pnv.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057
  1. /*
  2. * QEMU PowerPC PowerNV machine model
  3. *
  4. * Copyright (c) 2016-2024, IBM Corporation.
  5. *
  6. * SPDX-License-Identifier: GPL-2.0-or-later
  7. *
  8. * This library is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * This library is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  20. */
  21. #include "qemu/osdep.h"
  22. #include "qemu/datadir.h"
  23. #include "qemu/units.h"
  24. #include "qemu/cutils.h"
  25. #include "qapi/error.h"
  26. #include "system/qtest.h"
  27. #include "system/system.h"
  28. #include "system/numa.h"
  29. #include "system/reset.h"
  30. #include "system/runstate.h"
  31. #include "system/cpus.h"
  32. #include "system/device_tree.h"
  33. #include "system/hw_accel.h"
  34. #include "target/ppc/cpu.h"
  35. #include "hw/ppc/fdt.h"
  36. #include "hw/ppc/ppc.h"
  37. #include "hw/ppc/pnv.h"
  38. #include "hw/ppc/pnv_core.h"
  39. #include "hw/loader.h"
  40. #include "hw/nmi.h"
  41. #include "qapi/visitor.h"
  42. #include "hw/intc/intc.h"
  43. #include "hw/ipmi/ipmi.h"
  44. #include "target/ppc/mmu-hash64.h"
  45. #include "hw/pci/msi.h"
  46. #include "hw/pci-host/pnv_phb.h"
  47. #include "hw/pci-host/pnv_phb3.h"
  48. #include "hw/pci-host/pnv_phb4.h"
  49. #include "hw/ppc/xics.h"
  50. #include "hw/qdev-properties.h"
  51. #include "hw/ppc/pnv_chip.h"
  52. #include "hw/ppc/pnv_xscom.h"
  53. #include "hw/ppc/pnv_pnor.h"
  54. #include "hw/isa/isa.h"
  55. #include "hw/char/serial-isa.h"
  56. #include "hw/rtc/mc146818rtc.h"
  57. #include <libfdt.h>
  58. #define FDT_MAX_SIZE (1 * MiB)
  59. #define FW_FILE_NAME "skiboot.lid"
  60. #define FW_LOAD_ADDR 0x0
  61. #define FW_MAX_SIZE (16 * MiB)
  62. #define PNOR_FILE_NAME "pnv-pnor.bin"
  63. #define KERNEL_LOAD_ADDR 0x20000000
  64. #define KERNEL_MAX_SIZE (128 * MiB)
  65. #define INITRD_LOAD_ADDR 0x28000000
  66. #define INITRD_MAX_SIZE (128 * MiB)
  67. static const char *pnv_chip_core_typename(const PnvChip *o)
  68. {
  69. const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
  70. int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
  71. char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
  72. const char *core_type = object_class_get_name(object_class_by_name(s));
  73. g_free(s);
  74. return core_type;
  75. }
  76. /*
  77. * On Power Systems E880 (POWER8), the max cpus (threads) should be :
  78. * 4 * 4 sockets * 12 cores * 8 threads = 1536
  79. * Let's make it 2^11
  80. */
  81. #define MAX_CPUS 2048
  82. /*
  83. * Memory nodes are created by hostboot, one for each range of memory
  84. * that has a different "affinity". In practice, it means one range
  85. * per chip.
  86. */
  87. static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
  88. {
  89. char *mem_name;
  90. uint64_t mem_reg_property[2];
  91. int off;
  92. mem_reg_property[0] = cpu_to_be64(start);
  93. mem_reg_property[1] = cpu_to_be64(size);
  94. mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
  95. off = fdt_add_subnode(fdt, 0, mem_name);
  96. g_free(mem_name);
  97. _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
  98. _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
  99. sizeof(mem_reg_property))));
  100. _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
  101. }
  102. static int get_cpus_node(void *fdt)
  103. {
  104. int cpus_offset = fdt_path_offset(fdt, "/cpus");
  105. if (cpus_offset < 0) {
  106. cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
  107. if (cpus_offset) {
  108. _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
  109. _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
  110. }
  111. }
  112. _FDT(cpus_offset);
  113. return cpus_offset;
  114. }
  115. /*
  116. * The PowerNV cores (and threads) need to use real HW ids and not an
  117. * incremental index like it has been done on other platforms. This HW
  118. * id is stored in the CPU PIR, it is used to create cpu nodes in the
  119. * device tree, used in XSCOM to address cores and in interrupt
  120. * servers.
