boot.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524
  1. /*
  2. * QEMU RISC-V Boot Helper
  3. *
  4. * Copyright (c) 2017 SiFive, Inc.
  5. * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2 or later, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along with
  17. * this program. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu/datadir.h"
  21. #include "qemu/units.h"
  22. #include "qemu/error-report.h"
  23. #include "exec/cpu-defs.h"
  24. #include "hw/boards.h"
  25. #include "hw/loader.h"
  26. #include "hw/riscv/boot.h"
  27. #include "hw/riscv/boot_opensbi.h"
  28. #include "elf.h"
  29. #include "system/device_tree.h"
  30. #include "system/qtest.h"
  31. #include "system/kvm.h"
  32. #include "system/reset.h"
  33. #include <libfdt.h>
  34. bool riscv_is_32bit(RISCVHartArrayState *harts)
  35. {
  36. RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(&harts->harts[0]);
  37. return mcc->misa_mxl_max == MXL_RV32;
  38. }
  39. /*
  40. * Return the per-socket PLIC hart topology configuration string
  41. * (caller must free with g_free())
  42. */
  43. char *riscv_plic_hart_config_string(int hart_count)
  44. {
  45. g_autofree const char **vals = g_new(const char *, hart_count + 1);
  46. int i;
  47. for (i = 0; i < hart_count; i++) {
  48. CPUState *cs = qemu_get_cpu(i);
  49. CPURISCVState *env = &RISCV_CPU(cs)->env;
  50. if (kvm_enabled()) {
  51. vals[i] = "S";
  52. } else if (riscv_has_ext(env, RVS)) {
  53. vals[i] = "MS";
  54. } else {
  55. vals[i] = "M";
  56. }
  57. }
  58. vals[i] = NULL;
  59. /* g_strjoinv() obliges us to cast away const here */
  60. return g_strjoinv(",", (char **)vals);
  61. }
  62. void riscv_boot_info_init(RISCVBootInfo *info, RISCVHartArrayState *harts)
  63. {
  64. info->kernel_size = 0;
  65. info->initrd_size = 0;
  66. info->is_32bit = riscv_is_32bit(harts);
  67. }
  68. target_ulong riscv_calc_kernel_start_addr(RISCVBootInfo *info,
  69. target_ulong firmware_end_addr) {
  70. if (info->is_32bit) {
  71. return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
  72. } else {
  73. return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
  74. }
  75. }
  76. const char *riscv_default_firmware_name(RISCVHartArrayState *harts)
  77. {
  78. if (riscv_is_32bit(harts)) {
  79. return RISCV32_BIOS_BIN;
  80. }
  81. return RISCV64_BIOS_BIN;
  82. }
  83. static char *riscv_find_bios(const char *bios_filename)
  84. {
  85. char *filename;
  86. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename);
  87. if (filename == NULL) {
  88. if (!qtest_enabled()) {
  89. /*
  90. * We only ship OpenSBI binary bios images in the QEMU source.
  91. * For machines that use images other than the default bios,
  92. * running QEMU test will complain hence let's suppress the error
  93. * report for QEMU testing.
  94. */
  95. error_report("Unable to find the RISC-V BIOS \"%s\"",
  96. bios_filename);
  97. exit(1);
  98. }
  99. }
  100. return filename;
  101. }
  102. char *riscv_find_firmware(const char *firmware_filename,
  103. const char *default_machine_firmware)
  104. {
  105. char *filename = NULL;
  106. if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) {
  107. /*
  108. * The user didn't specify -bios, or has specified "-bios default".
  109. * That means we are going to load the OpenSBI binary included in
  110. * the QEMU source.
