123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662 |
- /*
- * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
- *
- * Copyright IBM Corp. 2020
- *
- * Authors:
- * Daniel Henrique Barboza <danielhb413@gmail.com>
- *
- * This work is licensed under the terms of the GNU GPL, version 2 or later.
- * See the COPYING file in the top-level directory.
- */
- #include "qemu/osdep.h"
- #include "hw/ppc/spapr_numa.h"
- #include "hw/pci-host/spapr.h"
- #include "hw/ppc/fdt.h"
- /* Moved from hw/ppc/spapr_pci_nvlink2.c */
- #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1))
- /*
- * Retrieves max_dist_ref_points of the current NUMA affinity.
- */
- static int get_max_dist_ref_points(SpaprMachineState *spapr)
- {
- if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
- return FORM2_DIST_REF_POINTS;
- }
- return FORM1_DIST_REF_POINTS;
- }
- /*
- * Retrieves numa_assoc_size of the current NUMA affinity.
- */
- static int get_numa_assoc_size(SpaprMachineState *spapr)
- {
- if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
- return FORM2_NUMA_ASSOC_SIZE;
- }
- return FORM1_NUMA_ASSOC_SIZE;
- }
- /*
- * Retrieves vcpu_assoc_size of the current NUMA affinity.
- *
- * vcpu_assoc_size is the size of ibm,associativity array
- * for CPUs, which has an extra element (vcpu_id) in the end.
- */
- static int get_vcpu_assoc_size(SpaprMachineState *spapr)
- {
- return get_numa_assoc_size(spapr) + 1;
- }
- /*
- * Retrieves the ibm,associativity array of NUMA node 'node_id'
- * for the current NUMA affinity.
- */
- static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
- {
- if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
- return spapr->FORM2_assoc_array[node_id];
- }
- return spapr->FORM1_assoc_array[node_id];
- }
- /*
- * Wrapper that returns node distance from ms->numa_state->nodes
- * after handling edge cases where the distance might be absent.
- */
- static int get_numa_distance(MachineState *ms, int src, int dst)
- {
- NodeInfo *numa_info = ms->numa_state->nodes;
- int ret = numa_info[src].distance[dst];
- if (ret != 0) {
- return ret;
- }
- /*
- * In case QEMU adds a default NUMA single node when the user
- * did not add any, or where the user did not supply distances,
- * the distance will be absent (zero). Return local/remote
- * distance in this case.
- */
- if (src == dst) {
- return NUMA_DISTANCE_MIN;
- }
- return NUMA_DISTANCE_DEFAULT;
- }
- static bool spapr_numa_is_symmetrical(MachineState *ms)
- {
- int nb_numa_nodes = ms->numa_state->num_nodes;
- int src, dst;
- for (src = 0; src < nb_numa_nodes; src++) {
- for (dst = src; dst < nb_numa_nodes; dst++) {
- if (get_numa_distance(ms, src, dst) !=
- get_numa_distance(ms, dst, src)) {
- return false;
- }
- }
- }
- return true;
- }
- /*
- * This function will translate the user distances into
- * what the kernel understand as possible values: 10
- * (local distance), 20, 40, 80 and 160, and return the equivalent
- * NUMA level for each. Current heuristic is:
- * - local distance (10) returns numa_level = 0x4, meaning there is
- * no rounding for local distance
- * - distances between 11 and 30 inclusive -> rounded to 20,
- * numa_level = 0x3
- * - distances between 31 and 60 inclusive -> rounded to 40,
- * numa_level = 0x2
- * - distances between 61 and 120 inclusive -> rounded to 80,
- * numa_level = 0x1
- * - everything above 120 returns numa_level = 0 to indicate that
- * there is no match. This will be calculated as disntace = 160
- * by the kernel (as of v5.9)
- */
- static uint8_t spapr_numa_get_numa_level(uint8_t distance)
- {
- if (distance == 10) {
- return 0x4;
- } else if (distance > 11 && distance <= 30) {
- return 0x3;
- } else if (distance > 31 && distance <= 60) {
- return 0x2;
- } else if (distance > 61 && distance <= 120) {
- return 0x1;
- }
- return 0;
- }
- static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
- {
- MachineState *ms = MACHINE(spapr);
- int nb_numa_nodes = ms->numa_state->num_nodes;
- int src, dst, i, j;
- /*
- * Fill all associativity domains of non-zero NUMA nodes with
- * node_id. This is required because the default value (0) is
- * considered a match with associativity domains of node 0.
