lsm303dlhc_mag.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558
  1. /*
  2. * LSM303DLHC I2C magnetometer.
  3. *
  4. * Copyright (C) 2021 Linaro Ltd.
  5. * Written by Kevin Townsend <kevin.townsend@linaro.org>
  6. *
  7. * Based on: https://www.st.com/resource/en/datasheet/lsm303dlhc.pdf
  8. *
  9. * SPDX-License-Identifier: GPL-2.0-or-later
  10. */
  11. /*
  12. * The I2C address associated with this device is set on the command-line when
  13. * initialising the machine, but the following address is standard: 0x1E.
  14. *
  15. * Get and set functions for 'mag-x', 'mag-y' and 'mag-z' assume that
  16. * 1 = 0.001 uT. (NOTE the 1 gauss = 100 uT, so setting a value of 100,000
  17. * would be equal to 1 gauss or 100 uT.)
  18. *
  19. * Get and set functions for 'temperature' assume that 1 = 0.001 C, so 23.6 C
  20. * would be equal to 23600.
  21. */
  22. #include "qemu/osdep.h"
  23. #include "hw/i2c/i2c.h"
  24. #include "migration/vmstate.h"
  25. #include "qapi/error.h"
  26. #include "qapi/visitor.h"
  27. #include "qemu/module.h"
  28. #include "qemu/log.h"
  29. #include "qemu/bswap.h"
  30. enum LSM303DLHCMagReg {
  31. LSM303DLHC_MAG_REG_CRA = 0x00,
  32. LSM303DLHC_MAG_REG_CRB = 0x01,
  33. LSM303DLHC_MAG_REG_MR = 0x02,
  34. LSM303DLHC_MAG_REG_OUT_X_H = 0x03,
  35. LSM303DLHC_MAG_REG_OUT_X_L = 0x04,
  36. LSM303DLHC_MAG_REG_OUT_Z_H = 0x05,
  37. LSM303DLHC_MAG_REG_OUT_Z_L = 0x06,
  38. LSM303DLHC_MAG_REG_OUT_Y_H = 0x07,
  39. LSM303DLHC_MAG_REG_OUT_Y_L = 0x08,
  40. LSM303DLHC_MAG_REG_SR = 0x09,
  41. LSM303DLHC_MAG_REG_IRA = 0x0A,
  42. LSM303DLHC_MAG_REG_IRB = 0x0B,
  43. LSM303DLHC_MAG_REG_IRC = 0x0C,
  44. LSM303DLHC_MAG_REG_TEMP_OUT_H = 0x31,
  45. LSM303DLHC_MAG_REG_TEMP_OUT_L = 0x32
  46. };
  47. typedef struct LSM303DLHCMagState {
  48. I2CSlave parent_obj;
  49. uint8_t cra;
  50. uint8_t crb;
  51. uint8_t mr;
  52. int16_t x;
  53. int16_t z;
  54. int16_t y;
  55. int16_t x_lock;
  56. int16_t z_lock;
  57. int16_t y_lock;
  58. uint8_t sr;
  59. uint8_t ira;
  60. uint8_t irb;
  61. uint8_t irc;
  62. int16_t temperature;
  63. int16_t temperature_lock;
  64. uint8_t len;
  65. uint8_t buf;
  66. uint8_t pointer;
  67. } LSM303DLHCMagState;
  68. #define TYPE_LSM303DLHC_MAG "lsm303dlhc_mag"
  69. OBJECT_DECLARE_SIMPLE_TYPE(LSM303DLHCMagState, LSM303DLHC_MAG)
  70. /*
  71. * Conversion factor from Gauss to sensor values for each GN gain setting,
  72. * in units "lsb per Gauss" (see data sheet table 3). There is no documented
  73. * behaviour if the GN setting in CRB is incorrectly set to 0b000;
  74. * we arbitrarily make it the same as 0b001.