  111. */
  112. filename = riscv_find_bios(default_machine_firmware);
  113. } else if (strcmp(firmware_filename, "none")) {
  114. filename = riscv_find_bios(firmware_filename);
  115. }
  116. return filename;
  117. }
  118. target_ulong riscv_find_and_load_firmware(MachineState *machine,
  119. const char *default_machine_firmware,
  120. hwaddr *firmware_load_addr,
  121. symbol_fn_t sym_cb)
  122. {
  123. char *firmware_filename;
  124. target_ulong firmware_end_addr = *firmware_load_addr;
  125. firmware_filename = riscv_find_firmware(machine->firmware,
  126. default_machine_firmware);
  127. if (firmware_filename) {
  128. /* If not "none" load the firmware */
  129. firmware_end_addr = riscv_load_firmware(firmware_filename,
  130. firmware_load_addr, sym_cb);
  131. g_free(firmware_filename);
  132. }
  133. return firmware_end_addr;
  134. }
  135. target_ulong riscv_load_firmware(const char *firmware_filename,
  136. hwaddr *firmware_load_addr,
  137. symbol_fn_t sym_cb)
  138. {
  139. uint64_t firmware_entry, firmware_end;
  140. ssize_t firmware_size;
  141. g_assert(firmware_filename != NULL);
  142. if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
  143. &firmware_entry, NULL, &firmware_end, NULL,
  144. 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
  145. *firmware_load_addr = firmware_entry;
  146. return firmware_end;
  147. }
  148. firmware_size = load_image_targphys_as(firmware_filename,
  149. *firmware_load_addr,
  150. current_machine->ram_size, NULL);
  151. if (firmware_size > 0) {
  152. return *firmware_load_addr + firmware_size;
  153. }
  154. error_report("could not load firmware '%s'", firmware_filename);
  155. exit(1);
  156. }
  157. static void riscv_load_initrd(MachineState *machine, RISCVBootInfo *info)
  158. {
  159. const char *filename = machine->initrd_filename;
  160. uint64_t mem_size = machine->ram_size;
  161. void *fdt = machine->fdt;
  162. hwaddr start, end;
  163. ssize_t size;
  164. g_assert(filename != NULL);
  165. /*
  166. * We want to put the initrd far enough into RAM that when the
  167. * kernel is uncompressed it will not clobber the initrd. However
  168. * on boards without much RAM we must ensure that we still leave
  169. * enough room for a decent sized initrd, and on boards with large
  170. * amounts of RAM, we put the initrd at 512MB to allow large kernels
  171. * to boot.
  172. * So for boards with less than 1GB of RAM we put the initrd
  173. * halfway into RAM, and for boards with 1GB of RAM or more we put
  174. * the initrd at 512MB.
  175. */
  176. start = info->image_low_addr + MIN(mem_size / 2, 512 * MiB);
  177. size = load_ramdisk(filename, start, mem_size - start);
  178. if (size == -1) {
  179. size = load_image_targphys(filename, start, mem_size - start);
  180. if (size == -1) {
  181. error_report("could not load ramdisk '%s'", filename);
  182. exit(1);
  183. }
  184. }
  185. info->initrd_start = start;
  186. info->initrd_size = size;
  187. /* Some RISC-V machines (e.g. opentitan) don't have a fdt. */
  188. if (fdt) {
  189. end = start + size;
  190. qemu_fdt_setprop_u64(fdt, "/chosen", "linux,initrd-start", start);
  191. qemu_fdt_setprop_u64(fdt, "/chosen", "linux,initrd-end", end);
  192. }
  193. }
  194. void riscv_load_kernel(MachineState *machine,
  195. RISCVBootInfo *info,
  196. target_ulong kernel_start_addr,
  197. bool load_initrd,
  198. symbol_fn_t sym_cb)
  199. {
  200. const char *kernel_filename = machine->kernel_filename;
  201. ssize_t kernel_size;
  202. void *fdt = machine->fdt;
  203. g_assert(kernel_filename != NULL);
  204. /*
  205. * NB: Use low address not ELF entry point to ensure that the fw_dynamic
  206. * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
  207. * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
  208. * the (expected) load address load address. This allows kernels to have
  209. * separate SBI and ELF entry points (used by FreeBSD, for example).
  210. */
  211. kernel_size = load_elf_ram_sym(kernel_filename, NULL, NULL, NULL, NULL,
  212. &info->image_low_addr, &info->image_high_addr,
  213. NULL, ELFDATA2LSB, EM_RISCV,
  214. 1, 0, NULL, true, sym_cb);
  215. if (kernel_size > 0) {
  216. info->kernel_size = kernel_size;
  217. goto out;
  218. }
  219. kernel_size = load_uimage_as(kernel_filename, &info->image_low_addr,
  220. NULL, NULL, NULL, NULL, NULL);
  221. if (kernel_size > 0) {
  222. info->kernel_size = kernel_size;
  223. info->image_high_addr = info->image_low_addr + kernel_size;
  224. goto out;
  225. }
  226. kernel_size = load_image_targphys_as(kernel_filename, kernel_start_addr,
  227. current_machine->ram_size, NULL);
  228. if (kernel_size > 0) {
  229. info->kernel_size = kernel_size;
  230. info->image_low_addr = kernel_start_addr;
  231. info->image_high_addr = info->image_low_addr + kernel_size;
  232. goto out;
  233. }
  234. error_report("could not load kernel '%s'", kernel_filename);
  235. exit(1);
  236. out:
  237. /*
  238. * For 32 bit CPUs 'image_low_addr' can be sign-extended by
  239. * load_elf_ram_sym().
