hpet.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. /*
  2. * High Precision Event Timer emulation
  3. *
  4. * Copyright (c) 2007 Alexander Graf
  5. * Copyright (c) 2008 IBM Corporation
  6. *
  7. * Authors: Beth Kon <bkon@us.ibm.com>
  8. *
  9. * This library is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * This library is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  21. *
  22. * *****************************************************************
  23. *
  24. * This driver attempts to emulate an HPET device in software.
  25. */
  26. #include "qemu/osdep.h"
  27. #include "hw/irq.h"
  28. #include "qapi/error.h"
  29. #include "qemu/error-report.h"
  30. #include "qemu/timer.h"
  31. #include "hw/qdev-properties.h"
  32. #include "hw/timer/hpet.h"
  33. #include "hw/sysbus.h"
  34. #include "hw/rtc/mc146818rtc.h"
  35. #include "hw/rtc/mc146818rtc_regs.h"
  36. #include "migration/vmstate.h"
  37. #include "hw/timer/i8254.h"
  38. #include "exec/address-spaces.h"
  39. #include "qom/object.h"
  40. #include "trace.h"
  41. struct hpet_fw_config hpet_fw_cfg = {.count = UINT8_MAX};
  42. #define HPET_MSI_SUPPORT 0
  43. OBJECT_DECLARE_SIMPLE_TYPE(HPETState, HPET)
  44. struct HPETState;
  45. typedef struct HPETTimer { /* timers */
  46. uint8_t tn; /*timer number*/
  47. QEMUTimer *qemu_timer;
  48. struct HPETState *state;
  49. /* Memory-mapped, software visible timer registers */
  50. uint64_t config; /* configuration/cap */
  51. uint64_t cmp; /* comparator */
  52. uint64_t fsb; /* FSB route */
  53. /* Hidden register state */
  54. uint64_t cmp64; /* comparator (extended to counter width) */
  55. uint64_t period; /* Last value written to comparator */
  56. uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
  57. * mode. Next pop will be actual timer expiration.
  58. */
  59. uint64_t last; /* last value armed, to avoid timer storms */
  60. } HPETTimer;
  61. struct HPETState {
  62. /*< private >*/
  63. SysBusDevice parent_obj;
  64. /*< public >*/
  65. MemoryRegion iomem;
  66. uint64_t hpet_offset;
  67. bool hpet_offset_saved;
  68. qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
  69. uint32_t flags;
  70. uint8_t rtc_irq_level;
  71. qemu_irq pit_enabled;
  72. uint8_t num_timers;
  73. uint8_t num_timers_save;
  74. uint32_t intcap;
  75. HPETTimer timer[HPET_MAX_TIMERS];
  76. /* Memory-mapped, software visible registers */
  77. uint64_t capability; /* capabilities */
  78. uint64_t config; /* configuration */
  79. uint64_t isr; /* interrupt status reg */
  80. uint64_t hpet_counter; /* main counter */
  81. uint8_t hpet_id; /* instance id */
  82. };
  83. static uint32_t hpet_in_legacy_mode(HPETState *s)
  84. {
  85. return s->config & HPET_CFG_LEGACY;
  86. }
  87. static uint32_t timer_int_route(struct HPETTimer *timer)
  88. {
  89. return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
  90. }
  91. static uint32_t timer_fsb_route(HPETTimer *t)
  92. {
  93. return t->config & HPET_TN_FSB_ENABLE;
  94. }
  95. static uint32_t hpet_enabled(HPETState *s)
  96. {
  97. return s->config & HPET_CFG_ENABLE;
  98. }
  99. static uint32_t timer_is_periodic(HPETTimer *t)
  100. {
  101. return t->config & HPET_TN_PERIODIC;
  102. }
  103. static uint32_t timer_enabled(HPETTimer *t)
  104. {
  105. return t->config & HPET_TN_ENABLE;
  106. }
  107. static uint32_t hpet_time_after(uint64_t a, uint64_t b)
  108. {
  109. return ((int64_t)(b - a) < 0);
  110. }
  111. static uint64_t ticks_to_ns(uint64_t value)
  112. {
  113. return value * HPET_CLK_PERIOD;
  114. }
  115. static uint64_t ns_to_ticks(uint64_t value)
  116. {
  117. return value / HPET_CLK_PERIOD;
  118. }
  119. static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
  120. {
  121. new &= mask;
  122. new |= old & ~mask;
  123. return new;
  124. }
  125. static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
  126. {
  127. return (!(old & mask) && (new & mask));
  128. }
  129. static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
  130. {
  131. return ((old & mask) && !(new & mask));
  132. }
  133. static uint64_t hpet_get_ticks(HPETState *s)
  134. {
  135. return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
  136. }
  137. static uint64_t hpet_get_ns(HPETState *s, uint64_t tick)
  138. {
  139. return ticks_to_ns(tick) - s->hpet_offset;
  140. }
  141. /*
  142. * calculate next value of the general counter that matches the
  143. * target (either entirely, or the low 32-bit only depending on
  144. * the timer mode).
