123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473 |
- /*
- * Arm SSE Subsystem System Counter
- *
- * Copyright (c) 2020 Linaro Limited
- * Written by Peter Maydell
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 or
- * (at your option) any later version.
- */
- /*
- * This is a model of the "System counter" which is documented in
- * the Arm SSE-123 Example Subsystem Technical Reference Manual:
- * https://developer.arm.com/documentation/101370/latest/
- *
- * The system counter is a non-stop 64-bit up-counter. It provides
- * this count value to other devices like the SSE system timer,
- * which are driven by this system timestamp rather than directly
- * from a clock. Internally to the counter the count is actually
- * 88-bit precision (64.24 fixed point), with a programmable scale factor.
- *
- * The hardware has the optional feature that it supports dynamic
- * clock switching, where two clock inputs are connected, and which
- * one is used is selected via a CLKSEL input signal. Since the
- * users of this device in QEMU don't use this feature, we only model
- * the HWCLKSW=0 configuration.
- */
- #include "qemu/osdep.h"
- #include "qemu/log.h"
- #include "qemu/timer.h"
- #include "qapi/error.h"
- #include "trace.h"
- #include "hw/timer/sse-counter.h"
- #include "hw/sysbus.h"
- #include "hw/registerfields.h"
- #include "hw/clock.h"
- #include "hw/qdev-clock.h"
- #include "migration/vmstate.h"
- /* Registers in the control frame */
- REG32(CNTCR, 0x0)
- FIELD(CNTCR, EN, 0, 1)
- FIELD(CNTCR, HDBG, 1, 1)
- FIELD(CNTCR, SCEN, 2, 1)
- FIELD(CNTCR, INTRMASK, 3, 1)
- FIELD(CNTCR, PSLVERRDIS, 4, 1)
- FIELD(CNTCR, INTRCLR, 5, 1)
- /*
- * Although CNTCR defines interrupt-related bits, the counter doesn't
- * appear to actually have an interrupt output. So INTRCLR is
- * effectively a RAZ/WI bit, as are the reserved bits [31:6].
- */
- #define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
- R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
- R_CNTCR_PSLVERRDIS_MASK)
- REG32(CNTSR, 0x4)
- REG32(CNTCV_LO, 0x8)
- REG32(CNTCV_HI, 0xc)
- REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
- REG32(CNTID, 0x1c)
- FIELD(CNTID, CNTSC, 0, 4)
- FIELD(CNTID, CNTCS, 16, 1)
- FIELD(CNTID, CNTSELCLK, 17, 2)
- FIELD(CNTID, CNTSCR_OVR, 19, 1)
- REG32(CNTSCR0, 0xd0)
- REG32(CNTSCR1, 0xd4)
- /* Registers in the status frame */
- REG32(STATUS_CNTCV_LO, 0x0)
- REG32(STATUS_CNTCV_HI, 0x4)
- /* Standard ID registers, present in both frames */
- REG32(PID4, 0xFD0)
- REG32(PID5, 0xFD4)
- REG32(PID6, 0xFD8)
- REG32(PID7, 0xFDC)
- REG32(PID0, 0xFE0)
- REG32(PID1, 0xFE4)
- REG32(PID2, 0xFE8)
- REG32(PID3, 0xFEC)
- REG32(CID0, 0xFF0)
- REG32(CID1, 0xFF4)
- REG32(CID2, 0xFF8)
- REG32(CID3, 0xFFC)
- /* PID/CID values */
- static const int control_id[] = {
- 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
- 0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
- 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
- };
- static const int status_id[] = {
- 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
- 0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
- 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
- };
- static void sse_counter_notify_users(SSECounter *s)
- {
- /*
- * Notify users of the count timestamp that they may
- * need to recalculate.
- */
- notifier_list_notify(&s->notifier_list, NULL);
- }
- static bool sse_counter_enabled(SSECounter *s)
- {
- return (s->cntcr & R_CNTCR_EN_MASK) != 0;
- }
- uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
- {
- if (!sse_counter_enabled(s)) {
- return UINT64_MAX;
- }
- tick -= s->ticks_then;
- if (s->cntcr & R_CNTCR_SCEN_MASK) {
- /* Adjust the tick count to account for the scale factor */
- tick = muldiv64(tick, 0x01000000, s->cntscr0);
- }
- return s->ns_then + clock_ticks_to_ns(s->clk, tick);
- }
- void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
- {
- /*
- * For the moment we assume that both we and the devices
- * which consume us last for the life of the simulation,
- * and so there is no mechanism for removing a notifier.