  240. */
  241. if (info->is_32bit) {
  242. info->image_low_addr = extract64(info->image_low_addr, 0, 32);
  243. }
  244. if (load_initrd && machine->initrd_filename) {
  245. riscv_load_initrd(machine, info);
  246. }
  247. if (fdt && machine->kernel_cmdline && *machine->kernel_cmdline) {
  248. qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
  249. machine->kernel_cmdline);
  250. }
  251. }
  252. /*
  253. * This function makes an assumption that the DRAM interval
  254. * 'dram_base' + 'dram_size' is contiguous.
  255. *
  256. * Considering that 'dram_end' is the lowest value between
  257. * the end of the DRAM block and MachineState->ram_size, the
  258. * FDT location will vary according to 'dram_base':
  259. *
  260. * - if 'dram_base' is less that 3072 MiB, the FDT will be
  261. * put at the lowest value between 3072 MiB and 'dram_end';
  262. *
  263. * - if 'dram_base' is higher than 3072 MiB, the FDT will be
  264. * put at 'dram_end'.
  265. *
  266. * The FDT is fdt_packed() during the calculation.
  267. */
  268. uint64_t riscv_compute_fdt_addr(hwaddr dram_base, hwaddr dram_size,
  269. MachineState *ms, RISCVBootInfo *info)
  270. {
  271. int ret = fdt_pack(ms->fdt);
  272. hwaddr dram_end, temp;
  273. int fdtsize;
  274. uint64_t dtb_start, dtb_start_limit;
  275. /* Should only fail if we've built a corrupted tree */
  276. g_assert(ret == 0);
  277. fdtsize = fdt_totalsize(ms->fdt);
  278. if (fdtsize <= 0) {
  279. error_report("invalid device-tree");
  280. exit(1);
  281. }
  282. if (info->initrd_size) {
  283. /* If initrd is successfully loaded, place DTB after it. */
  284. dtb_start_limit = info->initrd_start + info->initrd_size;
  285. } else if (info->kernel_size) {
  286. /* If only kernel is successfully loaded, place DTB after it. */
  287. dtb_start_limit = info->image_high_addr;
  288. } else {
  289. /* Otherwise, do not check DTB overlapping */
  290. dtb_start_limit = 0;
  291. }
  292. /*
  293. * A dram_size == 0, usually from a MemMapEntry[].size element,
  294. * means that the DRAM block goes all the way to ms->ram_size.
  295. */
  296. dram_end = dram_base;
  297. dram_end += dram_size ? MIN(ms->ram_size, dram_size) : ms->ram_size;
  298. /*
  299. * We should put fdt as far as possible to avoid kernel/initrd overwriting
  300. * its content. But it should be addressable by 32 bit system as well in RV32.
  301. * Thus, put it near to the end of dram in RV64, and put it near to the end
  302. * of dram or 3GB whichever is lesser in RV32.
  303. */
  304. if (!info->is_32bit) {
  305. temp = dram_end;
  306. } else {
  307. temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
  308. }
  309. dtb_start = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
  310. if (dtb_start_limit && (dtb_start < dtb_start_limit)) {
  311. error_report("No enough memory to place DTB after kernel/initrd");
  312. exit(1);
  313. }
  314. return dtb_start;
  315. }
  316. /*
  317. * 'fdt_addr' is received as hwaddr because boards might put
  318. * the FDT beyond 32-bit addressing boundary.