  145. */
  146. static uint64_t hpet_calculate_cmp64(HPETTimer *t, uint64_t cur_tick, uint64_t target)
  147. {
  148. if (t->config & HPET_TN_32BIT) {
  149. uint64_t result = deposit64(cur_tick, 0, 32, target);
  150. if (result < cur_tick) {
  151. result += 0x100000000ULL;
  152. }
  153. return result;
  154. } else {
  155. return target;
  156. }
  157. }
  158. static uint64_t hpet_next_wrap(uint64_t cur_tick)
  159. {
  160. return (cur_tick | 0xffffffffU) + 1;
  161. }
  162. static void update_irq(struct HPETTimer *timer, int set)
  163. {
  164. uint64_t mask;
  165. HPETState *s;
  166. int route;
  167. if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
  168. /* if LegacyReplacementRoute bit is set, HPET specification requires
  169. * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
  170. * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
  171. */
  172. route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
  173. } else {
  174. route = timer_int_route(timer);
  175. }
  176. s = timer->state;
  177. mask = 1 << timer->tn;
  178. if (set && (timer->config & HPET_TN_TYPE_LEVEL)) {
  179. /*
  180. * If HPET_TN_ENABLE bit is 0, "the timer will still operate and
  181. * generate appropriate status bits, but will not cause an interrupt"
  182. */
  183. s->isr |= mask;
  184. } else {
  185. s->isr &= ~mask;
  186. }
  187. if (set && timer_enabled(timer) && hpet_enabled(s)) {
  188. if (timer_fsb_route(timer)) {
  189. address_space_stl_le(&address_space_memory, timer->fsb >> 32,
  190. timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
  191. NULL);
  192. } else if (timer->config & HPET_TN_TYPE_LEVEL) {
  193. qemu_irq_raise(s->irqs[route]);
  194. } else {
  195. qemu_irq_pulse(s->irqs[route]);
  196. }
  197. } else {
  198. if (!timer_fsb_route(timer)) {
  199. qemu_irq_lower(s->irqs[route]);
  200. }
  201. }
  202. }
  203. static int hpet_pre_save(void *opaque)
  204. {
  205. HPETState *s = opaque;
  206. /* save current counter value */
  207. if (hpet_enabled(s)) {
  208. s->hpet_counter = hpet_get_ticks(s);
  209. }
  210. /*
  211. * The number of timers must match on source and destination, but it was
  212. * also added to the migration stream. Check that it matches the value
  213. * that was configured.
