microchip_pfsoc.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677
  1. /*
  2. * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
  3. *
  4. * Copyright (c) 2020 Wind River Systems, Inc.
  5. *
  6. * Author:
  7. * Bin Meng <bin.meng@windriver.com>
  8. *
  9. * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
  10. *
  11. * 0) CLINT (Core Level Interruptor)
  12. * 1) PLIC (Platform Level Interrupt Controller)
  13. * 2) eNVM (Embedded Non-Volatile Memory)
  14. * 3) MMUARTs (Multi-Mode UART)
  15. * 4) Cadence eMMC/SDHC controller and an SD card connected to it
  16. * 5) SiFive Platform DMA (Direct Memory Access Controller)
  17. * 6) GEM (Gigabit Ethernet MAC Controller)
  18. * 7) DMC (DDR Memory Controller)
  19. * 8) IOSCB modules
  20. *
  21. * This board currently generates devicetree dynamically that indicates at least
  22. * two harts and up to five harts.
  23. *
  24. * This program is free software; you can redistribute it and/or modify it
  25. * under the terms and conditions of the GNU General Public License,
  26. * version 2 or later, as published by the Free Software Foundation.
  27. *
  28. * This program is distributed in the hope it will be useful, but WITHOUT
  29. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  30. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  31. * more details.
  32. *
  33. * You should have received a copy of the GNU General Public License along with
  34. * this program. If not, see <http://www.gnu.org/licenses/>.
  35. */
  36. #include "qemu/osdep.h"
  37. #include "qemu/error-report.h"
  38. #include "qemu/units.h"
  39. #include "qemu/cutils.h"
  40. #include "qapi/error.h"
  41. #include "hw/boards.h"
  42. #include "hw/loader.h"
  43. #include "hw/sysbus.h"
  44. #include "chardev/char.h"
  45. #include "hw/cpu/cluster.h"
  46. #include "target/riscv/cpu.h"
  47. #include "hw/misc/unimp.h"
  48. #include "hw/riscv/boot.h"
  49. #include "hw/riscv/riscv_hart.h"
  50. #include "hw/riscv/microchip_pfsoc.h"
  51. #include "hw/intc/riscv_aclint.h"
  52. #include "hw/intc/sifive_plic.h"
  53. #include "system/device_tree.h"
  54. #include "system/system.h"
  55. /*
  56. * The BIOS image used by this machine is called Hart Software Services (HSS).
  57. * See https://github.com/polarfire-soc/hart-software-services
  58. */
  59. #define BIOS_FILENAME "hss.bin"
  60. #define RESET_VECTOR 0x20220000
  61. /* CLINT timebase frequency */
  62. #define CLINT_TIMEBASE_FREQ 1000000
  63. /* GEM version */
  64. #define GEM_REVISION 0x0107010c
  65. /*
  66. * The complete description of the whole PolarFire SoC memory map is scattered
  67. * in different documents. There are several places to look at for memory maps:
  68. *
  69. * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
  70. * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
  71. * https://www.microsemi.com/document-portal/doc_download/
  72. * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
  73. * describes the whole picture of the PolarFire SoC memory map.
