return []
- def __eq__(self, other):
- return self.func == other.func
- def __ne__(self, other):
- return not self.__eq__(other)
- # end ParameterField
- class NamedField:
- """Class representing a field already named in the pattern"""
- def __init__(self, name, sign, len):
- self.mask = 0
- self.sign = sign
- self.len = len
- self.name = name
- def __str__(self):
- return self.name
- def str_extract(self, lvalue_formatter):
- global bitop_width
- s = 's' if self.sign else ''
- lvalue = lvalue_formatter(self.name)
- return f'{s}extract{bitop_width}({lvalue}, 0, {self.len})'
- def referenced_fields(self):
- return [self.name]
- def __eq__(self, other):
- return self.name == other.name
- def __ne__(self, other):
- return not self.__eq__(other)
- # end NamedField
- class Arguments:
- """Class representing the extracted fields of a format"""
- def __init__(self, nm, flds, types, extern):
- self.name = nm
- self.extern = extern
- self.fields = flds
- self.types = types
- def __str__(self):
- return self.name + ' ' + str(self.fields)
- def struct_name(self):
- return 'arg_' + self.name
- def output_def(self):
- if not self.extern:
- output('typedef struct {\n')
- for (n, t) in zip(self.fields, self.types):
- output(f' {t} {n};\n')
- output('} ', self.struct_name(), ';\n\n')
- # end Arguments
- class General:
- """Common code between instruction formats and instruction patterns"""
- def __init__(self, name, lineno, base, fixb, fixm, udfm, fldm, flds, w):
- self.name = name
- self.file = input_file
- self.lineno = lineno
- self.base = base
- self.fixedbits = fixb
- self.fixedmask = fixm
- self.undefmask = udfm
- self.fieldmask = fldm
- self.fields = flds
- self.width = w
- self.dangling = None
- def __str__(self):
- return self.name + ' ' + str_match_bits(self.fixedbits, self.fixedmask)
- def str1(self, i):
- return str_indent(i) + self.__str__()
- def dangling_references(self):
- # Return a list of all named references which aren't satisfied
- # directly by this format/pattern. This will be either:
- # * a format referring to a field which is specified by the
- # pattern(s) using it
- # * a pattern referring to a field which is specified by the
- # format it uses
- # * a user error (referring to a field that doesn't exist at all)
- if self.dangling is None:
- # Compute this once and cache the answer
- dangling = []
- for n, f in self.fields.items():
- for r in f.referenced_fields():
- if r not in self.fields:
- dangling.append(r)
- self.dangling = dangling
- return self.dangling
- def output_fields(self, indent, lvalue_formatter):
- # We use a topological sort to ensure that any use of NamedField
- # comes after the initialization of the field it is referencing.
- graph = {}
- for n, f in self.fields.items():
- refs = f.referenced_fields()
- graph[n] = refs
- try:
- ts = TopologicalSorter(graph)
- for n in ts.static_order():
- # We only want to emit assignments for the keys
- # in our fields list, not for anything that ends up
- # in the tsort graph only because it was referenced as
- # a NamedField.
- try:
- f = self.fields[n]
- output(indent, lvalue_formatter(n), ' = ',
- f.str_extract(lvalue_formatter), ';\n')
- except KeyError:
- pass
- except CycleError as e:
- # The second element of args is a list of nodes which form
- # a cycle (there might be others too, but only one is reported).
- # Pretty-print it to tell the user.
- cycle = ' => '.join(e.args[1])
- error(self.lineno, 'field definitions form a cycle: ' + cycle)
- # end General
- class Format(General):
- """Class representing an instruction format"""
- def extract_name(self):
- global decode_function
- return decode_function + '_extract_' + self.name
- def output_extract(self):
- output('static void ', self.extract_name(), '(DisasContext *ctx, ',
- self.base.struct_name(), ' *a, ', insntype, ' insn)\n{\n')
- self.output_fields(str_indent(4), lambda n: 'a->' + n)
- output('}\n\n')
- # end Format
- class Pattern(General):
- """Class representing an instruction pattern"""
- def output_decl(self):
- global translate_scope
- global translate_prefix
- output('typedef ', self.base.base.struct_name(),
- ' arg_', self.name, ';\n')
- output(translate_scope, 'bool ', translate_prefix, '_', self.name,
- '(DisasContext *ctx, arg_', self.name, ' *a);\n')
- def output_code(self, i, extracted, outerbits, outermask):
- global translate_prefix
- ind = str_indent(i)
- arg = self.base.base.name
- output(ind, '/* ', self.file, ':', str(self.lineno), ' */\n')
- # We might have named references in the format that refer to fields
- # in the pattern, or named references in the pattern that refer
- # to fields in the format. This affects whether we extract the fields
- # for the format before or after the ones for the pattern.