  75. */
  76. uint32_t xy_gain[] = { 1100, 1100, 855, 670, 450, 400, 330, 230 };
  77. uint32_t z_gain[] = { 980, 980, 760, 600, 400, 355, 295, 205 };
  78. static void lsm303dlhc_mag_get_x(Object *obj, Visitor *v, const char *name,
  79. void *opaque, Error **errp)
  80. {
  81. LSM303DLHCMagState *s = LSM303DLHC_MAG(obj);
  82. int gm = extract32(s->crb, 5, 3);
  83. /* Convert to uT where 1000 = 1 uT. Conversion factor depends on gain. */
  84. int64_t value = muldiv64(s->x, 100000, xy_gain[gm]);
  85. visit_type_int(v, name, &value, errp);
  86. }
  87. static void lsm303dlhc_mag_get_y(Object *obj, Visitor *v, const char *name,
  88. void *opaque, Error **errp)
  89. {
  90. LSM303DLHCMagState *s = LSM303DLHC_MAG(obj);
  91. int gm = extract32(s->crb, 5, 3);
  92. /* Convert to uT where 1000 = 1 uT. Conversion factor depends on gain. */
  93. int64_t value = muldiv64(s->y, 100000, xy_gain[gm]);
  94. visit_type_int(v, name, &value, errp);
  95. }
  96. static void lsm303dlhc_mag_get_z(Object *obj, Visitor *v, const char *name,
  97. void *opaque, Error **errp)
  98. {
  99. LSM303DLHCMagState *s = LSM303DLHC_MAG(obj);
  100. int gm = extract32(s->crb, 5, 3);
  101. /* Convert to uT where 1000 = 1 uT. Conversion factor depends on gain. */
  102. int64_t value = muldiv64(s->z, 100000, z_gain[gm]);
  103. visit_type_int(v, name, &value, errp);
  104. }
  105. static void lsm303dlhc_mag_set_x(Object *obj, Visitor *v, const char *name,
  106. void *opaque, Error **errp)
  107. {
  108. LSM303DLHCMagState *s = LSM303DLHC_MAG(obj);
  109. int64_t value;
  110. int64_t reg;
  111. int gm = extract32(s->crb, 5, 3);
  112. if (!visit_type_int(v, name, &value, errp)) {
  113. return;
  114. }
  115. reg = muldiv64(value, xy_gain[gm], 100000);
  116. /* Make sure we are within a 12-bit limit. */
  117. if (reg > 2047 || reg < -2048) {
  118. error_setg(errp, "value %" PRId64 " out of register's range", value);
  119. return;
  120. }
  121. s->x = (int16_t)reg;
  122. }
  123. static void lsm303dlhc_mag_set_y(Object *obj, Visitor *v, const char *name,
  124. void *opaque, Error **errp)
  125. {
  126. LSM303DLHCMagState *s = LSM303DLHC_MAG(obj);
  127. int64_t value;
  128. int64_t reg;
  129. int gm = extract32(s->crb, 5, 3);
  130. if (!visit_type_int(v, name, &value, errp)) {
  131. return;
  132. }
  133. reg = muldiv64(value, xy_gain[gm], 100000);
  134. /* Make sure we are within a 12-bit limit. */
  135. if (reg > 2047 || reg < -2048) {
  136. error_setg(errp, "value %" PRId64 " out of register's range", value);
  137. return;
  138. }
  139. s->y = (int16_t)reg;
  140. }
  141. static void lsm303dlhc_mag_set_z(Object *obj, Visitor *v, const char *name,
  142. void *opaque, Error **errp)
  143. {
  144. LSM303DLHCMagState *s = LSM303DLHC_MAG(obj);
  145. int64_t value;
  146. int64_t reg;
  147. int gm = extract32(s->crb, 5, 3);
  148. if (!visit_type_int(v, name, &value, errp)) {
  149. return;
  150. }
  151. reg = muldiv64(value, z_gain[gm], 100000);
  152. /* Make sure we are within a 12-bit limit. */
  153. if (reg > 2047 || reg < -2048) {
  154. error_setg(errp, "value %" PRId64 " out of register's range", value);
  155. return;
  156. }
  157. s->z = (int16_t)reg;
  158. }
  159. /*
  160. * Get handler for the temperature property.
  161. */
  162. static void lsm303dlhc_mag_get_temperature(Object *obj, Visitor *v,
  163. const char *name, void *opaque,
  164. Error **errp)
  165. {
  166. LSM303DLHCMagState *s = LSM303DLHC_MAG(obj);
  167. int64_t value;
  168. /* Convert to 1 lsb = 0.125 C to 1 = 0.001 C for 'temperature' property. */
  169. value = s->temperature * 125;
  170. visit_type_int(v, name, &value, errp);
  171. }
  172. /*
  173. * Set handler for the temperature property.