- */
- notifier_list_add(&s->notifier_list, notifier);
- }
- uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
- {
- /* Return the CNTCV value for a particular timestamp (clock ns value). */
- uint64_t ticks;
- if (!sse_counter_enabled(s)) {
- /* Counter is disabled and does not increment */
- return s->ticks_then;
- }
- ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
- if (s->cntcr & R_CNTCR_SCEN_MASK) {
- /*
- * Scaling is enabled. The CNTSCR value is the amount added to
- * the underlying 88-bit counter for every tick of the
- * underlying clock; CNTCV is the top 64 bits of that full
- * 88-bit value. Multiplying the tick count by CNTSCR tells us
- * how much the full 88-bit counter has moved on; we then
- * divide that by 0x01000000 to find out how much the 64-bit
- * visible portion has advanced. muldiv64() gives us the
- * necessary at-least-88-bit precision for the intermediate
- * result.
- */
- ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
- }
- return s->ticks_then + ticks;
- }
- static uint64_t sse_cntcv(SSECounter *s)
- {
- /* Return the CNTCV value for the current time */
- return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
- }
- static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
- {
- /*
- * Write one 32-bit half of the counter value; startbit is the
- * bit position of this half in the 64-bit word, either 0 or 32.
- */
- uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
- uint64_t cntcv = sse_counter_for_timestamp(s, now);
- cntcv = deposit64(cntcv, startbit, 32, value);
- s->ticks_then = cntcv;
- s->ns_then = now;
- sse_counter_notify_users(s);
- }
- static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
- unsigned size)
- {
- SSECounter *s = SSE_COUNTER(opaque);
- uint64_t r;
- switch (offset) {
- case A_CNTCR:
- r = s->cntcr;
- break;
- case A_CNTSR:
- /*
- * The only bit here is DBGH, indicating that the counter has been
- * halted via the Halt-on-Debug signal. We don't implement halting
- * debug, so the whole register always reads as zero.
- */
- r = 0;
- break;
- case A_CNTCV_LO:
- r = extract64(sse_cntcv(s), 0, 32);
- break;
- case A_CNTCV_HI:
- r = extract64(sse_cntcv(s), 32, 32);
- break;
- case A_CNTID:
- /*
- * For our implementation:
- * - CNTSCR can only be written when CNTCR.EN == 0
- * - HWCLKSW=0, so selected clock is always CLK0
- * - counter scaling is implemented
- */
- r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
- break;
- case A_CNTSCR:
- case A_CNTSCR0:
- r = s->cntscr0;
- break;
- case A_CNTSCR1:
- /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
- r = 0;
- break;
- case A_PID4 ... A_CID3:
- r = control_id[(offset - A_PID4) / 4];
- break;
- default:
- qemu_log_mask(LOG_GUEST_ERROR,
- "SSE System Counter control frame read: bad offset 0x%x",
- (unsigned)offset);
- r = 0;
- break;
- }
- trace_sse_counter_control_read(offset, r, size);
- return r;
- }
- static void sse_counter_control_write(void *opaque, hwaddr offset,
- uint64_t value, unsigned size)
- {
- SSECounter *s = SSE_COUNTER(opaque);
- trace_sse_counter_control_write(offset, value, size);
- switch (offset) {
- case A_CNTCR:
- /*
- * Although CNTCR defines interrupt-related bits, the counter doesn't
- * appear to actually have an interrupt output. So INTRCLR is
- * effectively a RAZ/WI bit, as are the reserved bits [31:6].
- * The documentation does not explicitly say so, but we assume
- * that changing the scale factor while the counter is enabled
- * by toggling CNTCR.SCEN has the same behaviour (making the counter
- * value UNKNOWN) as changing it by writing to CNTSCR, and so we
- * don't need to try to recalculate for that case.
- */
- value &= CNTCR_VALID_MASK;
- if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
- /*
- * Whether the counter is being enabled or disabled, the
- * required action is the same: sync the (ns_then, ticks_then)
- * tuple.
- */
- uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
- s->ticks_then = sse_counter_for_timestamp(s, now);
- s->ns_then = now;
- sse_counter_notify_users(s);
- }
- s->cntcr = value;
- break;
- case A_CNTCV_LO:
- sse_write_cntcv(s, value, 0);
- break;
- case A_CNTCV_HI:
- sse_write_cntcv(s, value, 32);
- break;
- case A_CNTSCR:
- case A_CNTSCR0:
- /*
- * If the scale registers are changed when the counter is enabled,
- * the count value becomes UNKNOWN. So we don't try to recalculate
- * anything here but only do it on a write to CNTCR.EN.