  214. */
  215. s->num_timers_save = s->num_timers;
  216. return 0;
  217. }
  218. static bool hpet_validate_num_timers(void *opaque, int version_id)
  219. {
  220. HPETState *s = opaque;
  221. return s->num_timers == s->num_timers_save;
  222. }
  223. static int hpet_post_load(void *opaque, int version_id)
  224. {
  225. HPETState *s = opaque;
  226. int i;
  227. for (i = 0; i < s->num_timers; i++) {
  228. HPETTimer *t = &s->timer[i];
  229. t->cmp64 = hpet_calculate_cmp64(t, s->hpet_counter, t->cmp);
  230. t->last = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - NANOSECONDS_PER_SECOND;
  231. }
  232. /* Recalculate the offset between the main counter and guest time */
  233. if (!s->hpet_offset_saved) {
  234. s->hpet_offset = ticks_to_ns(s->hpet_counter)
  235. - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  236. }
  237. return 0;
  238. }
  239. static bool hpet_offset_needed(void *opaque)
  240. {
  241. HPETState *s = opaque;
  242. return hpet_enabled(s) && s->hpet_offset_saved;
  243. }
  244. static bool hpet_rtc_irq_level_needed(void *opaque)
  245. {
  246. HPETState *s = opaque;
  247. return s->rtc_irq_level != 0;
  248. }
  249. static const VMStateDescription vmstate_hpet_rtc_irq_level = {
  250. .name = "hpet/rtc_irq_level",
  251. .version_id = 1,
  252. .minimum_version_id = 1,
  253. .needed = hpet_rtc_irq_level_needed,
  254. .fields = (const VMStateField[]) {
  255. VMSTATE_UINT8(rtc_irq_level, HPETState),
  256. VMSTATE_END_OF_LIST()
  257. }
  258. };
  259. static const VMStateDescription vmstate_hpet_offset = {
  260. .name = "hpet/offset",
  261. .version_id = 1,
  262. .minimum_version_id = 1,
  263. .needed = hpet_offset_needed,
  264. .fields = (const VMStateField[]) {
  265. VMSTATE_UINT64(hpet_offset, HPETState),
  266. VMSTATE_END_OF_LIST()
  267. }
  268. };
  269. static const VMStateDescription vmstate_hpet_timer = {
  270. .name = "hpet_timer",
  271. .version_id = 1,
  272. .minimum_version_id = 1,
  273. .fields = (const VMStateField[]) {
  274. VMSTATE_UINT8(tn, HPETTimer),
  275. VMSTATE_UINT64(config, HPETTimer),
  276. VMSTATE_UINT64(cmp, HPETTimer),
  277. VMSTATE_UINT64(fsb, HPETTimer),
  278. VMSTATE_UINT64(period, HPETTimer),
  279. VMSTATE_UINT8(wrap_flag, HPETTimer),
  280. VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
  281. VMSTATE_END_OF_LIST()
  282. }
  283. };
  284. static const VMStateDescription vmstate_hpet = {
  285. .name = "hpet",
  286. .version_id = 2,
  287. .minimum_version_id = 1,
  288. .pre_save = hpet_pre_save,
  289. .post_load = hpet_post_load,
  290. .fields = (const VMStateField[]) {
  291. VMSTATE_UINT64(config, HPETState),
  292. VMSTATE_UINT64(isr, HPETState),
  293. VMSTATE_UINT64(hpet_counter, HPETState),
  294. VMSTATE_UINT8_V(num_timers_save, HPETState, 2),
  295. VMSTATE_VALIDATE("num_timers must match", hpet_validate_num_timers),
  296. VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
  297. vmstate_hpet_timer, HPETTimer),
  298. VMSTATE_END_OF_LIST()
  299. },
  300. .subsections = (const VMStateDescription * const []) {
  301. &vmstate_hpet_rtc_irq_level,
  302. &vmstate_hpet_offset,
  303. NULL
  304. }
  305. };
  306. static void hpet_arm(HPETTimer *t, uint64_t tick)
  307. {
  308. uint64_t ns = hpet_get_ns(t->state, tick);
  309. /* Clamp period to reasonable min value (1 us) */
  310. if (timer_is_periodic(t) && ns - t->last < 1000) {
  311. ns = t->last + 1000;
  312. }
  313. t->last = ns;
  314. timer_mod(t->qemu_timer, ns);
  315. }
  316. /*
  317. * timer expiration callback
  318. */
  319. static void hpet_timer(void *opaque)
  320. {
  321. HPETTimer *t = opaque;
  322. uint64_t period = t->period;
  323. uint64_t cur_tick = hpet_get_ticks(t->state);
  324. if (timer_is_periodic(t) && period != 0) {
  325. while (hpet_time_after(cur_tick, t->cmp64)) {
  326. t->cmp64 += period;
  327. }
  328. if (t->config & HPET_TN_32BIT) {
  329. t->cmp = (uint32_t)t->cmp64;
  330. } else {
  331. t->cmp = t->cmp64;
  332. }
  333. hpet_arm(t, t->cmp64);
  334. } else if (t->wrap_flag) {
  335. t->wrap_flag = 0;
  336. hpet_arm(t, t->cmp64);
  337. }
  338. update_irq(t, 1);
  339. }
  340. static void hpet_set_timer(HPETTimer *t)
  341. {
  342. uint64_t cur_tick = hpet_get_ticks(t->state);
  343. t->wrap_flag = 0;
  344. t->cmp64 = hpet_calculate_cmp64(t, cur_tick, t->cmp);
  345. if (t->config & HPET_TN_32BIT) {
  346. /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
  347. * counter wraps in addition to an interrupt with comparator match.
