opentitan.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. /*
  2. * QEMU RISC-V Board Compatible with OpenTitan FPGA platform
  3. *
  4. * Copyright (c) 2020 Western Digital
  5. *
  6. * Provides a board compatible with the OpenTitan FPGA platform:
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2 or later, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include "qemu/osdep.h"
  21. #include "qemu/cutils.h"
  22. #include "hw/riscv/opentitan.h"
  23. #include "qapi/error.h"
  24. #include "qemu/error-report.h"
  25. #include "hw/boards.h"
  26. #include "hw/misc/unimp.h"
  27. #include "hw/riscv/boot.h"
  28. #include "qemu/units.h"
  29. #include "system/system.h"
  30. #include "exec/address-spaces.h"
  31. /*
  32. * This version of the OpenTitan machine currently supports
  33. * OpenTitan RTL version:
  34. * <lowRISC/opentitan@565e4af39760a123c59a184aa2f5812a961fde47>
  35. *
  36. * MMIO mapping as per (specified commit):
  37. * lowRISC/opentitan: hw/top_earlgrey/sw/autogen/top_earlgrey_memory.h
  38. */
  39. static const MemMapEntry ibex_memmap[] = {
  40. [IBEX_DEV_ROM] = { 0x00008000, 0x8000 },
  41. [IBEX_DEV_RAM] = { 0x10000000, 0x20000 },
  42. [IBEX_DEV_FLASH] = { 0x20000000, 0x100000 },
  43. [IBEX_DEV_UART] = { 0x40000000, 0x40 },
  44. [IBEX_DEV_GPIO] = { 0x40040000, 0x40 },
  45. [IBEX_DEV_SPI_DEVICE] = { 0x40050000, 0x2000 },
  46. [IBEX_DEV_I2C] = { 0x40080000, 0x80 },
  47. [IBEX_DEV_PATTGEN] = { 0x400e0000, 0x40 },
  48. [IBEX_DEV_TIMER] = { 0x40100000, 0x200 },
  49. [IBEX_DEV_OTP_CTRL] = { 0x40130000, 0x2000 },
  50. [IBEX_DEV_LC_CTRL] = { 0x40140000, 0x100 },
  51. [IBEX_DEV_ALERT_HANDLER] = { 0x40150000, 0x800 },
  52. [IBEX_DEV_SPI_HOST0] = { 0x40300000, 0x40 },
  53. [IBEX_DEV_SPI_HOST1] = { 0x40310000, 0x40 },
  54. [IBEX_DEV_USBDEV] = { 0x40320000, 0x1000 },
  55. [IBEX_DEV_PWRMGR] = { 0x40400000, 0x80 },
  56. [IBEX_DEV_RSTMGR] = { 0x40410000, 0x80 },
  57. [IBEX_DEV_CLKMGR] = { 0x40420000, 0x80 },
  58. [IBEX_DEV_PINMUX] = { 0x40460000, 0x1000 },
  59. [IBEX_DEV_AON_TIMER] = { 0x40470000, 0x40 },
  60. [IBEX_DEV_SENSOR_CTRL] = { 0x40490000, 0x40 },
  61. [IBEX_DEV_FLASH_CTRL] = { 0x41000000, 0x200 },
  62. [IBEX_DEV_AES] = { 0x41100000, 0x100 },
  63. [IBEX_DEV_HMAC] = { 0x41110000, 0x1000 },
  64. [IBEX_DEV_KMAC] = { 0x41120000, 0x1000 },
  65. [IBEX_DEV_OTBN] = { 0x41130000, 0x10000 },
  66. [IBEX_DEV_KEYMGR] = { 0x41140000, 0x100 },
  67. [IBEX_DEV_CSRNG] = { 0x41150000, 0x80 },
  68. [IBEX_DEV_ENTROPY] = { 0x41160000, 0x100 },
  69. [IBEX_DEV_EDNO] = { 0x41170000, 0x80 },
  70. [IBEX_DEV_EDN1] = { 0x41180000, 0x80 },
  71. [IBEX_DEV_SRAM_CTRL] = { 0x411c0000, 0x20 },
  72. [IBEX_DEV_IBEX_CFG] = { 0x411f0000, 0x100 },
  73. [IBEX_DEV_PLIC] = { 0x48000000, 0x8000000 },
  74. [IBEX_DEV_FLASH_VIRTUAL] = { 0x80000000, 0x80000 },
  75. };