- */
- s->cntscr0 = value;
- break;
- case A_CNTSCR1:
- /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
- break;
- case A_CNTSR:
- case A_CNTID:
- case A_PID4 ... A_CID3:
- qemu_log_mask(LOG_GUEST_ERROR,
- "SSE System Counter control frame: write to RO offset 0x%x\n",
- (unsigned)offset);
- break;
- default:
- qemu_log_mask(LOG_GUEST_ERROR,
- "SSE System Counter control frame: write to bad offset 0x%x\n",
- (unsigned)offset);
- break;
- }
- }
- static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
- unsigned size)
- {
- SSECounter *s = SSE_COUNTER(opaque);
- uint64_t r;
- switch (offset) {
- case A_STATUS_CNTCV_LO:
- r = extract64(sse_cntcv(s), 0, 32);
- break;
- case A_STATUS_CNTCV_HI:
- r = extract64(sse_cntcv(s), 32, 32);
- break;
- case A_PID4 ... A_CID3:
- r = status_id[(offset - A_PID4) / 4];
- break;
- default:
- qemu_log_mask(LOG_GUEST_ERROR,
- "SSE System Counter status frame read: bad offset 0x%x",
- (unsigned)offset);
- r = 0;
- break;
- }
- trace_sse_counter_status_read(offset, r, size);
- return r;
- }
- static void sse_counter_status_write(void *opaque, hwaddr offset,
- uint64_t value, unsigned size)
- {
- trace_sse_counter_status_write(offset, value, size);
- switch (offset) {
- case A_STATUS_CNTCV_LO:
- case A_STATUS_CNTCV_HI:
- case A_PID4 ... A_CID3:
- qemu_log_mask(LOG_GUEST_ERROR,
- "SSE System Counter status frame: write to RO offset 0x%x\n",
- (unsigned)offset);
- break;
- default:
- qemu_log_mask(LOG_GUEST_ERROR,
- "SSE System Counter status frame: write to bad offset 0x%x\n",
- (unsigned)offset);
- break;
- }
- }
- static const MemoryRegionOps sse_counter_control_ops = {
- .read = sse_counter_control_read,
- .write = sse_counter_control_write,
- .endianness = DEVICE_LITTLE_ENDIAN,
- .valid.min_access_size = 4,
- .valid.max_access_size = 4,
- };
- static const MemoryRegionOps sse_counter_status_ops = {
- .read = sse_counter_status_read,
- .write = sse_counter_status_write,
- .endianness = DEVICE_LITTLE_ENDIAN,
- .valid.min_access_size = 4,
- .valid.max_access_size = 4,
- };
- static void sse_counter_reset(DeviceState *dev)
- {
- SSECounter *s = SSE_COUNTER(dev);
- trace_sse_counter_reset();
- s->cntcr = 0;
- s->cntscr0 = 0x01000000;
- s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
- s->ticks_then = 0;
- }
- static void sse_clk_callback(void *opaque, ClockEvent event)
- {
- SSECounter *s = SSE_COUNTER(opaque);
- uint64_t now;
- switch (event) {
- case ClockPreUpdate:
- /*
- * Before the clock period updates, set (ticks_then, ns_then)
- * to the current time and tick count (as calculated with
- * the old clock period).
- */
- if (sse_counter_enabled(s)) {
- now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
- s->ticks_then = sse_counter_for_timestamp(s, now);
- s->ns_then = now;
- }
- break;
- case ClockUpdate:
- sse_counter_notify_users(s);
- break;
- default:
- break;
- }
- }
- static void sse_counter_init(Object *obj)
- {
- SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
- SSECounter *s = SSE_COUNTER(obj);
- notifier_list_init(&s->notifier_list);
- s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
- ClockPreUpdate | ClockUpdate);
- memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
- s, "sse-counter-control", 0x1000);
- memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
- s, "sse-counter-status", 0x1000);
- sysbus_init_mmio(sbd, &s->control_mr);
- sysbus_init_mmio(sbd, &s->status_mr);
- }
- static void sse_counter_realize(DeviceState *dev, Error **errp)
- {
- SSECounter *s = SSE_COUNTER(dev);
- if (!clock_has_source(s->clk)) {
- error_setg(errp, "SSE system counter: CLK must be connected");
- return;
- }
- }
- static const VMStateDescription sse_counter_vmstate = {
- .name = "sse-counter",
- .version_id = 1,
- .minimum_version_id = 1,
- .fields = (const VMStateField[]) {
- VMSTATE_CLOCK(clk, SSECounter),
- VMSTATE_END_OF_LIST()
- }
- };
- static void sse_counter_class_init(ObjectClass *klass, void *data)
- {
- DeviceClass *dc = DEVICE_CLASS(klass);
- dc->realize = sse_counter_realize;
- dc->vmsd = &sse_counter_vmstate;
- device_class_set_legacy_reset(dc, sse_counter_reset);
- }
- static const TypeInfo sse_counter_info = {
- .name = TYPE_SSE_COUNTER,
- .parent = TYPE_SYS_BUS_DEVICE,
- .instance_size = sizeof(SSECounter),
- .instance_init = sse_counter_init,
- .class_init = sse_counter_class_init,
- };
- static void sse_counter_register_types(void)
- {
- type_register_static(&sse_counter_info);
- }
- type_init(sse_counter_register_types);
|