  174. */
  175. static void lsm303dlhc_mag_set_temperature(Object *obj, Visitor *v,
  176. const char *name, void *opaque,
  177. Error **errp)
  178. {
  179. LSM303DLHCMagState *s = LSM303DLHC_MAG(obj);
  180. int64_t value;
  181. if (!visit_type_int(v, name, &value, errp)) {
  182. return;
  183. }
  184. /* Input temperature is in 0.001 C units. Convert to 1 lsb = 0.125 C. */
  185. value /= 125;
  186. if (value > 2047 || value < -2048) {
  187. error_setg(errp, "value %" PRId64 " lsb is out of range", value);
  188. return;
  189. }
  190. s->temperature = (int16_t)value;
  191. }
  192. /*
  193. * Callback handler whenever a 'I2C_START_RECV' (read) event is received.
  194. */
  195. static void lsm303dlhc_mag_read(LSM303DLHCMagState *s)
  196. {
  197. /*
  198. * Set the LOCK bit whenever a new read attempt is made. This will be
  199. * cleared in I2C_FINISH. Note that DRDY is always set to 1 in this driver.
  200. */
  201. s->sr = 0x3;
  202. /*
  203. * Copy the current X/Y/Z and temp. values into the locked registers so
  204. * that 'mag-x', 'mag-y', 'mag-z' and 'temperature' can continue to be
  205. * updated via QOM, etc., without corrupting the current read event.
  206. */
  207. s->x_lock = s->x;
  208. s->z_lock = s->z;
  209. s->y_lock = s->y;
  210. s->temperature_lock = s->temperature;
  211. }
  212. /*
  213. * Callback handler whenever a 'I2C_FINISH' event is received.
  214. */
  215. static void lsm303dlhc_mag_finish(LSM303DLHCMagState *s)
  216. {
  217. /*
  218. * Clear the LOCK bit when the read attempt terminates.
  219. * This bit is initially set in the I2C_START_RECV handler.
  220. */
  221. s->sr = 0x1;
  222. }
  223. /*
  224. * Callback handler when a device attempts to write to a register.
  225. */
  226. static void lsm303dlhc_mag_write(LSM303DLHCMagState *s)
  227. {
  228. switch (s->pointer) {
  229. case LSM303DLHC_MAG_REG_CRA:
  230. s->cra = s->buf;
  231. break;
  232. case LSM303DLHC_MAG_REG_CRB:
  233. /* Make sure gain is at least 1, falling back to 1 on an error. */
  234. if (s->buf >> 5 == 0) {
  235. s->buf = 1 << 5;
  236. }
  237. s->crb = s->buf;
  238. break;
  239. case LSM303DLHC_MAG_REG_MR:
  240. s->mr = s->buf;
  241. break;
  242. case LSM303DLHC_MAG_REG_SR:
  243. s->sr = s->buf;
  244. break;
  245. case LSM303DLHC_MAG_REG_IRA:
  246. s->ira = s->buf;
  247. break;
  248. case LSM303DLHC_MAG_REG_IRB:
  249. s->irb = s->buf;
  250. break;
  251. case LSM303DLHC_MAG_REG_IRC:
  252. s->irc = s->buf;
  253. break;
  254. default:
  255. qemu_log_mask(LOG_GUEST_ERROR, "reg is read-only: 0x%02X", s->buf);
  256. break;
  257. }
  258. }
  259. /*
  260. * Low-level master-to-slave transaction handler.
  261. */
  262. static int lsm303dlhc_mag_send(I2CSlave *i2c, uint8_t data)
  263. {
  264. LSM303DLHCMagState *s = LSM303DLHC_MAG(i2c);
  265. if (s->len == 0) {
  266. /* First byte is the reg pointer */
  267. s->pointer = data;
  268. s->len++;
  269. } else if (s->len == 1) {
  270. /* Second byte is the new register value. */
  271. s->buf = data;
  272. lsm303dlhc_mag_write(s);
  273. } else {
  274. g_assert_not_reached();
  275. }
  276. return 0;
  277. }
  278. /*
  279. * Low-level slave-to-master transaction handler (read attempts).