- */
- for (i = 1; i < nb_numa_nodes; i++) {
- for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
- spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
- }
- }
- for (src = 0; src < nb_numa_nodes; src++) {
- for (dst = src; dst < nb_numa_nodes; dst++) {
- /*
- * This is how the associativity domain between A and B
- * is calculated:
- *
- * - get the distance D between them
- * - get the correspondent NUMA level 'n_level' for D
- * - all associativity arrays were initialized with their own
- * numa_ids, and we're calculating the distance in node_id
- * ascending order, starting from node id 0 (the first node
- * retrieved by numa_state). This will have a cascade effect in
- * the algorithm because the associativity domains that node 0
- * defines will be carried over to other nodes, and node 1
- * associativities will be carried over after taking node 0
- * associativities into account, and so on. This happens because
- * we'll assign assoc_src as the associativity domain of dst
- * as well, for all NUMA levels beyond and including n_level.
- *
- * The PPC kernel expects the associativity domains of node 0 to
- * be always 0, and this algorithm will grant that by default.
- */
- uint8_t distance = get_numa_distance(ms, src, dst);
- uint8_t n_level = spapr_numa_get_numa_level(distance);
- uint32_t assoc_src;
- /*
- * n_level = 0 means that the distance is greater than our last
- * rounded value (120). In this case there is no NUMA level match
- * between src and dst and we can skip the remaining of the loop.
- *
- * The Linux kernel will assume that the distance between src and
- * dst, in this case of no match, is 10 (local distance) doubled
- * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
- * levels (4), so this gives us 10*2*2*2*2 = 160.
- *
- * This logic can be seen in the Linux kernel source code, as of
- * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
- */
- if (n_level == 0) {
- continue;
- }
- /*
- * We must assign all assoc_src to dst, starting from n_level
- * and going up to 0x1.
- */
- for (i = n_level; i > 0; i--) {
- assoc_src = spapr->FORM1_assoc_array[src][i];
- spapr->FORM1_assoc_array[dst][i] = assoc_src;
- }
- }
- }
- }
- static void spapr_numa_FORM1_affinity_check(MachineState *machine)
- {
- int i;
- /*
- * Check we don't have a memory-less/cpu-less NUMA node
- * Firmware relies on the existing memory/cpu topology to provide the
- * NUMA topology to the kernel.
- * And the linux kernel needs to know the NUMA topology at start
- * to be able to hotplug CPUs later.
- */
- if (machine->numa_state->num_nodes) {
- for (i = 0; i < machine->numa_state->num_nodes; ++i) {
- /* check for memory-less node */
- if (machine->numa_state->nodes[i].node_mem == 0) {
- CPUState *cs;
- int found = 0;
- /* check for cpu-less node */
- CPU_FOREACH(cs) {
- PowerPCCPU *cpu = POWERPC_CPU(cs);
- if (cpu->node_id == i) {
- found = 1;
- break;
- }
- }
- /* memory-less and cpu-less node */
- if (!found) {
- error_report(
- "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
- exit(EXIT_FAILURE);
- }
- }
- }
- }
- if (!spapr_numa_is_symmetrical(machine)) {
- error_report(
- "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
- exit(EXIT_FAILURE);
- }
- }
- /*
- * Set NUMA machine state data based on FORM1 affinity semantics.
- */
- static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
- MachineState *machine)
- {
- SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
- int nb_numa_nodes = machine->numa_state->num_nodes;
- int i, j;
- /*
- * For all associativity arrays: first position is the size,
- * position FORM1_DIST_REF_POINTS is always the numa_id,
- * represented by the index 'i'.
- *
- * This will break on sparse NUMA setups, when/if QEMU starts
- * to support it, because there will be no more guarantee that
- * 'i' will be a valid node_id set by the user.
- */
- for (i = 0; i < nb_numa_nodes; i++) {
- spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
- spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
- }
- for (i = nb_numa_nodes; i < nb_numa_nodes; i++) {
- spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
- for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
- uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
- SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
- spapr->FORM1_assoc_array[i][j] = gpu_assoc;
- }
- spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
- }
- /*
- * Guests pseries-5.1 and older uses zeroed associativity domains,
- * i.e. no domain definition based on NUMA distance input.
- *
- * Same thing with guests that have only one NUMA node.
- */
- if (smc->pre_5_2_numa_associativity ||
- machine->numa_state->num_nodes <= 1) {
- return;
- }
- spapr_numa_define_FORM1_domains(spapr);
- }
- /*
- * Init NUMA FORM2 machine state data
- */
- static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
- {
- int i;
- /*
- * For all resources but CPUs, FORM2 associativity arrays will
- * be a size 2 array with the following format:
- *
- * ibm,associativity = {1, numa_id}
- *
- * CPUs will write an additional 'vcpu_id' on top of the arrays
- * being initialized here. 'numa_id' is represented by the
- * index 'i' of the loop.