  76. static void opentitan_machine_init(MachineState *machine)
  77. {
  78. MachineClass *mc = MACHINE_GET_CLASS(machine);
  79. OpenTitanState *s = OPENTITAN_MACHINE(machine);
  80. const MemMapEntry *memmap = ibex_memmap;
  81. MemoryRegion *sys_mem = get_system_memory();
  82. RISCVBootInfo boot_info;
  83. if (machine->ram_size != mc->default_ram_size) {
  84. char *sz = size_to_str(mc->default_ram_size);
  85. error_report("Invalid RAM size, should be %s", sz);
  86. g_free(sz);
  87. exit(EXIT_FAILURE);
  88. }
  89. /* Initialize SoC */
  90. object_initialize_child(OBJECT(machine), "soc", &s->soc,
  91. TYPE_RISCV_IBEX_SOC);
  92. qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
  93. memory_region_add_subregion(sys_mem,
  94. memmap[IBEX_DEV_RAM].base, machine->ram);
  95. if (machine->firmware) {
  96. hwaddr firmware_load_addr = memmap[IBEX_DEV_RAM].base;
  97. riscv_load_firmware(machine->firmware, &firmware_load_addr, NULL);
  98. }
  99. riscv_boot_info_init(&boot_info, &s->soc.cpus);
  100. if (machine->kernel_filename) {
  101. riscv_load_kernel(machine, &boot_info,
  102. memmap[IBEX_DEV_RAM].base,
  103. false, NULL);
  104. }
  105. }
  106. static void opentitan_machine_class_init(ObjectClass *oc, void *data)
  107. {
  108. MachineClass *mc = MACHINE_CLASS(oc);
  109. mc->desc = "RISC-V Board compatible with OpenTitan";
  110. mc->init = opentitan_machine_init;
  111. mc->max_cpus = 1;
  112. mc->default_cpu_type = TYPE_RISCV_CPU_IBEX;
  113. mc->default_ram_id = "riscv.lowrisc.ibex.ram";
  114. mc->default_ram_size = ibex_memmap[IBEX_DEV_RAM].size;
  115. }
  116. static void lowrisc_ibex_soc_init(Object *obj)
  117. {
  118. LowRISCIbexSoCState *s = RISCV_IBEX_SOC(obj);
  119. object_initialize_child(obj, "cpus", &s->cpus, TYPE_RISCV_HART_ARRAY);
  120. object_initialize_child(obj, "plic", &s->plic, TYPE_SIFIVE_PLIC);
  121. object_initialize_child(obj, "uart", &s->uart, TYPE_IBEX_UART);
  122. object_initialize_child(obj, "timer", &s->timer, TYPE_IBEX_TIMER);
  123. for (int i = 0; i < OPENTITAN_NUM_SPI_HOSTS; i++) {
  124. object_initialize_child(obj, "spi_host[*]", &s->spi_host[i],
  125. TYPE_IBEX_SPI_HOST);
  126. }
  127. }
  128. static void lowrisc_ibex_soc_realize(DeviceState *dev_soc, Error **errp)
  129. {
  130. const MemMapEntry *memmap = ibex_memmap;
  131. DeviceState *dev;
  132. SysBusDevice *busdev;
  133. MachineState *ms = MACHINE(qdev_get_machine());
  134. LowRISCIbexSoCState *s = RISCV_IBEX_SOC(dev_soc);
  135. MemoryRegion *sys_mem = get_system_memory();
  136. int i;
  137. object_property_set_str(OBJECT(&s->cpus), "cpu-type", ms->cpu_type,
  138. &error_abort);
  139. object_property_set_int(OBJECT(&s->cpus), "num-harts", ms->smp.cpus,
  140. &error_abort);
  141. object_property_set_int(OBJECT(&s->cpus), "resetvec", s->resetvec,
  142. &error_abort);