  74. *
  75. * 2 A zip file for PolarFire soC memory map, which can be downloaded from
  76. * https://www.microsemi.com/document-portal/doc_download/
  77. * 1244581-polarfire-soc-register-map, contains the following 2 major parts:
  78. * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
  79. * describes the complete integrated peripherals memory map
  80. * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
  81. * describes the complete IOSCB modules memory maps
  82. */
  83. static const MemMapEntry microchip_pfsoc_memmap[] = {
  84. [MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 },
  85. [MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 },
  86. [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
  87. [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
  88. [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
  89. [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
  90. [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
  91. [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
  92. [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
  93. [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
  94. [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
  95. [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
  96. [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
  97. [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
  98. [MICROCHIP_PFSOC_WDOG0] = { 0x20001000, 0x1000 },
  99. [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
  100. [MICROCHIP_PFSOC_AXISW] = { 0x20004000, 0x1000 },
  101. [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
  102. [MICROCHIP_PFSOC_FMETER] = { 0x20006000, 0x1000 },
  103. [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 },
  104. [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
  105. [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 },
  106. [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
  107. [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
  108. [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
  109. [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
  110. [MICROCHIP_PFSOC_WDOG1] = { 0x20101000, 0x1000 },
  111. [MICROCHIP_PFSOC_WDOG2] = { 0x20103000, 0x1000 },
  112. [MICROCHIP_PFSOC_WDOG3] = { 0x20105000, 0x1000 },
  113. [MICROCHIP_PFSOC_WDOG4] = { 0x20106000, 0x1000 },
  114. [MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 },
  115. [MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 },
  116. [MICROCHIP_PFSOC_I2C0] = { 0x2010a000, 0x1000 },
  117. [MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 },
  118. [MICROCHIP_PFSOC_CAN0] = { 0x2010c000, 0x1000 },
  119. [MICROCHIP_PFSOC_CAN1] = { 0x2010d000, 0x1000 },
  120. [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
  121. [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
  122. [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
  123. [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
  124. [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
  125. [MICROCHIP_PFSOC_RTC] = { 0x20124000, 0x1000 },
  126. [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
  127. [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
  128. [MICROCHIP_PFSOC_USB] = { 0x20201000, 0x1000 },
  129. [MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 },
  130. [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 },
  131. [MICROCHIP_PFSOC_FABRIC_FIC0] = { 0x2000000000, 0x1000000000 },
  132. [MICROCHIP_PFSOC_FABRIC_FIC1] = { 0x3000000000, 0x1000000000 },
  133. [MICROCHIP_PFSOC_FABRIC_FIC3] = { 0x40000000, 0x20000000 },
  134. [MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 },
  135. [MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 },
  136. [MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 },
  137. [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 },
  138. };
  139. static void microchip_pfsoc_soc_instance_init(Object *obj)
  140. {
  141. MachineState *ms = MACHINE(qdev_get_machine());
  142. MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
  143. object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
  144. qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
  145. object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
  146. TYPE_RISCV_HART_ARRAY);
  147. qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
  148. qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
  149. qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
  150. TYPE_RISCV_CPU_SIFIVE_E51);
  151. qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
  152. object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
  153. qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
  154. object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
  155. TYPE_RISCV_HART_ARRAY);
  156. qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
  157. qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
  158. qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
  159. TYPE_RISCV_CPU_SIFIVE_U54);
  160. qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
  161. object_initialize_child(obj, "dma-controller", &s->dma,
  162. TYPE_SIFIVE_PDMA);
  163. object_initialize_child(obj, "sysreg", &s->sysreg,
  164. TYPE_MCHP_PFSOC_SYSREG);
  165. object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
  166. TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
  167. object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
  168. TYPE_MCHP_PFSOC_DDR_CFG);
  169. object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
  170. object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
  171. object_initialize_child(obj, "sd-controller", &s->sdhci,
  172. TYPE_CADENCE_SDHCI);
  173. object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
  174. }
  175. static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
  176. {
  177. MachineState *ms = MACHINE(qdev_get_machine());
  178. MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
  179. const MemMapEntry *memmap = microchip_pfsoc_memmap;
  180. MemoryRegion *system_memory = get_system_memory();
  181. MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
  182. MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
  183. MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
  184. MemoryRegion *envm_data = g_new(MemoryRegion, 1);
  185. MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
  186. char *plic_hart_config;
  187. int i;
  188. sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
  189. sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
  190. /*
  191. * The cluster must be realized after the RISC-V hart array container,
  192. * as the container's CPU object is only created on realize, and the
  193. * CPU must exist and have been parented into the cluster before the
  194. * cluster is realized.
  195. */
  196. qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
  197. qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
  198. /* Reserved Memory at address 0 */
  199. memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
  200. memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
  201. memory_region_add_subregion(system_memory,
  202. memmap[MICROCHIP_PFSOC_RSVD0].base,
  203. rsvd0_mem);
  204. /* E51 DTIM */
  205. memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
  206. memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
  207. memory_region_add_subregion(system_memory,
  208. memmap[MICROCHIP_PFSOC_E51_DTIM].base,
  209. e51_dtim_mem);
  210. /* Bus Error Units */
  211. create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
  212. memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
  213. memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
  214. create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
  215. memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
  216. memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
  217. create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
  218. memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
  219. memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
  220. create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
  221. memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
  222. memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
  223. create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
  224. memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
  225. memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
  226. /* CLINT */
  227. riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
  228. 0, ms->smp.cpus, false);
  229. riscv_aclint_mtimer_create(
  230. memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
  231. RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
  232. RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
  233. CLINT_TIMEBASE_FREQ, false);
  234. /* L2 cache controller */
  235. create_unimplemented_device("microchip.pfsoc.l2cc",
  236. memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
  237. /*
  238. * Add L2-LIM at reset size.