  280. */
  281. static uint8_t lsm303dlhc_mag_recv(I2CSlave *i2c)
  282. {
  283. LSM303DLHCMagState *s = LSM303DLHC_MAG(i2c);
  284. uint8_t resp;
  285. switch (s->pointer) {
  286. case LSM303DLHC_MAG_REG_CRA:
  287. resp = s->cra;
  288. break;
  289. case LSM303DLHC_MAG_REG_CRB:
  290. resp = s->crb;
  291. break;
  292. case LSM303DLHC_MAG_REG_MR:
  293. resp = s->mr;
  294. break;
  295. case LSM303DLHC_MAG_REG_OUT_X_H:
  296. resp = (uint8_t)(s->x_lock >> 8);
  297. break;
  298. case LSM303DLHC_MAG_REG_OUT_X_L:
  299. resp = (uint8_t)(s->x_lock);
  300. break;
  301. case LSM303DLHC_MAG_REG_OUT_Z_H:
  302. resp = (uint8_t)(s->z_lock >> 8);
  303. break;
  304. case LSM303DLHC_MAG_REG_OUT_Z_L:
  305. resp = (uint8_t)(s->z_lock);
  306. break;
  307. case LSM303DLHC_MAG_REG_OUT_Y_H:
  308. resp = (uint8_t)(s->y_lock >> 8);
  309. break;
  310. case LSM303DLHC_MAG_REG_OUT_Y_L:
  311. resp = (uint8_t)(s->y_lock);
  312. break;
  313. case LSM303DLHC_MAG_REG_SR:
  314. resp = s->sr;
  315. break;
  316. case LSM303DLHC_MAG_REG_IRA:
  317. resp = s->ira;
  318. break;
  319. case LSM303DLHC_MAG_REG_IRB:
  320. resp = s->irb;
  321. break;
  322. case LSM303DLHC_MAG_REG_IRC:
  323. resp = s->irc;
  324. break;
  325. case LSM303DLHC_MAG_REG_TEMP_OUT_H:
  326. /* Check if the temperature sensor is enabled or not (CRA & 0x80). */
  327. if (s->cra & 0x80) {
  328. resp = (uint8_t)(s->temperature_lock >> 8);
  329. } else {
  330. resp = 0;
  331. }
  332. break;
  333. case LSM303DLHC_MAG_REG_TEMP_OUT_L:
  334. if (s->cra & 0x80) {
  335. resp = (uint8_t)(s->temperature_lock & 0xff);
  336. } else {
  337. resp = 0;
  338. }
  339. break;
  340. default:
  341. resp = 0;
  342. break;
  343. }
  344. /*
  345. * The address pointer on the LSM303DLHC auto-increments whenever a byte
  346. * is read, without the master device having to request the next address.
  347. *
  348. * The auto-increment process has the following logic:
  349. *
  350. * - if (s->pointer == 8) then s->pointer = 3
  351. * - else: if (s->pointer == 12) then s->pointer = 0
  352. * - else: s->pointer += 1
  353. *
  354. * Reading an invalid address return 0.
  355. */
  356. if (s->pointer == LSM303DLHC_MAG_REG_OUT_Y_L) {
  357. s->pointer = LSM303DLHC_MAG_REG_OUT_X_H;
  358. } else if (s->pointer == LSM303DLHC_MAG_REG_IRC) {
  359. s->pointer = LSM303DLHC_MAG_REG_CRA;
  360. } else {
  361. s->pointer++;
  362. }
  363. return resp;
  364. }
  365. /*
  366. * Bus state change handler.
  367. */
  368. static int lsm303dlhc_mag_event(I2CSlave *i2c, enum i2c_event event)
  369. {
  370. LSM303DLHCMagState *s = LSM303DLHC_MAG(i2c);
  371. switch (event) {
  372. case I2C_START_SEND:
  373. break;
  374. case I2C_START_RECV:
  375. lsm303dlhc_mag_read(s);
  376. break;
  377. case I2C_FINISH:
  378. lsm303dlhc_mag_finish(s);
  379. break;
  380. case I2C_NACK:
  381. break;
  382. default:
  383. return -1;
  384. }
  385. s->len = 0;
  386. return 0;
  387. }
  388. /*
  389. * Device data description using VMSTATE macros.
  390. */
  391. static const VMStateDescription vmstate_lsm303dlhc_mag = {
  392. .name = "LSM303DLHC_MAG",
  393. .version_id = 0,
  394. .minimum_version_id = 0,
  395. .fields = (const VMStateField[]) {
  396. VMSTATE_I2C_SLAVE(parent_obj, LSM303DLHCMagState),
  397. VMSTATE_UINT8(len, LSM303DLHCMagState),
  398. VMSTATE_UINT8(buf, LSM303DLHCMagState),
  399. VMSTATE_UINT8(pointer, LSM303DLHCMagState),
  400. VMSTATE_UINT8(cra, LSM303DLHCMagState),
  401. VMSTATE_UINT8(crb, LSM303DLHCMagState),
  402. VMSTATE_UINT8(mr, LSM303DLHCMagState),
  403. VMSTATE_INT16(x, LSM303DLHCMagState),
  404. VMSTATE_INT16(z, LSM303DLHCMagState),
  405. VMSTATE_INT16(y, LSM303DLHCMagState),
  406. VMSTATE_INT16(x_lock, LSM303DLHCMagState),
  407. VMSTATE_INT16(z_lock, LSM303DLHCMagState),
  408. VMSTATE_INT16(y_lock, LSM303DLHCMagState),
  409. VMSTATE_UINT8(sr, LSM303DLHCMagState),
  410. VMSTATE_UINT8(ira, LSM303DLHCMagState),
  411. VMSTATE_UINT8(irb, LSM303DLHCMagState),
  412. VMSTATE_UINT8(irc, LSM303DLHCMagState),
  413. VMSTATE_INT16(temperature, LSM303DLHCMagState),
  414. VMSTATE_INT16(temperature_lock, LSM303DLHCMagState),
  415. VMSTATE_END_OF_LIST()
  416. }
  417. };
  418. /*
  419. * Put the device into post-reset default state.