  143. sysbus_realize(SYS_BUS_DEVICE(&s->cpus), &error_fatal);
  144. /* Boot ROM */
  145. memory_region_init_rom(&s->rom, OBJECT(dev_soc), "riscv.lowrisc.ibex.rom",
  146. memmap[IBEX_DEV_ROM].size, &error_fatal);
  147. memory_region_add_subregion(sys_mem,
  148. memmap[IBEX_DEV_ROM].base, &s->rom);
  149. /* Flash memory */
  150. memory_region_init_rom(&s->flash_mem, OBJECT(dev_soc), "riscv.lowrisc.ibex.flash",
  151. memmap[IBEX_DEV_FLASH].size, &error_fatal);
  152. memory_region_init_alias(&s->flash_alias, OBJECT(dev_soc),
  153. "riscv.lowrisc.ibex.flash_virtual", &s->flash_mem, 0,
  154. memmap[IBEX_DEV_FLASH_VIRTUAL].size);
  155. memory_region_add_subregion(sys_mem, memmap[IBEX_DEV_FLASH].base,
  156. &s->flash_mem);
  157. memory_region_add_subregion(sys_mem, memmap[IBEX_DEV_FLASH_VIRTUAL].base,
  158. &s->flash_alias);
  159. /* PLIC */
  160. qdev_prop_set_string(DEVICE(&s->plic), "hart-config", "M");
  161. qdev_prop_set_uint32(DEVICE(&s->plic), "num-sources", 180);
  162. qdev_prop_set_uint32(DEVICE(&s->plic), "num-priorities", 3);
  163. qdev_prop_set_uint32(DEVICE(&s->plic), "pending-base", 0x1000);
  164. qdev_prop_set_uint32(DEVICE(&s->plic), "enable-base", 0x2000);
  165. qdev_prop_set_uint32(DEVICE(&s->plic), "enable-stride", 32);
  166. qdev_prop_set_uint32(DEVICE(&s->plic), "context-base", 0x200000);
  167. qdev_prop_set_uint32(DEVICE(&s->plic), "context-stride", 8);
  168. qdev_prop_set_uint32(DEVICE(&s->plic), "aperture-size", memmap[IBEX_DEV_PLIC].size);
  169. if (!sysbus_realize(SYS_BUS_DEVICE(&s->plic), errp)) {
  170. return;
  171. }
  172. sysbus_mmio_map(SYS_BUS_DEVICE(&s->plic), 0, memmap[IBEX_DEV_PLIC].base);
  173. for (i = 0; i < ms->smp.cpus; i++) {
  174. CPUState *cpu = qemu_get_cpu(i);
  175. qdev_connect_gpio_out(DEVICE(&s->plic), ms->smp.cpus + i,
  176. qdev_get_gpio_in(DEVICE(cpu), IRQ_M_EXT));
  177. }
  178. /* UART */
  179. qdev_prop_set_chr(DEVICE(&(s->uart)), "chardev", serial_hd(0));
  180. if (!sysbus_realize(SYS_BUS_DEVICE(&s->uart), errp)) {
  181. return;
  182. }
  183. sysbus_mmio_map(SYS_BUS_DEVICE(&s->uart), 0, memmap[IBEX_DEV_UART].base);
  184. sysbus_connect_irq(SYS_BUS_DEVICE(&s->uart),
  185. 0, qdev_get_gpio_in(DEVICE(&s->plic),
  186. IBEX_UART0_TX_WATERMARK_IRQ));
  187. sysbus_connect_irq(SYS_BUS_DEVICE(&s->uart),
  188. 1, qdev_get_gpio_in(DEVICE(&s->plic),
  189. IBEX_UART0_RX_WATERMARK_IRQ));
  190. sysbus_connect_irq(SYS_BUS_DEVICE(&s->uart),
  191. 2, qdev_get_gpio_in(DEVICE(&s->plic),
  192. IBEX_UART0_TX_EMPTY_IRQ));
  193. sysbus_connect_irq(SYS_BUS_DEVICE(&s->uart),
  194. 3, qdev_get_gpio_in(DEVICE(&s->plic),
  195. IBEX_UART0_RX_OVERFLOW_IRQ));
  196. if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer), errp)) {
  197. return;
  198. }
  199. sysbus_mmio_map(SYS_BUS_DEVICE(&s->timer), 0, memmap[IBEX_DEV_TIMER].base);