  239. * This should be reduced in size as the L2 Cache Controller WayEnable
  240. * register is incremented. Unfortunately I don't see a nice (or any) way
  241. * to handle reducing or blocking out the L2 LIM while still allowing it
  242. * be re returned to all enabled after a reset. For the time being, just
  243. * leave it enabled all the time. This won't break anything, but will be
  244. * too generous to misbehaving guests.
  245. */
  246. memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
  247. memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
  248. memory_region_add_subregion(system_memory,
  249. memmap[MICROCHIP_PFSOC_L2LIM].base,
  250. l2lim_mem);
  251. /* create PLIC hart topology configuration string */
  252. plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus);
  253. /* PLIC */
  254. s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
  255. plic_hart_config, ms->smp.cpus, 0,
  256. MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
  257. MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
  258. MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
  259. MICROCHIP_PFSOC_PLIC_PENDING_BASE,
  260. MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
  261. MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
  262. MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
  263. MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
  264. memmap[MICROCHIP_PFSOC_PLIC].size);
  265. g_free(plic_hart_config);
  266. /* DMA */
  267. sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
  268. sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
  269. memmap[MICROCHIP_PFSOC_DMA].base);
  270. for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
  271. sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
  272. qdev_get_gpio_in(DEVICE(s->plic),
  273. MICROCHIP_PFSOC_DMA_IRQ0 + i));
  274. }
  275. /* SYSREG */
  276. sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
  277. sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
  278. memmap[MICROCHIP_PFSOC_SYSREG].base);
  279. sysbus_connect_irq(SYS_BUS_DEVICE(&s->sysreg), 0,
  280. qdev_get_gpio_in(DEVICE(s->plic),
  281. MICROCHIP_PFSOC_MAILBOX_IRQ));
  282. /* AXISW */
  283. create_unimplemented_device("microchip.pfsoc.axisw",
  284. memmap[MICROCHIP_PFSOC_AXISW].base,
  285. memmap[MICROCHIP_PFSOC_AXISW].size);
  286. /* MPUCFG */
  287. create_unimplemented_device("microchip.pfsoc.mpucfg",
  288. memmap[MICROCHIP_PFSOC_MPUCFG].base,
  289. memmap[MICROCHIP_PFSOC_MPUCFG].size);
  290. /* FMETER */
  291. create_unimplemented_device("microchip.pfsoc.fmeter",
  292. memmap[MICROCHIP_PFSOC_FMETER].base,
  293. memmap[MICROCHIP_PFSOC_FMETER].size);
  294. /* DDR SGMII PHY */
  295. sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
  296. sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
  297. memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
  298. /* DDR CFG */
  299. sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
  300. sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
  301. memmap[MICROCHIP_PFSOC_DDR_CFG].base);
  302. /* SDHCI */
  303. sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
  304. sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
  305. memmap[MICROCHIP_PFSOC_EMMC_SD].base);
  306. sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
  307. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
  308. /* MMUARTs */
  309. s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
  310. memmap[MICROCHIP_PFSOC_MMUART0].base,
  311. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
  312. serial_hd(0));
  313. s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
  314. memmap[MICROCHIP_PFSOC_MMUART1].base,
  315. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
  316. serial_hd(1));
  317. s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
  318. memmap[MICROCHIP_PFSOC_MMUART2].base,
  319. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
  320. serial_hd(2));
  321. s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
  322. memmap[MICROCHIP_PFSOC_MMUART3].base,
  323. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
  324. serial_hd(3));
  325. s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
  326. memmap[MICROCHIP_PFSOC_MMUART4].base,
  327. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