- # For simplicity we don't allow cross references in both directions.
- # This is also where we catch the syntax error of referring to
- # a nonexistent field.
- fmt_refs = self.base.dangling_references()
- for r in fmt_refs:
- if r not in self.fields:
- error(self.lineno, f'format refers to undefined field {r}')
- pat_refs = self.dangling_references()
- for r in pat_refs:
- if r not in self.base.fields:
- error(self.lineno, f'pattern refers to undefined field {r}')
- if pat_refs and fmt_refs:
- error(self.lineno, ('pattern that uses fields defined in format '
- 'cannot use format that uses fields defined '
- 'in pattern'))
- if fmt_refs:
- # pattern fields first
- self.output_fields(ind, lambda n: 'u.f_' + arg + '.' + n)
- assert not extracted, "dangling fmt refs but it was already extracted"
- if not extracted:
- output(ind, self.base.extract_name(),
- '(ctx, &u.f_', arg, ', insn);\n')
- if not fmt_refs:
- # pattern fields last
- self.output_fields(ind, lambda n: 'u.f_' + arg + '.' + n)
- output(ind, 'if (', translate_prefix, '_', self.name,
- '(ctx, &u.f_', arg, ')) return true;\n')
- # Normal patterns do not have children.
- def build_tree(self):
- return
- def prop_masks(self):
- return
- def prop_format(self):
- return
- def prop_width(self):
- return
- # end Pattern
- class MultiPattern(General):
- """Class representing a set of instruction patterns"""
- def __init__(self, lineno):
- self.file = input_file
- self.lineno = lineno
- self.pats = []
- self.base = None
- self.fixedbits = 0
- self.fixedmask = 0
- self.undefmask = 0
- self.width = None
- def __str__(self):
- r = 'group'
- if self.fixedbits is not None:
- r += ' ' + str_match_bits(self.fixedbits, self.fixedmask)
- return r
- def output_decl(self):
- for p in self.pats:
- p.output_decl()
- def prop_masks(self):
- global insnmask
- fixedmask = insnmask
- undefmask = insnmask
- # Collect fixedmask/undefmask for all of the children.
- for p in self.pats:
- p.prop_masks()
- fixedmask &= p.fixedmask
- undefmask &= p.undefmask
- # Widen fixedmask until all fixedbits match
- repeat = True
- fixedbits = 0
- while repeat and fixedmask != 0:
- fixedbits = None
- for p in self.pats:
- thisbits = p.fixedbits & fixedmask
- if fixedbits is None:
- fixedbits = thisbits
- elif fixedbits != thisbits:
- fixedmask &= ~(fixedbits ^ thisbits)
- break
- else:
- repeat = False
- self.fixedbits = fixedbits
- self.fixedmask = fixedmask
- self.undefmask = undefmask
- def build_tree(self):
- for p in self.pats:
- p.build_tree()
- def prop_format(self):
- for p in self.pats:
- p.prop_format()
- def prop_width(self):
- width = None
- for p in self.pats:
- p.prop_width()
- if width is None:
- width = p.width
- elif width != p.width:
- error_with_file(self.file, self.lineno,
- 'width mismatch in patterns within braces')
- self.width = width
- # end MultiPattern
- class IncMultiPattern(MultiPattern):
- """Class representing an overlapping set of instruction patterns"""
- def output_code(self, i, extracted, outerbits, outermask):
- global translate_prefix
- ind = str_indent(i)
- for p in self.pats:
- if outermask != p.fixedmask:
- innermask = p.fixedmask & ~outermask
- innerbits = p.fixedbits & ~outermask
- output(ind, f'if ((insn & {whexC(innermask)}) == {whexC(innerbits)}) {{\n')
- output(ind, f' /* {str_match_bits(p.fixedbits, p.fixedmask)} */\n')
- p.output_code(i + 4, extracted, p.fixedbits, p.fixedmask)
- output(ind, '}\n')
- else:
- p.output_code(i, extracted, p.fixedbits, p.fixedmask)
- def build_tree(self):
- if not self.pats:
- error_with_file(self.file, self.lineno, 'empty pattern group')
- super().build_tree()
- #end IncMultiPattern
- class Tree:
- """Class representing a node in a decode tree"""
- def __init__(self, fm, tm):
- self.fixedmask = fm
- self.thismask = tm
- self.subs = []
- self.base = None
- def str1(self, i):
- ind = str_indent(i)
- r = ind + whex(self.fixedmask)
- if self.format:
- r += ' ' + self.format.name
- r += ' [\n'
- for (b, s) in self.subs:
- r += ind + f' {whex(b)}:\n'
- r += s.str1(i + 4) + '\n'
- r += ind + ']'
- return r
- def __str__(self):
- return self.str1(0)
- def output_code(self, i, extracted, outerbits, outermask):
- ind = str_indent(i)
- # If we identified all nodes below have the same format,
- # extract the fields now. But don't do it if the format relies
- # on named fields from the insn pattern, as those won't have
- # been initialised at this point.