  200. sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer),
  201. 0, qdev_get_gpio_in(DEVICE(&s->plic),
  202. IBEX_TIMER_TIMEREXPIRED0_0));
  203. qdev_connect_gpio_out(DEVICE(&s->timer), 0,
  204. qdev_get_gpio_in(DEVICE(qemu_get_cpu(0)),
  205. IRQ_M_TIMER));
  206. /* SPI-Hosts */
  207. for (i = 0; i < OPENTITAN_NUM_SPI_HOSTS; ++i) {
  208. dev = DEVICE(&(s->spi_host[i]));
  209. if (!sysbus_realize(SYS_BUS_DEVICE(&s->spi_host[i]), errp)) {
  210. return;
  211. }
  212. busdev = SYS_BUS_DEVICE(dev);
  213. sysbus_mmio_map(busdev, 0, memmap[IBEX_DEV_SPI_HOST0 + i].base);
  214. switch (i) {
  215. case OPENTITAN_SPI_HOST0:
  216. sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(DEVICE(&s->plic),
  217. IBEX_SPI_HOST0_ERR_IRQ));
  218. sysbus_connect_irq(busdev, 1, qdev_get_gpio_in(DEVICE(&s->plic),
  219. IBEX_SPI_HOST0_SPI_EVENT_IRQ));
  220. break;
  221. case OPENTITAN_SPI_HOST1:
  222. sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(DEVICE(&s->plic),
  223. IBEX_SPI_HOST1_ERR_IRQ));
  224. sysbus_connect_irq(busdev, 1, qdev_get_gpio_in(DEVICE(&s->plic),
  225. IBEX_SPI_HOST1_SPI_EVENT_IRQ));
  226. break;
  227. }
  228. }
  229. create_unimplemented_device("riscv.lowrisc.ibex.gpio",
  230. memmap[IBEX_DEV_GPIO].base, memmap[IBEX_DEV_GPIO].size);
  231. create_unimplemented_device("riscv.lowrisc.ibex.spi_device",
  232. memmap[IBEX_DEV_SPI_DEVICE].base, memmap[IBEX_DEV_SPI_DEVICE].size);
  233. create_unimplemented_device("riscv.lowrisc.ibex.i2c",
  234. memmap[IBEX_DEV_I2C].base, memmap[IBEX_DEV_I2C].size);
  235. create_unimplemented_device("riscv.lowrisc.ibex.pattgen",
  236. memmap[IBEX_DEV_PATTGEN].base, memmap[IBEX_DEV_PATTGEN].size);
  237. create_unimplemented_device("riscv.lowrisc.ibex.sensor_ctrl",
  238. memmap[IBEX_DEV_SENSOR_CTRL].base, memmap[IBEX_DEV_SENSOR_CTRL].size);
  239. create_unimplemented_device("riscv.lowrisc.ibex.otp_ctrl",
  240. memmap[IBEX_DEV_OTP_CTRL].base, memmap[IBEX_DEV_OTP_CTRL].size);
  241. create_unimplemented_device("riscv.lowrisc.ibex.lc_ctrl",
  242. memmap[IBEX_DEV_LC_CTRL].base, memmap[IBEX_DEV_LC_CTRL].size);
  243. create_unimplemented_device("riscv.lowrisc.ibex.pwrmgr",
  244. memmap[IBEX_DEV_PWRMGR].base, memmap[IBEX_DEV_PWRMGR].size);
  245. create_unimplemented_device("riscv.lowrisc.ibex.rstmgr",
  246. memmap[IBEX_DEV_RSTMGR].base, memmap[IBEX_DEV_RSTMGR].size);
  247. create_unimplemented_device("riscv.lowrisc.ibex.clkmgr",
  248. memmap[IBEX_DEV_CLKMGR].base, memmap[IBEX_DEV_CLKMGR].size);
  249. create_unimplemented_device("riscv.lowrisc.ibex.pinmux",
  250. memmap[IBEX_DEV_PINMUX].base, memmap[IBEX_DEV_PINMUX].size);
  251. create_unimplemented_device("riscv.lowrisc.ibex.aon_timer",
  252. memmap[IBEX_DEV_AON_TIMER].base, memmap[IBEX_DEV_AON_TIMER].size);
  253. create_unimplemented_device("riscv.lowrisc.ibex.usbdev",