  420. */
  421. static void lsm303dlhc_mag_default_cfg(LSM303DLHCMagState *s)
  422. {
  423. /* Set the device into is default reset state. */
  424. s->len = 0;
  425. s->pointer = 0; /* Current register. */
  426. s->buf = 0; /* Shared buffer. */
  427. s->cra = 0x10; /* Temp Enabled = 0, Data Rate = 15.0 Hz. */
  428. s->crb = 0x20; /* Gain = +/- 1.3 Gauss. */
  429. s->mr = 0x3; /* Operating Mode = Sleep. */
  430. s->x = 0;
  431. s->z = 0;
  432. s->y = 0;
  433. s->x_lock = 0;
  434. s->z_lock = 0;
  435. s->y_lock = 0;
  436. s->sr = 0x1; /* DRDY = 1. */
  437. s->ira = 0x48;
  438. s->irb = 0x34;
  439. s->irc = 0x33;
  440. s->temperature = 0; /* Default to 0 degrees C (0/8 lsb = 0 C). */
  441. s->temperature_lock = 0;
  442. }
  443. /*
  444. * Callback handler when DeviceState 'reset' is set to true.
  445. */
  446. static void lsm303dlhc_mag_reset(DeviceState *dev)
  447. {
  448. I2CSlave *i2c = I2C_SLAVE(dev);
  449. LSM303DLHCMagState *s = LSM303DLHC_MAG(i2c);
  450. /* Set the device into its default reset state. */
  451. lsm303dlhc_mag_default_cfg(s);
  452. }
  453. /*
  454. * Initialisation of any public properties.
  455. */
  456. static void lsm303dlhc_mag_initfn(Object *obj)
  457. {
  458. object_property_add(obj, "mag-x", "int",
  459. lsm303dlhc_mag_get_x,
  460. lsm303dlhc_mag_set_x, NULL, NULL);
  461. object_property_add(obj, "mag-y", "int",
  462. lsm303dlhc_mag_get_y,
  463. lsm303dlhc_mag_set_y, NULL, NULL);
  464. object_property_add(obj, "mag-z", "int",
  465. lsm303dlhc_mag_get_z,
  466. lsm303dlhc_mag_set_z, NULL, NULL);
  467. object_property_add(obj, "temperature", "int",
  468. lsm303dlhc_mag_get_temperature,
  469. lsm303dlhc_mag_set_temperature, NULL, NULL);
  470. }
  471. /*
  472. * Set the virtual method pointers (bus state change, tx/rx, etc.).
  473. */
  474. static void lsm303dlhc_mag_class_init(ObjectClass *klass, void *data)
  475. {
  476. DeviceClass *dc = DEVICE_CLASS(klass);
  477. I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
  478. device_class_set_legacy_reset(dc, lsm303dlhc_mag_reset);
  479. dc->vmsd = &vmstate_lsm303dlhc_mag;
  480. k->event = lsm303dlhc_mag_event;
  481. k->recv = lsm303dlhc_mag_recv;
  482. k->send = lsm303dlhc_mag_send;
  483. }
  484. static const TypeInfo lsm303dlhc_mag_info = {
  485. .name = TYPE_LSM303DLHC_MAG,
  486. .parent = TYPE_I2C_SLAVE,
  487. .instance_size = sizeof(LSM303DLHCMagState),
  488. .instance_init = lsm303dlhc_mag_initfn,
  489. .class_init = lsm303dlhc_mag_class_init,
  490. };
  491. static void lsm303dlhc_mag_register_types(void)
  492. {
  493. type_register_static(&lsm303dlhc_mag_info);
  494. }
  495. type_init(lsm303dlhc_mag_register_types)