- */
- for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
- spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
- spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
- }
- }
- void spapr_numa_associativity_init(SpaprMachineState *spapr,
- MachineState *machine)
- {
- spapr_numa_FORM1_affinity_init(spapr, machine);
- spapr_numa_FORM2_affinity_init(spapr);
- }
- void spapr_numa_associativity_check(SpaprMachineState *spapr)
- {
- /*
- * FORM2 does not have any restrictions we need to handle
- * at CAS time, for now.
- */
- if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
- return;
- }
- spapr_numa_FORM1_affinity_check(MACHINE(spapr));
- }
- void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
- int offset, int nodeid)
- {
- const uint32_t *associativity = get_associativity(spapr, nodeid);
- _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
- associativity,
- get_numa_assoc_size(spapr) * sizeof(uint32_t))));
- }
- static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
- PowerPCCPU *cpu)
- {
- const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
- int max_distance_ref_points = get_max_dist_ref_points(spapr);
- int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
- uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
- int index = spapr_get_vcpu_id(cpu);
- /*
- * VCPUs have an extra 'cpu_id' value in ibm,associativity
- * compared to other resources. Increment the size at index
- * 0, put cpu_id last, then copy the remaining associativity
- * domains.
- */
- vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
- vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
- memcpy(vcpu_assoc + 1, associativity + 1,
- (vcpu_assoc_size - 2) * sizeof(uint32_t));
- return vcpu_assoc;
- }
- int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
- int offset, PowerPCCPU *cpu)
- {
- g_autofree uint32_t *vcpu_assoc = NULL;
- int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
- vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
- /* Advertise NUMA via ibm,associativity */
- return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
- vcpu_assoc_size * sizeof(uint32_t));
- }
- int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
- int offset)
- {
- MachineState *machine = MACHINE(spapr);
- int max_distance_ref_points = get_max_dist_ref_points(spapr);
- int nb_numa_nodes = machine->numa_state->num_nodes;
- int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
- g_autofree uint32_t *int_buf = NULL;
- uint32_t *cur_index;
- int i;
- /* ibm,associativity-lookup-arrays */
- int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2);
- cur_index = int_buf;
- int_buf[0] = cpu_to_be32(nr_nodes);
- /* Number of entries per associativity list */
- int_buf[1] = cpu_to_be32(max_distance_ref_points);
- cur_index += 2;
- for (i = 0; i < nr_nodes; i++) {
- /*
- * For the lookup-array we use the ibm,associativity array of the
- * current NUMA affinity, without the first element (size).
- */
- const uint32_t *associativity = get_associativity(spapr, i);
- memcpy(cur_index, ++associativity,
- sizeof(uint32_t) * max_distance_ref_points);
- cur_index += max_distance_ref_points;
- }
- return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays",
- int_buf, (cur_index - int_buf) * sizeof(uint32_t));
- }
- static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
- void *fdt, int rtas)
- {
- MachineState *ms = MACHINE(spapr);
- SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
- uint32_t refpoints[] = {
- cpu_to_be32(0x4),
- cpu_to_be32(0x3),
- cpu_to_be32(0x2),
- cpu_to_be32(0x1),
- };
- uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
- uint32_t maxdomain = ms->numa_state->num_nodes;
- uint32_t maxdomains[] = {
- cpu_to_be32(4),
- cpu_to_be32(maxdomain),
- cpu_to_be32(maxdomain),
- cpu_to_be32(maxdomain),
- cpu_to_be32(maxdomain)
- };
- if (smc->pre_5_2_numa_associativity ||
- ms->numa_state->num_nodes <= 1) {
- uint32_t legacy_refpoints[] = {
- cpu_to_be32(0x4),
- cpu_to_be32(0x4),
- cpu_to_be32(0x2),
- };
- uint32_t legacy_maxdomains[] = {
- cpu_to_be32(4),
- cpu_to_be32(0),
- cpu_to_be32(0),
- cpu_to_be32(0),
- cpu_to_be32(maxdomain ? maxdomain : 1),
- };
- G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
- G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
- nr_refpoints = 3;
- memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
- memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
- /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
- if (smc->pre_5_1_assoc_refpoints) {
- nr_refpoints = 2;
- }
- }
- _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
- refpoints, nr_refpoints * sizeof(refpoints[0])));
- _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
- maxdomains, sizeof(maxdomains)));
- }
- static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
- void *fdt, int rtas)
- {
- MachineState *ms = MACHINE(spapr);
- int nb_numa_nodes = ms->numa_state->num_nodes;
- int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
- g_autofree uint32_t *lookup_index_table = NULL;
- g_autofree uint8_t *distance_table = NULL;
- int src, dst, i, distance_table_size;
- /*
- * ibm,numa-lookup-index-table: array with length and a
- * list of NUMA ids present in the guest.