  319. */
  320. void riscv_load_fdt(hwaddr fdt_addr, void *fdt)
  321. {
  322. uint32_t fdtsize = fdt_totalsize(fdt);
  323. /* copy in the device tree */
  324. rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
  325. &address_space_memory);
  326. qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
  327. rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
  328. }
  329. void riscv_rom_copy_firmware_info(MachineState *machine,
  330. RISCVHartArrayState *harts,
  331. hwaddr rom_base, hwaddr rom_size,
  332. uint32_t reset_vec_size,
  333. uint64_t kernel_entry)
  334. {
  335. struct fw_dynamic_info32 dinfo32;
  336. struct fw_dynamic_info dinfo;
  337. size_t dinfo_len;
  338. if (riscv_is_32bit(harts)) {
  339. dinfo32.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
  340. dinfo32.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
  341. dinfo32.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
  342. dinfo32.next_addr = cpu_to_le32(kernel_entry);
  343. dinfo32.options = 0;
  344. dinfo32.boot_hart = 0;
  345. dinfo_len = sizeof(dinfo32);
  346. } else {
  347. dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
  348. dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
  349. dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
  350. dinfo.next_addr = cpu_to_le64(kernel_entry);
  351. dinfo.options = 0;
  352. dinfo.boot_hart = 0;
  353. dinfo_len = sizeof(dinfo);
  354. }
  355. /**
  356. * copy the dynamic firmware info. This information is specific to
  357. * OpenSBI but doesn't break any other firmware as long as they don't
  358. * expect any certain value in "a2" register.
  359. */
  360. if (dinfo_len > (rom_size - reset_vec_size)) {
  361. error_report("not enough space to store dynamic firmware info");
  362. exit(1);
  363. }
  364. rom_add_blob_fixed_as("mrom.finfo",
  365. riscv_is_32bit(harts) ?
  366. (void *)&dinfo32 : (void *)&dinfo,
  367. dinfo_len,
  368. rom_base + reset_vec_size,
  369. &address_space_memory);
  370. }
  371. void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
  372. hwaddr start_addr,
  373. hwaddr rom_base, hwaddr rom_size,
  374. uint64_t kernel_entry,
  375. uint64_t fdt_load_addr)
  376. {
  377. int i;
  378. uint32_t start_addr_hi32 = 0x00000000;
  379. uint32_t fdt_load_addr_hi32 = 0x00000000;
  380. if (!riscv_is_32bit(harts)) {
  381. start_addr_hi32 = start_addr >> 32;
  382. fdt_load_addr_hi32 = fdt_load_addr >> 32;
  383. }
  384. /* reset vector */
  385. uint32_t reset_vec[10] = {
  386. 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
  387. 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
  388. 0xf1402573, /* csrr a0, mhartid */
  389. 0,
  390. 0,
  391. 0x00028067, /* jr t0 */
  392. start_addr, /* start: .dword */
  393. start_addr_hi32,
  394. fdt_load_addr, /* fdt_laddr: .dword */
  395. fdt_load_addr_hi32,
  396. /* fw_dyn: */
  397. };
  398. if (riscv_is_32bit(harts)) {
  399. reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
  400. reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
  401. } else {
  402. reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
  403. reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
  404. }
  405. if (!harts->harts[0].cfg.ext_zicsr) {
  406. /*
  407. * The Zicsr extension has been disabled, so let's ensure we don't
  408. * run the CSR instruction. Let's fill the address with a non
  409. * compressed nop.
  410. */
  411. reset_vec[2] = 0x00000013; /* addi x0, x0, 0 */
  412. }
  413. /* copy in the reset vector in little_endian byte order */
  414. for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
  415. reset_vec[i] = cpu_to_le32(reset_vec[i]);
  416. }
  417. rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
  418. rom_base, &address_space_memory);
  419. riscv_rom_copy_firmware_info(machine, harts,
  420. rom_base, rom_size,
  421. sizeof(reset_vec),
  422. kernel_entry);
  423. }
  424. void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
  425. {
  426. CPUState *cs;
  427. for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
  428. RISCVCPU *riscv_cpu = RISCV_CPU(cs);
  429. riscv_cpu->env.kernel_addr = kernel_addr;
  430. riscv_cpu->env.fdt_addr = fdt_addr;
  431. }
  432. }
  433. void riscv_setup_firmware_boot(MachineState *machine)
  434. {
  435. if (machine->kernel_filename) {
  436. FWCfgState *fw_cfg;
  437. fw_cfg = fw_cfg_find();
  438. assert(fw_cfg);
  439. /*
  440. * Expose the kernel, the command line, and the initrd in fw_cfg.
  441. * We don't process them here at all, it's all left to the
  442. * firmware.
  443. */
  444. load_image_to_fw_cfg(fw_cfg,
  445. FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
  446. machine->kernel_filename,
  447. true);
  448. load_image_to_fw_cfg(fw_cfg,
  449. FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
  450. machine->initrd_filename, false);
  451. if (machine->kernel_cmdline) {
  452. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  453. strlen(machine->kernel_cmdline) + 1);
  454. fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
  455. machine->kernel_cmdline);
  456. }
  457. }
  458. }