- if not extracted and self.base and not self.base.dangling_references():
- output(ind, self.base.extract_name(),
- '(ctx, &u.f_', self.base.base.name, ', insn);\n')
- extracted = True
- # Attempt to aid the compiler in producing compact switch statements.
- # If the bits in the mask are contiguous, extract them.
- sh = is_contiguous(self.thismask)
- if sh > 0:
- # Propagate SH down into the local functions.
- def str_switch(b, sh=sh):
- return f'(insn >> {sh}) & {b >> sh:#x}'
- def str_case(b, sh=sh):
- return hex(b >> sh)
- else:
- def str_switch(b):
- return f'insn & {whexC(b)}'
- def str_case(b):
- return whexC(b)
- output(ind, 'switch (', str_switch(self.thismask), ') {\n')
- for b, s in sorted(self.subs):
- assert (self.thismask & ~s.fixedmask) == 0
- innermask = outermask | self.thismask
- innerbits = outerbits | b
- output(ind, 'case ', str_case(b), ':\n')
- output(ind, ' /* ',
- str_match_bits(innerbits, innermask), ' */\n')
- s.output_code(i + 4, extracted, innerbits, innermask)
- output(ind, ' break;\n')
- output(ind, '}\n')
- # end Tree
- class ExcMultiPattern(MultiPattern):
- """Class representing a non-overlapping set of instruction patterns"""
- def output_code(self, i, extracted, outerbits, outermask):
- # Defer everything to our decomposed Tree node
- self.tree.output_code(i, extracted, outerbits, outermask)
- @staticmethod
- def __build_tree(pats, outerbits, outermask):
- # Find the intersection of all remaining fixedmask.
- innermask = ~outermask & insnmask
- for i in pats:
- innermask &= i.fixedmask
- if innermask == 0:
- # Edge condition: One pattern covers the entire insnmask
- if len(pats) == 1:
- t = Tree(outermask, innermask)
- t.subs.append((0, pats[0]))
- return t
- text = 'overlapping patterns:'
- for p in pats:
- text += '\n' + p.file + ':' + str(p.lineno) + ': ' + str(p)
- error_with_file(pats[0].file, pats[0].lineno, text)
- fullmask = outermask | innermask
- # Sort each element of pats into the bin selected by the mask.
- bins = {}
- for i in pats:
- fb = i.fixedbits & innermask
- if fb in bins:
- bins[fb].append(i)
- else:
- bins[fb] = [i]
- # We must recurse if any bin has more than one element or if
- # the single element in the bin has not been fully matched.
- t = Tree(fullmask, innermask)
- for b, l in bins.items():
- s = l[0]
- if len(l) > 1 or s.fixedmask & ~fullmask != 0:
- s = ExcMultiPattern.__build_tree(l, b | outerbits, fullmask)
- t.subs.append((b, s))
- return t
- def build_tree(self):
- super().build_tree()
- self.tree = self.__build_tree(self.pats, self.fixedbits,
- self.fixedmask)
- @staticmethod
- def __prop_format(tree):
- """Propagate Format objects into the decode tree"""
- # Depth first search.
- for (b, s) in tree.subs:
- if isinstance(s, Tree):
- ExcMultiPattern.__prop_format(s)
- # If all entries in SUBS have the same format, then
- # propagate that into the tree.
- f = None
- for (b, s) in tree.subs:
- if f is None:
- f = s.base
- if f is None:
- return
- if f is not s.base:
- return
- tree.base = f
- def prop_format(self):
- super().prop_format()
- self.__prop_format(self.tree)
- # end ExcMultiPattern
- def parse_field(lineno, name, toks):
- """Parse one instruction field from TOKS at LINENO"""
- global fields
- global insnwidth
- global re_C_ident
- # A "simple" field will have only one entry;
- # a "multifield" will have several.
