2
0

sh_timer.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. /*
  2. * SuperH Timer modules.
  3. *
  4. * Copyright (c) 2007 Magnus Damm
  5. * Based on arm_timer.c by Paul Brook
  6. * Copyright (c) 2005-2006 CodeSourcery.
  7. *
  8. * This code is licensed under the GPL.
  9. */
  10. #include "qemu/osdep.h"
  11. #include "exec/memory.h"
  12. #include "qemu/log.h"
  13. #include "hw/irq.h"
  14. #include "hw/sh4/sh.h"
  15. #include "hw/timer/tmu012.h"
  16. #include "hw/ptimer.h"
  17. #include "trace.h"
  18. #define TIMER_TCR_TPSC (7 << 0)
  19. #define TIMER_TCR_CKEG (3 << 3)
  20. #define TIMER_TCR_UNIE (1 << 5)
  21. #define TIMER_TCR_ICPE (3 << 6)
  22. #define TIMER_TCR_UNF (1 << 8)
  23. #define TIMER_TCR_ICPF (1 << 9)
  24. #define TIMER_TCR_RESERVED (0x3f << 10)
  25. #define TIMER_FEAT_CAPT (1 << 0)
  26. #define TIMER_FEAT_EXTCLK (1 << 1)
  27. #define OFFSET_TCOR 0
  28. #define OFFSET_TCNT 1
  29. #define OFFSET_TCR 2
  30. #define OFFSET_TCPR 3
  31. typedef struct {
  32. ptimer_state *timer;
  33. uint32_t tcnt;
  34. uint32_t tcor;
  35. uint32_t tcr;
  36. uint32_t tcpr;
  37. int freq;
  38. int int_level;
  39. int old_level;
  40. int feat;
  41. int enabled;
  42. qemu_irq irq;
  43. } SHTimerState;
  44. /* Check all active timers, and schedule the next timer interrupt. */
  45. static void sh_timer_update(SHTimerState *s)
  46. {
  47. int new_level = s->int_level && (s->tcr & TIMER_TCR_UNIE);
  48. if (new_level != s->old_level) {
  49. qemu_set_irq(s->irq, new_level);
  50. }
  51. s->old_level = s->int_level;
  52. s->int_level = new_level;
  53. }
  54. static uint32_t sh_timer_read(void *opaque, hwaddr offset)
  55. {
  56. SHTimerState *s = opaque;
  57. switch (offset >> 2) {
  58. case OFFSET_TCOR:
  59. return s->tcor;
  60. case OFFSET_TCNT:
  61. return ptimer_get_count(s->timer);
  62. case OFFSET_TCR:
  63. return s->tcr | (s->int_level ? TIMER_TCR_UNF : 0);
  64. case OFFSET_TCPR:
  65. if (s->feat & TIMER_FEAT_CAPT) {
  66. return s->tcpr;
  67. }
  68. }
  69. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
  70. __func__, offset);
  71. return 0;
  72. }
  73. static void sh_timer_write(void *opaque, hwaddr offset, uint32_t value)
  74. {
  75. SHTimerState *s = opaque;
  76. int freq;
  77. switch (offset >> 2) {
  78. case OFFSET_TCOR:
  79. s->tcor = value;
  80. ptimer_transaction_begin(s->timer);
  81. ptimer_set_limit(s->timer, s->tcor, 0);
  82. ptimer_transaction_commit(s->timer);
  83. break;
  84. case OFFSET_TCNT:
  85. s->tcnt = value;
  86. ptimer_transaction_begin(s->timer);
  87. ptimer_set_count(s->timer, s->tcnt);
  88. ptimer_transaction_commit(s->timer);
  89. break;
  90. case OFFSET_TCR:
  91. ptimer_transaction_begin(s->timer);
  92. if (s->enabled) {
  93. /*
  94. * Pause the timer if it is running. This may cause some inaccuracy
  95. * due to rounding, but avoids a whole lot of other messiness
  96. */
  97. ptimer_stop(s->timer);
  98. }
  99. freq = s->freq;
  100. /* ??? Need to recalculate expiry time after changing divisor. */
  101. switch (value & TIMER_TCR_TPSC) {
  102. case 0:
  103. freq >>= 2;
  104. break;
  105. case 1:
  106. freq >>= 4;
  107. break;
  108. case 2:
  109. freq >>= 6;
  110. break;
  111. case 3:
  112. freq >>= 8;
  113. break;
  114. case 4:
  115. freq >>= 10;
  116. break;
  117. case 6:
  118. case 7:
  119. if (s->feat & TIMER_FEAT_EXTCLK) {
  120. break;
  121. }
  122. /* fallthrough */
  123. default:
  124. qemu_log_mask(LOG_GUEST_ERROR,
  125. "%s: Reserved TPSC value\n", __func__);
  126. }
  127. switch ((value & TIMER_TCR_CKEG) >> 3) {
  128. case 0:
  129. break;
  130. case 1:
  131. case 2:
  132. case 3:
  133. if (s->feat & TIMER_FEAT_EXTCLK) {
  134. break;
  135. }
  136. /* fallthrough */
  137. default:
  138. qemu_log_mask(LOG_GUEST_ERROR,
  139. "%s: Reserved CKEG value\n", __func__);
  140. }
  141. switch ((value & TIMER_TCR_ICPE) >> 6) {
  142. case 0:
  143. break;
  144. case 2:
  145. case 3:
  146. if (s->feat & TIMER_FEAT_CAPT) {
  147. break;
  148. }
  149. /* fallthrough */
  150. default:
  151. qemu_log_mask(LOG_GUEST_ERROR,
  152. "%s: Reserved ICPE value\n", __func__);
  153. }
  154. if ((value & TIMER_TCR_UNF) == 0) {
  155. s->int_level = 0;
  156. }
  157. value &= ~TIMER_TCR_UNF;
  158. if ((value & TIMER_TCR_ICPF) && (!(s->feat & TIMER_FEAT_CAPT))) {
  159. qemu_log_mask(LOG_GUEST_ERROR,
  160. "%s: Reserved ICPF value\n", __func__);
  161. }
  162. value &= ~TIMER_TCR_ICPF; /* capture not supported */
  163. if (value & TIMER_TCR_RESERVED) {
  164. qemu_log_mask(LOG_GUEST_ERROR,
  165. "%s: Reserved TCR bits set\n", __func__);
  166. }
  167. s->tcr = value;
  168. ptimer_set_limit(s->timer, s->tcor, 0);
  169. ptimer_set_freq(s->timer, freq);
  170. if (s->enabled) {
  171. /* Restart the timer if still enabled. */
  172. ptimer_run(s->timer, 0);
  173. }
  174. ptimer_transaction_commit(s->timer);
  175. break;
  176. case OFFSET_TCPR:
  177. if (s->feat & TIMER_FEAT_CAPT) {
  178. s->tcpr = value;
  179. break;
  180. }
  181. /* fallthrough */
  182. default:
  183. qemu_log_mask(LOG_GUEST_ERROR,
  184. "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, offset);
  185. }
  186. sh_timer_update(s);
  187. }
  188. static void sh_timer_start_stop(void *opaque, int enable)
  189. {
  190. SHTimerState *s = opaque;
  191. trace_sh_timer_start_stop(enable, s->enabled);
  192. ptimer_transaction_begin(s->timer);
  193. if (s->enabled && !enable) {
  194. ptimer_stop(s->timer);
  195. }
  196. if (!s->enabled && enable) {
  197. ptimer_run(s->timer, 0);
  198. }
  199. ptimer_transaction_commit(s->timer);
  200. s->enabled = !!enable;
  201. }
  202. static void sh_timer_tick(void *opaque)
  203. {
  204. SHTimerState *s = opaque;
  205. s->int_level = s->enabled;
  206. sh_timer_update(s);
  207. }
  208. static void *sh_timer_init(uint32_t freq, int feat, qemu_irq irq)
  209. {
  210. SHTimerState *s;
  211. s = g_malloc0(sizeof(*s));
  212. s->freq = freq;
  213. s->feat = feat;
  214. s->tcor = 0xffffffff;
  215. s->tcnt = 0xffffffff;
  216. s->tcpr = 0xdeadbeef;
  217. s->tcr = 0;
  218. s->enabled = 0;
  219. s->irq = irq;
  220. s->timer = ptimer_init(sh_timer_tick, s, PTIMER_POLICY_LEGACY);
  221. sh_timer_write(s, OFFSET_TCOR >> 2, s->tcor);
  222. sh_timer_write(s, OFFSET_TCNT >> 2, s->tcnt);
  223. sh_timer_write(s, OFFSET_TCPR >> 2, s->tcpr);
  224. sh_timer_write(s, OFFSET_TCR >> 2, s->tcpr);
  225. /* ??? Save/restore. */
  226. return s;
  227. }
  228. typedef struct {
  229. MemoryRegion iomem;
  230. MemoryRegion iomem_p4;
  231. MemoryRegion iomem_a7;
  232. void *timer[3];
  233. int level[3];
  234. uint32_t tocr;
  235. uint32_t tstr;
  236. int feat;
  237. } tmu012_state;