  348. */
  349. if (!timer_is_periodic(t) && t->cmp64 > hpet_next_wrap(cur_tick)) {
  350. t->wrap_flag = 1;
  351. hpet_arm(t, hpet_next_wrap(cur_tick));
  352. return;
  353. }
  354. }
  355. hpet_arm(t, t->cmp64);
  356. }
  357. static void hpet_del_timer(HPETTimer *t)
  358. {
  359. HPETState *s = t->state;
  360. timer_del(t->qemu_timer);
  361. if (s->isr & (1 << t->tn)) {
  362. /* For level-triggered interrupt, this leaves ISR set but lowers irq. */
  363. update_irq(t, 1);
  364. }
  365. }
  366. static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
  367. unsigned size)
  368. {
  369. HPETState *s = opaque;
  370. int shift = (addr & 4) * 8;
  371. uint64_t cur_tick;
  372. trace_hpet_ram_read(addr);
  373. /*address range of all TN regs*/
  374. if (addr >= 0x100 && addr <= 0x3ff) {
  375. uint8_t timer_id = (addr - 0x100) / 0x20;
  376. HPETTimer *timer = &s->timer[timer_id];
  377. if (timer_id > s->num_timers) {
  378. trace_hpet_timer_id_out_of_range(timer_id);
  379. return 0;
  380. }
  381. switch (addr & 0x18) {
  382. case HPET_TN_CFG: // including interrupt capabilities
  383. return timer->config >> shift;
  384. case HPET_TN_CMP: // comparator register
  385. return timer->cmp >> shift;
  386. case HPET_TN_ROUTE:
  387. return timer->fsb >> shift;
  388. default:
  389. trace_hpet_ram_read_invalid();
  390. break;
  391. }
  392. } else {
  393. switch (addr & ~4) {
  394. case HPET_ID: // including HPET_PERIOD
  395. return s->capability >> shift;
  396. case HPET_CFG:
  397. return s->config >> shift;
  398. case HPET_COUNTER:
  399. if (hpet_enabled(s)) {
  400. cur_tick = hpet_get_ticks(s);
  401. } else {
  402. cur_tick = s->hpet_counter;
  403. }
  404. trace_hpet_ram_read_reading_counter(addr & 4, cur_tick);
  405. return cur_tick >> shift;
  406. case HPET_STATUS:
  407. return s->isr >> shift;
  408. default:
  409. trace_hpet_ram_read_invalid();
  410. break;
  411. }
  412. }
  413. return 0;
  414. }
  415. static void hpet_ram_write(void *opaque, hwaddr addr,
  416. uint64_t value, unsigned size)
  417. {
  418. int i;
  419. HPETState *s = opaque;
  420. int shift = (addr & 4) * 8;
  421. int len = MIN(size * 8, 64 - shift);
  422. uint64_t old_val, new_val, cleared;
  423. trace_hpet_ram_write(addr, value);
  424. /*address range of all TN regs*/
  425. if (addr >= 0x100 && addr <= 0x3ff) {
  426. uint8_t timer_id = (addr - 0x100) / 0x20;
  427. HPETTimer *timer = &s->timer[timer_id];
  428. trace_hpet_ram_write_timer_id(timer_id);
  429. if (timer_id > s->num_timers) {
  430. trace_hpet_timer_id_out_of_range(timer_id);
  431. return;
  432. }
  433. switch (addr & 0x18) {
  434. case HPET_TN_CFG:
  435. trace_hpet_ram_write_tn_cfg(addr & 4);
  436. old_val = timer->config;
  437. new_val = deposit64(old_val, shift, len, value);
  438. new_val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
  439. if (deactivating_bit(old_val, new_val, HPET_TN_TYPE_LEVEL)) {
  440. /*
  441. * Do this before changing timer->config; otherwise, if
  442. * HPET_TN_FSB is set, update_irq will not lower the qemu_irq.