- subs = []
- width = 0
- func = None
- for t in toks:
- if re.match('^!function=', t):
- if func:
- error(lineno, 'duplicate function')
- func = t.split('=')
- func = func[1]
- continue
- if re.fullmatch(re_C_ident + ':s[0-9]+', t):
- # Signed named field
- subtoks = t.split(':')
- n = subtoks[0]
- le = int(subtoks[1])
- f = NamedField(n, True, le)
- subs.append(f)
- width += le
- continue
- if re.fullmatch(re_C_ident + ':[0-9]+', t):
- # Unsigned named field
- subtoks = t.split(':')
- n = subtoks[0]
- le = int(subtoks[1])
- f = NamedField(n, False, le)
- subs.append(f)
- width += le
- continue
- if re.fullmatch('[0-9]+:s[0-9]+', t):
- # Signed field extract
- subtoks = t.split(':s')
- sign = True
- elif re.fullmatch('[0-9]+:[0-9]+', t):
- # Unsigned field extract
- subtoks = t.split(':')
- sign = False
- else:
- error(lineno, f'invalid field token "{t}"')
- po = int(subtoks[0])
- le = int(subtoks[1])
- if po + le > insnwidth:
- error(lineno, f'field {t} too large')
- f = Field(sign, po, le)
- subs.append(f)
- width += le
- if width > insnwidth:
- error(lineno, 'field too large')
- if len(subs) == 0:
- if func:
- f = ParameterField(func)
- else:
- error(lineno, 'field with no value')
- else:
- if len(subs) == 1:
- f = subs[0]
- else:
- mask = 0
- for s in subs:
- if mask & s.mask:
- error(lineno, 'field components overlap')
- mask |= s.mask
- f = MultiField(subs, mask)
- if func:
- f = FunctionField(func, f)
- if name in fields:
- error(lineno, 'duplicate field', name)
- fields[name] = f
- # end parse_field
- def parse_arguments(lineno, name, toks):
- """Parse one argument set from TOKS at LINENO"""
- global arguments
- global re_C_ident
- global anyextern
- flds = []
- types = []
- extern = False
- for n in toks:
- if re.fullmatch('!extern', n):
- extern = True
- anyextern = True
- continue
- if re.fullmatch(re_C_ident + ':' + re_C_ident, n):
- (n, t) = n.split(':')
- elif re.fullmatch(re_C_ident, n):
- t = 'int'
- else:
- error(lineno, f'invalid argument set token "{n}"')
- if n in flds:
- error(lineno, f'duplicate argument "{n}"')
- flds.append(n)
- types.append(t)
- if name in arguments:
- error(lineno, 'duplicate argument set', name)
- arguments[name] = Arguments(name, flds, types, extern)
- # end parse_arguments
- def lookup_field(lineno, name):
- global fields
- if name in fields:
- return fields[name]
- error(lineno, 'undefined field', name)
- def add_field(lineno, flds, new_name, f):
- if new_name in flds:
- error(lineno, 'duplicate field', new_name)
- flds[new_name] = f
- return flds
- def add_field_byname(lineno, flds, new_name, old_name):
- return add_field(lineno, flds, new_name, lookup_field(lineno, old_name))
- def infer_argument_set(flds):
- global arguments
- global decode_function
- for arg in arguments.values():
- if eq_fields_for_args(flds, arg):
- return arg
- name = decode_function + str(len(arguments))
- arg = Arguments(name, flds.keys(), ['int'] * len(flds), False)
- arguments[name] = arg
- return arg
- def infer_format(arg, fieldmask, flds, width):
- global arguments
- global formats
- global decode_function
- const_flds = {}
- var_flds = {}
- for n, c in flds.items():
- if c is ConstField:
- const_flds[n] = c
- else:
- var_flds[n] = c
- # Look for an existing format with the same argument set and fields
- for fmt in formats.values():
- if arg and fmt.base != arg:
- continue
- if fieldmask != fmt.fieldmask:
- continue
- if width != fmt.width:
- continue
- if not eq_fields_for_fmts(flds, fmt.fields):
- continue
- return (fmt, const_flds)
- name = decode_function + '_Fmt_' + str(len(formats))
- if not arg:
- arg = infer_argument_set(flds)
- fmt = Format(name, 0, arg, 0, 0, 0, fieldmask, var_flds, width)
- formats[name] = fmt
- return (fmt, const_flds)
- # end infer_format
- def parse_generic(lineno, parent_pat, name, toks):
- """Parse one instruction format from TOKS at LINENO"""
- global fields
- global arguments
- global formats
- global allpatterns
- global re_arg_ident
- global re_fld_ident
- global re_fmt_ident
- global re_C_ident
- global insnwidth
- global insnmask
- global variablewidth
- is_format = parent_pat is None
- fixedmask = 0
- fixedbits = 0
- undefmask = 0
- width = 0
- flds = {}
- arg = None
- fmt = None
- for t in toks:
- # '&Foo' gives a format an explicit argument set.