  328. serial_hd(4));
  329. /* Watchdogs */
  330. create_unimplemented_device("microchip.pfsoc.watchdog0",
  331. memmap[MICROCHIP_PFSOC_WDOG0].base,
  332. memmap[MICROCHIP_PFSOC_WDOG0].size);
  333. create_unimplemented_device("microchip.pfsoc.watchdog1",
  334. memmap[MICROCHIP_PFSOC_WDOG1].base,
  335. memmap[MICROCHIP_PFSOC_WDOG1].size);
  336. create_unimplemented_device("microchip.pfsoc.watchdog2",
  337. memmap[MICROCHIP_PFSOC_WDOG2].base,
  338. memmap[MICROCHIP_PFSOC_WDOG2].size);
  339. create_unimplemented_device("microchip.pfsoc.watchdog3",
  340. memmap[MICROCHIP_PFSOC_WDOG3].base,
  341. memmap[MICROCHIP_PFSOC_WDOG3].size);
  342. create_unimplemented_device("microchip.pfsoc.watchdog4",
  343. memmap[MICROCHIP_PFSOC_WDOG4].base,
  344. memmap[MICROCHIP_PFSOC_WDOG4].size);
  345. /* SPI */
  346. create_unimplemented_device("microchip.pfsoc.spi0",
  347. memmap[MICROCHIP_PFSOC_SPI0].base,
  348. memmap[MICROCHIP_PFSOC_SPI0].size);
  349. create_unimplemented_device("microchip.pfsoc.spi1",
  350. memmap[MICROCHIP_PFSOC_SPI1].base,
  351. memmap[MICROCHIP_PFSOC_SPI1].size);
  352. /* I2C */
  353. create_unimplemented_device("microchip.pfsoc.i2c0",
  354. memmap[MICROCHIP_PFSOC_I2C0].base,
  355. memmap[MICROCHIP_PFSOC_I2C0].size);
  356. create_unimplemented_device("microchip.pfsoc.i2c1",
  357. memmap[MICROCHIP_PFSOC_I2C1].base,
  358. memmap[MICROCHIP_PFSOC_I2C1].size);
  359. /* CAN */
  360. create_unimplemented_device("microchip.pfsoc.can0",
  361. memmap[MICROCHIP_PFSOC_CAN0].base,
  362. memmap[MICROCHIP_PFSOC_CAN0].size);
  363. create_unimplemented_device("microchip.pfsoc.can1",
  364. memmap[MICROCHIP_PFSOC_CAN1].base,
  365. memmap[MICROCHIP_PFSOC_CAN1].size);
  366. /* USB */
  367. create_unimplemented_device("microchip.pfsoc.usb",
  368. memmap[MICROCHIP_PFSOC_USB].base,
  369. memmap[MICROCHIP_PFSOC_USB].size);
  370. /* GEMs */
  371. qemu_configure_nic_device(DEVICE(&s->gem0), true, NULL);
  372. qemu_configure_nic_device(DEVICE(&s->gem1), true, NULL);
  373. object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
  374. object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
  375. sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
  376. sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
  377. memmap[MICROCHIP_PFSOC_GEM0].base);
  378. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
  379. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
  380. object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
  381. object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
  382. sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
  383. sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
  384. memmap[MICROCHIP_PFSOC_GEM1].base);
  385. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
  386. qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
  387. /* GPIOs */
  388. create_unimplemented_device("microchip.pfsoc.gpio0",
  389. memmap[MICROCHIP_PFSOC_GPIO0].base,
  390. memmap[MICROCHIP_PFSOC_GPIO0].size);
  391. create_unimplemented_device("microchip.pfsoc.gpio1",
  392. memmap[MICROCHIP_PFSOC_GPIO1].base,
  393. memmap[MICROCHIP_PFSOC_GPIO1].size);
  394. create_unimplemented_device("microchip.pfsoc.gpio2",
  395. memmap[MICROCHIP_PFSOC_GPIO2].base,
  396. memmap[MICROCHIP_PFSOC_GPIO2].size);
  397. /* eNVM */
  398. memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
  399. memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
  400. &error_fatal);
  401. memory_region_add_subregion(system_memory,
  402. memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
  403. envm_data);
  404. /* IOSCB */
  405. sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
  406. sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
  407. memmap[MICROCHIP_PFSOC_IOSCB].base);
  408. sysbus_connect_irq(SYS_BUS_DEVICE(&s->ioscb), 0,
  409. qdev_get_gpio_in(DEVICE(s->plic),
  410. MICROCHIP_PFSOC_MAILBOX_IRQ));
  411. /* FPGA Fabric */
  412. create_unimplemented_device("microchip.pfsoc.fabricfic3",
  413. memmap[MICROCHIP_PFSOC_FABRIC_FIC3].base,
  414. memmap[MICROCHIP_PFSOC_FABRIC_FIC3].size);
  415. /* FPGA Fabric */
  416. create_unimplemented_device("microchip.pfsoc.fabricfic0",
  417. memmap[MICROCHIP_PFSOC_FABRIC_FIC0].base,
  418. memmap[MICROCHIP_PFSOC_FABRIC_FIC0].size);
  419. /* FPGA Fabric */