  443. */
  444. update_irq(timer, 0);
  445. }
  446. timer->config = new_val;
  447. if (activating_bit(old_val, new_val, HPET_TN_ENABLE)
  448. && (s->isr & (1 << timer_id))) {
  449. update_irq(timer, 1);
  450. }
  451. if (new_val & HPET_TN_32BIT) {
  452. timer->cmp = (uint32_t)timer->cmp;
  453. timer->period = (uint32_t)timer->period;
  454. }
  455. if (hpet_enabled(s)) {
  456. hpet_set_timer(timer);
  457. }
  458. break;
  459. case HPET_TN_CMP: // comparator register
  460. if (timer->config & HPET_TN_32BIT) {
  461. /* High 32-bits are zero, leave them untouched. */
  462. if (shift) {
  463. trace_hpet_ram_write_invalid_tn_cmp();
  464. break;
  465. }
  466. len = 64;
  467. value = (uint32_t) value;
  468. }
  469. trace_hpet_ram_write_tn_cmp(addr & 4);
  470. if (!timer_is_periodic(timer)
  471. || (timer->config & HPET_TN_SETVAL)) {
  472. timer->cmp = deposit64(timer->cmp, shift, len, value);
  473. }
  474. if (timer_is_periodic(timer)) {
  475. timer->period = deposit64(timer->period, shift, len, value);
  476. }
  477. timer->config &= ~HPET_TN_SETVAL;
  478. if (hpet_enabled(s)) {
  479. hpet_set_timer(timer);
  480. }
  481. break;
  482. case HPET_TN_ROUTE:
  483. timer->fsb = deposit64(timer->fsb, shift, len, value);
  484. break;
  485. default:
  486. trace_hpet_ram_write_invalid();
  487. break;
  488. }
  489. return;
  490. } else {
  491. switch (addr & ~4) {
  492. case HPET_ID:
  493. return;
  494. case HPET_CFG:
  495. old_val = s->config;
  496. new_val = deposit64(old_val, shift, len, value);
  497. new_val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
  498. s->config = new_val;
  499. if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
  500. /* Enable main counter and interrupt generation. */
  501. s->hpet_offset =
  502. ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  503. for (i = 0; i < s->num_timers; i++) {
  504. if (timer_enabled(&s->timer[i]) && (s->isr & (1 << i))) {
  505. update_irq(&s->timer[i], 1);
  506. }
  507. hpet_set_timer(&s->timer[i]);
  508. }
  509. } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
  510. /* Halt main counter and disable interrupt generation. */
  511. s->hpet_counter = hpet_get_ticks(s);
  512. for (i = 0; i < s->num_timers; i++) {
  513. hpet_del_timer(&s->timer[i]);
  514. }
  515. }
  516. /* i8254 and RTC output pins are disabled
  517. * when HPET is in legacy mode */
  518. if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
  519. qemu_set_irq(s->pit_enabled, 0);
  520. qemu_irq_lower(s->irqs[0]);
  521. qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
  522. } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
  523. qemu_irq_lower(s->irqs[0]);
  524. qemu_set_irq(s->pit_enabled, 1);
  525. qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
  526. }
  527. break;
  528. case HPET_STATUS:
  529. new_val = value << shift;
  530. cleared = new_val & s->isr;
  531. for (i = 0; i < s->num_timers; i++) {
  532. if (cleared & (1 << i)) {
  533. update_irq(&s->timer[i], 0);
  534. }
  535. }
  536. break;
  537. case HPET_COUNTER:
  538. if (hpet_enabled(s)) {
  539. trace_hpet_ram_write_counter_write_while_enabled();
  540. }
  541. s->hpet_counter = deposit64(s->hpet_counter, shift, len, value);
  542. break;
  543. default:
  544. trace_hpet_ram_write_invalid();
  545. break;
  546. }
  547. }
  548. }
  549. static const MemoryRegionOps hpet_ram_ops = {
  550. .read = hpet_ram_read,
  551. .write = hpet_ram_write,
  552. .valid = {
  553. .min_access_size = 4,
  554. .max_access_size = 8,
  555. },
  556. .impl = {
  557. .min_access_size = 4,
  558. .max_access_size = 8,
  559. },
  560. .endianness = DEVICE_NATIVE_ENDIAN,
  561. };
  562. static void hpet_reset(DeviceState *d)
  563. {
  564. HPETState *s = HPET(d);
  565. SysBusDevice *sbd = SYS_BUS_DEVICE(d);
  566. int i;
  567. for (i = 0; i < s->num_timers; i++) {
  568. HPETTimer *timer = &s->timer[i];