- if re.fullmatch(re_arg_ident, t):
- tt = t[1:]
- if arg:
- error(lineno, 'multiple argument sets')
- if tt in arguments:
- arg = arguments[tt]
- else:
- error(lineno, 'undefined argument set', t)
- continue
- # '@Foo' gives a pattern an explicit format.
- if re.fullmatch(re_fmt_ident, t):
- tt = t[1:]
- if fmt:
- error(lineno, 'multiple formats')
- if tt in formats:
- fmt = formats[tt]
- else:
- error(lineno, 'undefined format', t)
- continue
- # '%Foo' imports a field.
- if re.fullmatch(re_fld_ident, t):
- tt = t[1:]
- flds = add_field_byname(lineno, flds, tt, tt)
- continue
- # 'Foo=%Bar' imports a field with a different name.
- if re.fullmatch(re_C_ident + '=' + re_fld_ident, t):
- (fname, iname) = t.split('=%')
- flds = add_field_byname(lineno, flds, fname, iname)
- continue
- # 'Foo=number' sets an argument field to a constant value
- if re.fullmatch(re_C_ident + '=[+-]?[0-9]+', t):
- (fname, value) = t.split('=')
- value = int(value)
- flds = add_field(lineno, flds, fname, ConstField(value))
- continue
- # Pattern of 0s, 1s, dots and dashes indicate required zeros,
- # required ones, or dont-cares.
- if re.fullmatch('[01.-]+', t):
- shift = len(t)
- fms = t.replace('0', '1')
- fms = fms.replace('.', '0')
- fms = fms.replace('-', '0')
- fbs = t.replace('.', '0')
- fbs = fbs.replace('-', '0')
- ubm = t.replace('1', '0')
- ubm = ubm.replace('.', '0')
- ubm = ubm.replace('-', '1')
- fms = int(fms, 2)
- fbs = int(fbs, 2)
- ubm = int(ubm, 2)
- fixedbits = (fixedbits << shift) | fbs
- fixedmask = (fixedmask << shift) | fms
- undefmask = (undefmask << shift) | ubm
- # Otherwise, fieldname:fieldwidth
- elif re.fullmatch(re_C_ident + ':s?[0-9]+', t):
- (fname, flen) = t.split(':')
- sign = False
- if flen[0] == 's':
- sign = True
- flen = flen[1:]
- shift = int(flen, 10)
- if shift + width > insnwidth:
- error(lineno, f'field {fname} exceeds insnwidth')
- f = Field(sign, insnwidth - width - shift, shift)
- flds = add_field(lineno, flds, fname, f)
- fixedbits <<= shift
- fixedmask <<= shift
- undefmask <<= shift
- else:
- error(lineno, f'invalid token "{t}"')
- width += shift
- if variablewidth and width < insnwidth and width % 8 == 0:
- shift = insnwidth - width
- fixedbits <<= shift
- fixedmask <<= shift
- undefmask <<= shift
- undefmask |= (1 << shift) - 1
- # We should have filled in all of the bits of the instruction.
- elif not (is_format and width == 0) and width != insnwidth:
- error(lineno, f'definition has {width} bits')
- # Do not check for fields overlapping fields; one valid usage
- # is to be able to duplicate fields via import.
- fieldmask = 0
- for f in flds.values():
- fieldmask |= f.mask
- # Fix up what we've parsed to match either a format or a pattern.
- if is_format:
- # Formats cannot reference formats.
- if fmt:
- error(lineno, 'format referencing format')
- # If an argument set is given, then there should be no fields
- # without a place to store it.
- if arg:
- for f in flds.keys():
- if f not in arg.fields:
- error(lineno, f'field {f} not in argument set {arg.name}')
- else:
- arg = infer_argument_set(flds)
- if name in formats:
- error(lineno, 'duplicate format name', name)
- fmt = Format(name, lineno, arg, fixedbits, fixedmask,
- undefmask, fieldmask, flds, width)
- formats[name] = fmt
- else:
- # Patterns can reference a format ...