- */
- lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
- lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
- for (i = 0; i < nb_numa_nodes; i++) {
- lookup_index_table[i + 1] = cpu_to_be32(i);
- }
- _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
- lookup_index_table,
- (nb_numa_nodes + 1) * sizeof(uint32_t)));
- /*
- * ibm,numa-distance-table: contains all node distances. First
- * element is the size of the table as uint32, followed up
- * by all the uint8 distances from the first NUMA node, then all
- * distances from the second NUMA node and so on.
- *
- * ibm,numa-lookup-index-table is used by guest to navigate this
- * array because NUMA ids can be sparse (node 0 is the first,
- * node 8 is the second ...).
- */
- distance_table_size = distance_table_entries * sizeof(uint8_t) +
- sizeof(uint32_t);
- distance_table = g_new0(uint8_t, distance_table_size);
- stl_be_p(distance_table, distance_table_entries);
- /* Skip the uint32_t array length at the start */
- i = sizeof(uint32_t);
- for (src = 0; src < nb_numa_nodes; src++) {
- for (dst = 0; dst < nb_numa_nodes; dst++) {
- distance_table[i++] = get_numa_distance(ms, src, dst);
- }
- }
- _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
- distance_table, distance_table_size));
- }
- /*
- * This helper could be compressed in a single function with
- * FORM1 logic since we're setting the same DT values, with the
- * difference being a call to spapr_numa_FORM2_write_rtas_tables()
- * in the end. The separation was made to avoid clogging FORM1 code
- * which already has to deal with compat modes from previous
- * QEMU machine types.
- */
- static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
- void *fdt, int rtas)
- {
- MachineState *ms = MACHINE(spapr);
- /*
- * In FORM2, ibm,associativity-reference-points will point to
- * the element in the ibm,associativity array that contains the
- * primary domain index (for FORM2, the first element).
- *
- * This value (in our case, the numa-id) is then used as an index
- * to retrieve all other attributes of the node (distance,
- * bandwidth, latency) via ibm,numa-lookup-index-table and other
- * ibm,numa-*-table properties.
- */
- uint32_t refpoints[] = { cpu_to_be32(1) };
- uint32_t maxdomain = ms->numa_state->num_nodes;
- uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
- _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
- refpoints, sizeof(refpoints)));
- _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
- maxdomains, sizeof(maxdomains)));
- spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
- }
- /*
- * Helper that writes ibm,associativity-reference-points and
- * max-associativity-domains in the RTAS pointed by @rtas
- * in the DT @fdt.
- */
- void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
- {
- if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
- spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
- return;
- }
- spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
- }
- static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
- SpaprMachineState *spapr,
- target_ulong opcode,
- target_ulong *args)
- {
- g_autofree uint32_t *vcpu_assoc = NULL;
- target_ulong flags = args[0];
- target_ulong procno = args[1];
- PowerPCCPU *tcpu;
- int idx, assoc_idx;
- int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
- /* only support procno from H_REGISTER_VPA */
- if (flags != 0x1) {
- return H_FUNCTION;
- }
- tcpu = spapr_find_cpu(procno);
- if (tcpu == NULL) {
- return H_P2;
- }
- /*
- * Given that we want to be flexible with the sizes and indexes,
- * we must consider that there is a hard limit of how many
- * associativities domain we can fit in R4 up to R9, which would be
- * 12 associativity domains for vcpus. Assert and bail if that's
- * not the case.
- */
- g_assert((vcpu_assoc_size - 1) <= 12);
- vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
- /* assoc_idx starts at 1 to skip associativity size */
- assoc_idx = 1;
- #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
- ((uint64_t)(b) & 0xffffffff))
- for (idx = 0; idx < 6; idx++) {
- int32_t a, b;
- /*
- * vcpu_assoc[] will contain the associativity domains for tcpu,
- * including tcpu->node_id and procno, meaning that we don't
- * need to use these variables here.
- *
- * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
- * macro. The ternary will fill the remaining registers with -1
- * after we went through vcpu_assoc[].
- */
- a = assoc_idx < vcpu_assoc_size ?
- be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
- b = assoc_idx < vcpu_assoc_size ?
- be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
- args[idx] = ASSOCIATIVITY(a, b);
- }
- #undef ASSOCIATIVITY
- return H_SUCCESS;
- }
- static void spapr_numa_register_types(void)
- {
- /* Virtual Processor Home Node */
- spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
- h_home_node_associativity);
- }
- type_init(spapr_numa_register_types)
|