  569. hpet_del_timer(timer);
  570. timer->cmp = ~0ULL;
  571. timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
  572. if (s->flags & (1 << HPET_MSI_SUPPORT)) {
  573. timer->config |= HPET_TN_FSB_CAP;
  574. }
  575. /* advertise availability of ioapic int */
  576. timer->config |= (uint64_t)s->intcap << 32;
  577. timer->period = 0ULL;
  578. timer->wrap_flag = 0;
  579. }
  580. qemu_set_irq(s->pit_enabled, 1);
  581. s->hpet_counter = 0ULL;
  582. s->hpet_offset = 0ULL;
  583. s->config = 0ULL;
  584. hpet_fw_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
  585. hpet_fw_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
  586. /* to document that the RTC lowers its output on reset as well */
  587. s->rtc_irq_level = 0;
  588. }
  589. static void hpet_handle_legacy_irq(void *opaque, int n, int level)
  590. {
  591. HPETState *s = HPET(opaque);
  592. if (n == HPET_LEGACY_PIT_INT) {
  593. if (!hpet_in_legacy_mode(s)) {
  594. qemu_set_irq(s->irqs[0], level);
  595. }
  596. } else {
  597. s->rtc_irq_level = level;
  598. if (!hpet_in_legacy_mode(s)) {
  599. qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
  600. }
  601. }
  602. }
  603. static void hpet_init(Object *obj)
  604. {
  605. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  606. HPETState *s = HPET(obj);
  607. /* HPET Area */
  608. memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
  609. sysbus_init_mmio(sbd, &s->iomem);
  610. }
  611. static void hpet_realize(DeviceState *dev, Error **errp)
  612. {
  613. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  614. HPETState *s = HPET(dev);
  615. int i;
  616. HPETTimer *timer;
  617. if (!s->intcap) {
  618. warn_report("Hpet's intcap not initialized");
  619. }
  620. if (hpet_fw_cfg.count == UINT8_MAX) {
  621. /* first instance */
  622. hpet_fw_cfg.count = 0;
  623. }
  624. if (hpet_fw_cfg.count == 8) {
  625. error_setg(errp, "Only 8 instances of HPET is allowed");
  626. return;
  627. }
  628. s->hpet_id = hpet_fw_cfg.count++;
  629. for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
  630. sysbus_init_irq(sbd, &s->irqs[i]);
  631. }
  632. if (s->num_timers < HPET_MIN_TIMERS) {
  633. s->num_timers = HPET_MIN_TIMERS;
  634. } else if (s->num_timers > HPET_MAX_TIMERS) {
  635. s->num_timers = HPET_MAX_TIMERS;
  636. }
  637. for (i = 0; i < HPET_MAX_TIMERS; i++) {
  638. timer = &s->timer[i];
  639. timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
  640. timer->tn = i;
  641. timer->state = s;
  642. }
  643. /* 64-bit General Capabilities and ID Register; LegacyReplacementRoute. */
  644. s->capability = 0x8086a001ULL;
  645. s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
  646. s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
  647. qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
  648. qdev_init_gpio_out(dev, &s->pit_enabled, 1);
  649. }
  650. static const Property hpet_device_properties[] = {
  651. DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
  652. DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
  653. DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
  654. DEFINE_PROP_BOOL("hpet-offset-saved", HPETState, hpet_offset_saved, true),
  655. };
  656. static void hpet_device_class_init(ObjectClass *klass, void *data)
  657. {
  658. DeviceClass *dc = DEVICE_CLASS(klass);
  659. dc->realize = hpet_realize;
  660. device_class_set_legacy_reset(dc, hpet_reset);
  661. dc->vmsd = &vmstate_hpet;
  662. device_class_set_props(dc, hpet_device_properties);
  663. }
  664. static const TypeInfo hpet_device_info = {
  665. .name = TYPE_HPET,
  666. .parent = TYPE_SYS_BUS_DEVICE,
  667. .instance_size = sizeof(HPETState),
  668. .instance_init = hpet_init,
  669. .class_init = hpet_device_class_init,
  670. };
  671. static void hpet_register_types(void)
  672. {
  673. type_register_static(&hpet_device_info);
  674. }
  675. type_init(hpet_register_types)