- if fmt:
- # ... but not an argument simultaneously
- if arg:
- error(lineno, 'pattern specifies both format and argument set')
- if fixedmask & fmt.fixedmask:
- error(lineno, 'pattern fixed bits overlap format fixed bits')
- if width != fmt.width:
- error(lineno, 'pattern uses format of different width')
- fieldmask |= fmt.fieldmask
- fixedbits |= fmt.fixedbits
- fixedmask |= fmt.fixedmask
- undefmask |= fmt.undefmask
- else:
- (fmt, flds) = infer_format(arg, fieldmask, flds, width)
- arg = fmt.base
- for f in flds.keys():
- if f not in arg.fields:
- error(lineno, f'field {f} not in argument set {arg.name}')
- if f in fmt.fields.keys():
- error(lineno, f'field {f} set by format and pattern')
- for f in arg.fields:
- if f not in flds.keys() and f not in fmt.fields.keys():
- error(lineno, f'field {f} not initialized')
- pat = Pattern(name, lineno, fmt, fixedbits, fixedmask,
- undefmask, fieldmask, flds, width)
- parent_pat.pats.append(pat)
- allpatterns.append(pat)
- # Validate the masks that we have assembled.
- if fieldmask & fixedmask:
- error(lineno, 'fieldmask overlaps fixedmask ',
- f'({whex(fieldmask)} & {whex(fixedmask)})')
- if fieldmask & undefmask:
- error(lineno, 'fieldmask overlaps undefmask ',
- f'({whex(fieldmask)} & {whex(undefmask)})')
- if fixedmask & undefmask:
- error(lineno, 'fixedmask overlaps undefmask ',
- f'({whex(fixedmask)} & {whex(undefmask)})')
- if not is_format:
- allbits = fieldmask | fixedmask | undefmask
- if allbits != insnmask:
- error(lineno, 'bits left unspecified ',
- f'({whex(allbits ^ insnmask)})')
- # end parse_general
- def parse_file(f, parent_pat):
- """Parse all of the patterns within a file"""
- global re_arg_ident
- global re_fld_ident
- global re_fmt_ident
- global re_pat_ident
- # Read all of the lines of the file. Concatenate lines
- # ending in backslash; discard empty lines and comments.
- toks = []
- lineno = 0
- nesting = 0
- nesting_pats = []
- for line in f:
- lineno += 1
- # Expand and strip spaces, to find indent.
- line = line.rstrip()
- line = line.expandtabs()
- len1 = len(line)
- line = line.lstrip()
- len2 = len(line)
- # Discard comments
- end = line.find('#')
- if end >= 0:
- line = line[:end]
- t = line.split()
- if len(toks) != 0:
- # Next line after continuation
- toks.extend(t)
- else:
- # Allow completely blank lines.
- if len1 == 0:
- continue
- indent = len1 - len2
- # Empty line due to comment.
- if len(t) == 0:
- # Indentation must be correct, even for comment lines.
- if indent != nesting:
- error(lineno, 'indentation ', indent, ' != ', nesting)
- continue
- start_lineno = lineno
- toks = t
- # Continuation?
- if toks[-1] == '\\':
- toks.pop()
- continue
- name = toks[0]
- del toks[0]
- # End nesting?
- if name == '}' or name == ']':
- if len(toks) != 0:
- error(start_lineno, 'extra tokens after close brace')
- # Make sure { } and [ ] nest properly.
- if (name == '}') != isinstance(parent_pat, IncMultiPattern):
- error(lineno, 'mismatched close brace')
- try:
- parent_pat = nesting_pats.pop()
- except:
- error(lineno, 'extra close brace')
- nesting -= 2
- if indent != nesting:
- error(lineno, 'indentation ', indent, ' != ', nesting)
- toks = []
- continue
- # Everything else should have current indentation.
- if indent != nesting:
- error(start_lineno, 'indentation ', indent, ' != ', nesting)
- # Start nesting?
- if name == '{' or name == '[':
- if len(toks) != 0:
- error(start_lineno, 'extra tokens after open brace')
- if name == '{':
- nested_pat = IncMultiPattern(start_lineno)
- else:
- nested_pat = ExcMultiPattern(start_lineno)
- parent_pat.pats.append(nested_pat)
- nesting_pats.append(parent_pat)
- parent_pat = nested_pat
- nesting += 2
- toks = []
- continue
- # Determine the type of object needing to be parsed.