  254. memmap[IBEX_DEV_USBDEV].base, memmap[IBEX_DEV_USBDEV].size);
  255. create_unimplemented_device("riscv.lowrisc.ibex.flash_ctrl",
  256. memmap[IBEX_DEV_FLASH_CTRL].base, memmap[IBEX_DEV_FLASH_CTRL].size);
  257. create_unimplemented_device("riscv.lowrisc.ibex.aes",
  258. memmap[IBEX_DEV_AES].base, memmap[IBEX_DEV_AES].size);
  259. create_unimplemented_device("riscv.lowrisc.ibex.hmac",
  260. memmap[IBEX_DEV_HMAC].base, memmap[IBEX_DEV_HMAC].size);
  261. create_unimplemented_device("riscv.lowrisc.ibex.kmac",
  262. memmap[IBEX_DEV_KMAC].base, memmap[IBEX_DEV_KMAC].size);
  263. create_unimplemented_device("riscv.lowrisc.ibex.keymgr",
  264. memmap[IBEX_DEV_KEYMGR].base, memmap[IBEX_DEV_KEYMGR].size);
  265. create_unimplemented_device("riscv.lowrisc.ibex.csrng",
  266. memmap[IBEX_DEV_CSRNG].base, memmap[IBEX_DEV_CSRNG].size);
  267. create_unimplemented_device("riscv.lowrisc.ibex.entropy",
  268. memmap[IBEX_DEV_ENTROPY].base, memmap[IBEX_DEV_ENTROPY].size);
  269. create_unimplemented_device("riscv.lowrisc.ibex.edn0",
  270. memmap[IBEX_DEV_EDNO].base, memmap[IBEX_DEV_EDNO].size);
  271. create_unimplemented_device("riscv.lowrisc.ibex.edn1",
  272. memmap[IBEX_DEV_EDN1].base, memmap[IBEX_DEV_EDN1].size);
  273. create_unimplemented_device("riscv.lowrisc.ibex.alert_handler",
  274. memmap[IBEX_DEV_ALERT_HANDLER].base, memmap[IBEX_DEV_ALERT_HANDLER].size);
  275. create_unimplemented_device("riscv.lowrisc.ibex.sram_ctrl",
  276. memmap[IBEX_DEV_SRAM_CTRL].base, memmap[IBEX_DEV_SRAM_CTRL].size);
  277. create_unimplemented_device("riscv.lowrisc.ibex.otbn",
  278. memmap[IBEX_DEV_OTBN].base, memmap[IBEX_DEV_OTBN].size);
  279. create_unimplemented_device("riscv.lowrisc.ibex.ibex_cfg",
  280. memmap[IBEX_DEV_IBEX_CFG].base, memmap[IBEX_DEV_IBEX_CFG].size);
  281. }
  282. static const Property lowrisc_ibex_soc_props[] = {
  283. DEFINE_PROP_UINT32("resetvec", LowRISCIbexSoCState, resetvec, 0x20000400),
  284. };
  285. static void lowrisc_ibex_soc_class_init(ObjectClass *oc, void *data)
  286. {
  287. DeviceClass *dc = DEVICE_CLASS(oc);
  288. device_class_set_props(dc, lowrisc_ibex_soc_props);
  289. dc->realize = lowrisc_ibex_soc_realize;
  290. /* Reason: Uses serial_hds in realize function, thus can't be used twice */
  291. dc->user_creatable = false;
  292. }
  293. static const TypeInfo open_titan_types[] = {
  294. {
  295. .name = TYPE_RISCV_IBEX_SOC,
  296. .parent = TYPE_DEVICE,
  297. .instance_size = sizeof(LowRISCIbexSoCState),
  298. .instance_init = lowrisc_ibex_soc_init,
  299. .class_init = lowrisc_ibex_soc_class_init,
  300. }, {
  301. .name = TYPE_OPENTITAN_MACHINE,
  302. .parent = TYPE_MACHINE,
  303. .instance_size = sizeof(OpenTitanState),
  304. .class_init = opentitan_machine_class_init,
  305. }
  306. };
  307. DEFINE_TYPES(open_titan_types)