  238. static uint64_t tmu012_read(void *opaque, hwaddr offset, unsigned size)
  239. {
  240. tmu012_state *s = opaque;
  241. trace_sh_timer_read(offset);
  242. if (offset >= 0x20) {
  243. if (!(s->feat & TMU012_FEAT_3CHAN)) {
  244. qemu_log_mask(LOG_GUEST_ERROR,
  245. "%s: Bad channel offset 0x%" HWADDR_PRIx "\n",
  246. __func__, offset);
  247. }
  248. return sh_timer_read(s->timer[2], offset - 0x20);
  249. }
  250. if (offset >= 0x14) {
  251. return sh_timer_read(s->timer[1], offset - 0x14);
  252. }
  253. if (offset >= 0x08) {
  254. return sh_timer_read(s->timer[0], offset - 0x08);
  255. }
  256. if (offset == 4) {
  257. return s->tstr;
  258. }
  259. if ((s->feat & TMU012_FEAT_TOCR) && offset == 0) {
  260. return s->tocr;
  261. }
  262. qemu_log_mask(LOG_GUEST_ERROR,
  263. "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, offset);
  264. return 0;
  265. }
  266. static void tmu012_write(void *opaque, hwaddr offset,
  267. uint64_t value, unsigned size)
  268. {
  269. tmu012_state *s = opaque;
  270. trace_sh_timer_write(offset, value);
  271. if (offset >= 0x20) {
  272. if (!(s->feat & TMU012_FEAT_3CHAN)) {
  273. qemu_log_mask(LOG_GUEST_ERROR,
  274. "%s: Bad channel offset 0x%" HWADDR_PRIx "\n",
  275. __func__, offset);
  276. }
  277. sh_timer_write(s->timer[2], offset - 0x20, value);
  278. return;
  279. }
  280. if (offset >= 0x14) {
  281. sh_timer_write(s->timer[1], offset - 0x14, value);
  282. return;
  283. }
  284. if (offset >= 0x08) {
  285. sh_timer_write(s->timer[0], offset - 0x08, value);
  286. return;
  287. }
  288. if (offset == 4) {
  289. sh_timer_start_stop(s->timer[0], value & (1 << 0));
  290. sh_timer_start_stop(s->timer[1], value & (1 << 1));
  291. if (s->feat & TMU012_FEAT_3CHAN) {
  292. sh_timer_start_stop(s->timer[2], value & (1 << 2));
  293. } else {
  294. if (value & (1 << 2)) {
  295. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad channel\n", __func__);
  296. }
  297. }
  298. s->tstr = value;
  299. return;
  300. }
  301. if ((s->feat & TMU012_FEAT_TOCR) && offset == 0) {
  302. s->tocr = value & (1 << 0);
  303. }
  304. }
  305. static const MemoryRegionOps tmu012_ops = {
  306. .read = tmu012_read,
  307. .write = tmu012_write,
  308. .endianness = DEVICE_NATIVE_ENDIAN,
  309. };
  310. void tmu012_init(MemoryRegion *sysmem, hwaddr base, int feat, uint32_t freq,
  311. qemu_irq ch0_irq, qemu_irq ch1_irq,
  312. qemu_irq ch2_irq0, qemu_irq ch2_irq1)
  313. {
  314. tmu012_state *s;
  315. int timer_feat = (feat & TMU012_FEAT_EXTCLK) ? TIMER_FEAT_EXTCLK : 0;
  316. s = g_malloc0(sizeof(*s));
  317. s->feat = feat;
  318. s->timer[0] = sh_timer_init(freq, timer_feat, ch0_irq);
  319. s->timer[1] = sh_timer_init(freq, timer_feat, ch1_irq);
  320. if (feat & TMU012_FEAT_3CHAN) {
  321. s->timer[2] = sh_timer_init(freq, timer_feat | TIMER_FEAT_CAPT,
  322. ch2_irq0); /* ch2_irq1 not supported */
  323. }
  324. memory_region_init_io(&s->iomem, NULL, &tmu012_ops, s, "timer", 0x30);
  325. memory_region_init_alias(&s->iomem_p4, NULL, "timer-p4",
  326. &s->iomem, 0, memory_region_size(&s->iomem));
  327. memory_region_add_subregion(sysmem, P4ADDR(base), &s->iomem_p4);
  328. memory_region_init_alias(&s->iomem_a7, NULL, "timer-a7",
  329. &s->iomem, 0, memory_region_size(&s->iomem));
  330. memory_region_add_subregion(sysmem, A7ADDR(base), &s->iomem_a7);
  331. /* ??? Save/restore. */
  332. }