- if re.fullmatch(re_fld_ident, name):
- parse_field(start_lineno, name[1:], toks)
- elif re.fullmatch(re_arg_ident, name):
- parse_arguments(start_lineno, name[1:], toks)
- elif re.fullmatch(re_fmt_ident, name):
- parse_generic(start_lineno, None, name[1:], toks)
- elif re.fullmatch(re_pat_ident, name):
- parse_generic(start_lineno, parent_pat, name, toks)
- else:
- error(lineno, f'invalid token "{name}"')
- toks = []
- if nesting != 0:
- error(lineno, 'missing close brace')
- # end parse_file
- class SizeTree:
- """Class representing a node in a size decode tree"""
- def __init__(self, m, w):
- self.mask = m
- self.subs = []
- self.base = None
- self.width = w
- def str1(self, i):
- ind = str_indent(i)
- r = ind + whex(self.mask) + ' [\n'
- for (b, s) in self.subs:
- r += ind + f' {whex(b)}:\n'
- r += s.str1(i + 4) + '\n'
- r += ind + ']'
- return r
- def __str__(self):
- return self.str1(0)
- def output_code(self, i, extracted, outerbits, outermask):
- ind = str_indent(i)
- # If we need to load more bytes to test, do so now.
- if extracted < self.width:
- output(ind, f'insn = {decode_function}_load_bytes',
- f'(ctx, insn, {extracted // 8}, {self.width // 8});\n')
- extracted = self.width
- # Attempt to aid the compiler in producing compact switch statements.
- # If the bits in the mask are contiguous, extract them.
- sh = is_contiguous(self.mask)
- if sh > 0:
- # Propagate SH down into the local functions.
- def str_switch(b, sh=sh):
- return f'(insn >> {sh}) & {b >> sh:#x}'
- def str_case(b, sh=sh):
- return hex(b >> sh)
- else:
- def str_switch(b):
- return f'insn & {whexC(b)}'
- def str_case(b):
- return whexC(b)
- output(ind, 'switch (', str_switch(self.mask), ') {\n')
- for b, s in sorted(self.subs):
- innermask = outermask | self.mask
- innerbits = outerbits | b
- output(ind, 'case ', str_case(b), ':\n')
- output(ind, ' /* ',
- str_match_bits(innerbits, innermask), ' */\n')
- s.output_code(i + 4, extracted, innerbits, innermask)
- output(ind, '}\n')
- output(ind, 'return insn;\n')
- # end SizeTree
- class SizeLeaf:
- """Class representing a leaf node in a size decode tree"""
- def __init__(self, m, w):
- self.mask = m
- self.width = w
- def str1(self, i):
- return str_indent(i) + whex(self.mask)
- def __str__(self):
- return self.str1(0)
- def output_code(self, i, extracted, outerbits, outermask):
- global decode_function
- ind = str_indent(i)
- # If we need to load more bytes, do so now.
- if extracted < self.width:
- output(ind, f'insn = {decode_function}_load_bytes',
- f'(ctx, insn, {extracted // 8}, {self.width // 8});\n')
- extracted = self.width
- output(ind, 'return insn;\n')
- # end SizeLeaf
- def build_size_tree(pats, width, outerbits, outermask):
- global insnwidth
- # Collect the mask of bits that are fixed in this width
- innermask = 0xff << (insnwidth - width)
- innermask &= ~outermask
- minwidth = None
- onewidth = True
- for i in pats:
- innermask &= i.fixedmask
- if minwidth is None:
- minwidth = i.width
- elif minwidth != i.width:
- onewidth = False;
- if minwidth < i.width:
- minwidth = i.width
- if onewidth:
- return SizeLeaf(innermask, minwidth)
- if innermask == 0:
- if width < minwidth:
- return build_size_tree(pats, width + 8, outerbits, outermask)
- pnames = []
- for p in pats:
- pnames.append(p.name + ':' + p.file + ':' + str(p.lineno))
- error_with_file(pats[0].file, pats[0].lineno,
- f'overlapping patterns size {width}:', pnames)
- bins = {}
- for i in pats:
- fb = i.fixedbits & innermask
- if fb in bins:
- bins[fb].append(i)
- else:
- bins[fb] = [i]
- fullmask = outermask | innermask
- lens = sorted(bins.keys())
- if len(lens) == 1:
- b = lens[0]
- return build_size_tree(bins[b], width + 8, b | outerbits, fullmask)
- r = SizeTree(innermask, width)
- for b, l in bins.items():
- s = build_size_tree(l, width, b | outerbits, fullmask)
- r.subs.append((b, s))
- return r
- # end build_size_tree
- def prop_size(tree):
- """Propagate minimum widths up the decode size tree"""
- if isinstance(tree, SizeTree):
- min = None
- for (b, s) in tree.subs:
- width = prop_size(s)
- if min is None or min > width:
- min = width
- assert min >= tree.width