  420. create_unimplemented_device("microchip.pfsoc.fabricfic1",
  421. memmap[MICROCHIP_PFSOC_FABRIC_FIC1].base,
  422. memmap[MICROCHIP_PFSOC_FABRIC_FIC1].size);
  423. /* QSPI Flash */
  424. memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
  425. "microchip.pfsoc.qspi_xip",
  426. memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
  427. &error_fatal);
  428. memory_region_add_subregion(system_memory,
  429. memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
  430. qspi_xip_mem);
  431. }
  432. static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
  433. {
  434. DeviceClass *dc = DEVICE_CLASS(oc);
  435. dc->realize = microchip_pfsoc_soc_realize;
  436. /* Reason: Uses serial_hds in realize function, thus can't be used twice */
  437. dc->user_creatable = false;
  438. }
  439. static const TypeInfo microchip_pfsoc_soc_type_info = {
  440. .name = TYPE_MICROCHIP_PFSOC,
  441. .parent = TYPE_DEVICE,
  442. .instance_size = sizeof(MicrochipPFSoCState),
  443. .instance_init = microchip_pfsoc_soc_instance_init,
  444. .class_init = microchip_pfsoc_soc_class_init,
  445. };
  446. static void microchip_pfsoc_soc_register_types(void)
  447. {
  448. type_register_static(&microchip_pfsoc_soc_type_info);
  449. }
  450. type_init(microchip_pfsoc_soc_register_types)
  451. static void microchip_icicle_kit_machine_init(MachineState *machine)
  452. {
  453. MachineClass *mc = MACHINE_GET_CLASS(machine);
  454. const MemMapEntry *memmap = microchip_pfsoc_memmap;
  455. MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
  456. MemoryRegion *system_memory = get_system_memory();
  457. MemoryRegion *mem_low = g_new(MemoryRegion, 1);
  458. MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
  459. MemoryRegion *mem_high = g_new(MemoryRegion, 1);
  460. MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
  461. uint64_t mem_low_size, mem_high_size;
  462. hwaddr firmware_load_addr;
  463. const char *firmware_name;
  464. bool kernel_as_payload = false;
  465. target_ulong firmware_end_addr, kernel_start_addr;
  466. uint64_t kernel_entry;
  467. uint64_t fdt_load_addr;
  468. DriveInfo *dinfo = drive_get(IF_SD, 0, 0);
  469. RISCVBootInfo boot_info;
  470. /* Sanity check on RAM size */
  471. if (machine->ram_size < mc->default_ram_size) {
  472. char *sz = size_to_str(mc->default_ram_size);
  473. error_report("Invalid RAM size, should be bigger than %s", sz);
  474. g_free(sz);
  475. exit(EXIT_FAILURE);
  476. }
  477. /* Initialize SoC */
  478. object_initialize_child(OBJECT(machine), "soc", &s->soc,
  479. TYPE_MICROCHIP_PFSOC);
  480. qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
  481. /* Split RAM into low and high regions using aliases to machine->ram */
  482. mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size;
  483. mem_high_size = machine->ram_size - mem_low_size;
  484. memory_region_init_alias(mem_low, NULL,
  485. "microchip.icicle.kit.ram_low", machine->ram,
  486. 0, mem_low_size);
  487. memory_region_init_alias(mem_high, NULL,
  488. "microchip.icicle.kit.ram_high", machine->ram,
  489. mem_low_size, mem_high_size);
  490. /* Register RAM */
  491. memory_region_add_subregion(system_memory,
  492. memmap[MICROCHIP_PFSOC_DRAM_LO].base,
  493. mem_low);
  494. memory_region_add_subregion(system_memory,
  495. memmap[MICROCHIP_PFSOC_DRAM_HI].base,
  496. mem_high);
  497. /* Create aliases for the low and high RAM regions */
  498. memory_region_init_alias(mem_low_alias, NULL,
  499. "microchip.icicle.kit.ram_low.alias",
  500. mem_low, 0, mem_low_size);
  501. memory_region_add_subregion(system_memory,
  502. memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
  503. mem_low_alias);
  504. memory_region_init_alias(mem_high_alias, NULL,
  505. "microchip.icicle.kit.ram_high.alias",
  506. mem_high, 0, mem_high_size);
  507. memory_region_add_subregion(system_memory,
  508. memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
  509. mem_high_alias);
  510. /* Attach an SD card */
  511. if (dinfo) {
  512. CadenceSDHCIState *sdhci = &(s->soc.sdhci);
  513. DeviceState *card = qdev_new(TYPE_SD_CARD);
  514. qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
  515. &error_fatal);
  516. qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
  517. }
  518. /*
  519. * We follow the following table to select which payload we execute.