- tree.width = min
- else:
- min = tree.width
- return min
- # end prop_size
- def main():
- global arguments
- global formats
- global allpatterns
- global translate_scope
- global translate_prefix
- global output_fd
- global output_file
- global output_null
- global input_file
- global insnwidth
- global insntype
- global insnmask
- global decode_function
- global bitop_width
- global variablewidth
- global anyextern
- global testforerror
- decode_scope = 'static '
- long_opts = ['decode=', 'translate=', 'output=', 'insnwidth=',
- 'static-decode=', 'varinsnwidth=', 'test-for-error',
- 'output-null']
- try:
- (opts, args) = getopt.gnu_getopt(sys.argv[1:], 'o:vw:', long_opts)
- except getopt.GetoptError as err:
- error(0, err)
- for o, a in opts:
- if o in ('-o', '--output'):
- output_file = a
- elif o == '--decode':
- decode_function = a
- decode_scope = ''
- elif o == '--static-decode':
- decode_function = a
- elif o == '--translate':
- translate_prefix = a
- translate_scope = ''
- elif o in ('-w', '--insnwidth', '--varinsnwidth'):
- if o == '--varinsnwidth':
- variablewidth = True
- insnwidth = int(a)
- if insnwidth == 16:
- insntype = 'uint16_t'
- insnmask = 0xffff
- elif insnwidth == 64:
- insntype = 'uint64_t'
- insnmask = 0xffffffffffffffff
- bitop_width = 64
- elif insnwidth != 32:
- error(0, 'cannot handle insns of width', insnwidth)
- elif o == '--test-for-error':
- testforerror = True
- elif o == '--output-null':
- output_null = True
- else:
- assert False, 'unhandled option'
- if len(args) < 1:
- error(0, 'missing input file')
- toppat = ExcMultiPattern(0)
- for filename in args:
- input_file = filename
- f = open(filename, 'rt', encoding='utf-8')
- parse_file(f, toppat)
- f.close()
- # We do not want to compute masks for toppat, because those masks
- # are used as a starting point for build_tree. For toppat, we must
- # insist that decode begins from naught.
- for i in toppat.pats:
- i.prop_masks()
- toppat.build_tree()
- toppat.prop_format()
- if variablewidth:
- for i in toppat.pats:
- i.prop_width()
- stree = build_size_tree(toppat.pats, 8, 0, 0)
- prop_size(stree)
- if output_null:
- output_fd = open(os.devnull, 'wt', encoding='utf-8', errors="ignore")
- elif output_file:
- output_fd = open(output_file, 'wt', encoding='utf-8')
- else:
- output_fd = io.TextIOWrapper(sys.stdout.buffer,
- encoding=sys.stdout.encoding,
- errors="ignore")
- output_autogen()
- for n in sorted(arguments.keys()):
- f = arguments[n]
- f.output_def()
- # A single translate function can be invoked for different patterns.
- # Make sure that the argument sets are the same, and declare the
- # function only once.
- #
- # If we're sharing formats, we're likely also sharing trans_* functions,
- # but we can't tell which ones. Prevent issues from the compiler by
- # suppressing redundant declaration warnings.
- if anyextern:
- output("#pragma GCC diagnostic push\n",
- "#pragma GCC diagnostic ignored \"-Wredundant-decls\"\n",
- "#ifdef __clang__\n"
- "# pragma GCC diagnostic ignored \"-Wtypedef-redefinition\"\n",
- "#endif\n\n")
- out_pats = {}
- for i in allpatterns:
- if i.name in out_pats:
- p = out_pats[i.name]
- if i.base.base != p.base.base:
- error(0, i.name, ' has conflicting argument sets')
- else:
- i.output_decl()
- out_pats[i.name] = i
- output('\n')
- if anyextern:
- output("#pragma GCC diagnostic pop\n\n")
- for n in sorted(formats.keys()):
- f = formats[n]
- f.output_extract()
- output(decode_scope, 'bool ', decode_function,
- '(DisasContext *ctx, ', insntype, ' insn)\n{\n')
- i4 = str_indent(4)
- if len(allpatterns) != 0:
- output(i4, 'union {\n')
- for n in sorted(arguments.keys()):
- f = arguments[n]
- output(i4, i4, f.struct_name(), ' f_', f.name, ';\n')
- output(i4, '} u;\n\n')
- toppat.output_code(4, False, 0, 0)
- output(i4, 'return false;\n')
- output('}\n')
- if variablewidth:
- output('\n', decode_scope, insntype, ' ', decode_function,
- '_load(DisasContext *ctx)\n{\n',
- ' ', insntype, ' insn = 0;\n\n')
- stree.output_code(4, 0, 0, 0)
- output('}\n')
- if output_file:
- output_fd.close()
- exit(1 if testforerror else 0)
- # end main
- if __name__ == '__main__':
- main()
|