  520. *
  521. * -bios | -kernel | payload
  522. * -------+------------+--------
  523. * N | N | HSS
  524. * Y | don't care | HSS
  525. * N | Y | kernel
  526. *
  527. * This ensures backwards compatibility with how we used to expose -bios
  528. * to users but allows them to run through direct kernel booting as well.
  529. *
  530. * When -kernel is used for direct boot, -dtb must be present to provide
  531. * a valid device tree for the board, as we don't generate device tree.
  532. */
  533. if (machine->kernel_filename && machine->dtb) {
  534. int fdt_size;
  535. machine->fdt = load_device_tree(machine->dtb, &fdt_size);
  536. if (!machine->fdt) {
  537. error_report("load_device_tree() failed");
  538. exit(1);
  539. }
  540. firmware_name = RISCV64_BIOS_BIN;
  541. firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
  542. kernel_as_payload = true;
  543. }
  544. if (!kernel_as_payload) {
  545. firmware_name = BIOS_FILENAME;
  546. firmware_load_addr = RESET_VECTOR;
  547. }
  548. /* Load the firmware */
  549. firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
  550. &firmware_load_addr, NULL);
  551. riscv_boot_info_init(&boot_info, &s->soc.u_cpus);
  552. if (kernel_as_payload) {
  553. kernel_start_addr = riscv_calc_kernel_start_addr(&boot_info,
  554. firmware_end_addr);
  555. riscv_load_kernel(machine, &boot_info, kernel_start_addr,
  556. true, NULL);
  557. kernel_entry = boot_info.image_low_addr;
  558. /* Compute the fdt load address in dram */
  559. fdt_load_addr = riscv_compute_fdt_addr(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
  560. memmap[MICROCHIP_PFSOC_DRAM_LO].size,
  561. machine, &boot_info);
  562. riscv_load_fdt(fdt_load_addr, machine->fdt);
  563. /* Load the reset vector */
  564. riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
  565. memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
  566. memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
  567. kernel_entry, fdt_load_addr);
  568. }
  569. }
  570. static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
  571. {
  572. MachineClass *mc = MACHINE_CLASS(oc);
  573. mc->desc = "Microchip PolarFire SoC Icicle Kit";
  574. mc->init = microchip_icicle_kit_machine_init;
  575. mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
  576. MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
  577. mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
  578. mc->default_cpus = mc->min_cpus;
  579. mc->default_ram_id = "microchip.icicle.kit.ram";
  580. mc->auto_create_sdcard = true;
  581. /*
  582. * Map 513 MiB high memory, the minimum required high memory size, because
  583. * HSS will do memory test against the high memory address range regardless
  584. * of physical memory installed.
  585. *
  586. * See memory_tests() in mss_ddr.c in the HSS source code.
  587. */
  588. mc->default_ram_size = 1537 * MiB;
  589. }
  590. static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
  591. .name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
  592. .parent = TYPE_MACHINE,
  593. .class_init = microchip_icicle_kit_machine_class_init,
  594. .instance_size = sizeof(MicrochipIcicleKitState),
  595. };
  596. static void microchip_icicle_kit_machine_init_register_types(void)
  597. {
  598. type_register_static(&microchip_icicle_kit_machine_typeinfo);
  599. }
  600. type_init(microchip_icicle_kit_machine_init_register_types)