  121. */
  122. static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
  123. {
  124. PowerPCCPU *cpu = pc->threads[0];
  125. CPUState *cs = CPU(cpu);
  126. DeviceClass *dc = DEVICE_GET_CLASS(cs);
  127. int smt_threads = CPU_CORE(pc)->nr_threads;
  128. CPUPPCState *env = &cpu->env;
  129. PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
  130. PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
  131. uint32_t *servers_prop;
  132. int i;
  133. uint32_t pir, tir;
  134. uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
  135. 0xffffffff, 0xffffffff};
  136. uint32_t tbfreq = PNV_TIMEBASE_FREQ;
  137. uint32_t cpufreq = 1000000000;
  138. uint32_t page_sizes_prop[64];
  139. size_t page_sizes_prop_size;
  140. int offset;
  141. char *nodename;
  142. int cpus_offset = get_cpus_node(fdt);
  143. pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, &tir);
  144. /* Only one DT node per (big) core */
  145. g_assert(tir == 0);
  146. nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
  147. offset = fdt_add_subnode(fdt, cpus_offset, nodename);
  148. _FDT(offset);
  149. g_free(nodename);
  150. _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
  151. _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
  152. _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
  153. _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
  154. _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
  155. _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
  156. env->dcache_line_size)));
  157. _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
  158. env->dcache_line_size)));
  159. _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
  160. env->icache_line_size)));
  161. _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
  162. env->icache_line_size)));
  163. if (pcc->l1_dcache_size) {
  164. _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
  165. pcc->l1_dcache_size)));
  166. } else {
  167. warn_report("Unknown L1 dcache size for cpu");
  168. }
  169. if (pcc->l1_icache_size) {
  170. _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
  171. pcc->l1_icache_size)));
  172. } else {
  173. warn_report("Unknown L1 icache size for cpu");
  174. }
  175. _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
  176. _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
  177. _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
  178. cpu->hash64_opts->slb_size)));
  179. _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
  180. _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
  181. if (ppc_has_spr(cpu, SPR_PURR)) {
  182. _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
  183. }
  184. if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
  185. _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
  186. segs, sizeof(segs))));
  187. }
  188. /*
  189. * Advertise VMX/VSX (vector extensions) if available
  190. * 0 / no property == no vector extensions
  191. * 1 == VMX / Altivec available
  192. * 2 == VSX available
  193. */
  194. if (env->insns_flags & PPC_ALTIVEC) {
  195. uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
  196. _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
  197. }
  198. /*
  199. * Advertise DFP (Decimal Floating Point) if available
  200. * 0 / no property == no DFP
  201. * 1 == DFP available
  202. */
  203. if (env->insns_flags2 & PPC2_DFP) {
  204. _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
  205. }
  206. page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
  207. sizeof(page_sizes_prop));
  208. if (page_sizes_prop_size) {
  209. _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
  210. page_sizes_prop, page_sizes_prop_size)));
  211. }
  212. /* Build interrupt servers properties */
  213. if (pc->big_core) {
  214. servers_prop = g_new(uint32_t, smt_threads * 2);
  215. for (i = 0; i < smt_threads; i++) {
  216. pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
  217. servers_prop[i * 2] = cpu_to_be32(pir);
  218. pnv_cc->get_pir_tir(chip, pc->hwid + 1, i, &pir, NULL);
  219. servers_prop[i * 2 + 1] = cpu_to_be32(pir);
  220. }
  221. _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
  222. servers_prop, sizeof(*servers_prop) * smt_threads
  223. * 2)));
  224. } else {
  225. servers_prop = g_new(uint32_t, smt_threads);
  226. for (i = 0; i < smt_threads; i++) {
  227. pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
  228. servers_prop[i] = cpu_to_be32(pir);
  229. }
  230. _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
  231. servers_prop, sizeof(*servers_prop) * smt_threads)));
  232. }
  233. g_free(servers_prop);
  234. return offset;
  235. }
  236. static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
  237. uint32_t nr_threads)
  238. {
  239. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
  240. uint32_t pir;
  241. uint64_t addr;
  242. char *name;
  243. const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
  244. uint32_t irange[2], i, rsize;
  245. uint64_t *reg;
  246. int offset;
  247. pcc->get_pir_tir(chip, hwid, 0, &pir, NULL);
  248. addr = PNV_ICP_BASE(chip) | (pir << 12);
  249. irange[0] = cpu_to_be32(pir);
  250. irange[1] = cpu_to_be32(nr_threads);
  251. rsize = sizeof(uint64_t) * 2 * nr_threads;
  252. reg = g_malloc(rsize);
  253. for (i = 0; i < nr_threads; i++) {
  254. /* We know P8 PIR is linear with thread id */
  255. reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
  256. reg[i * 2 + 1] = cpu_to_be64(0x1000);
  257. }
  258. name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
  259. offset = fdt_add_subnode(fdt, 0, name);
  260. _FDT(offset);
  261. g_free(name);
  262. _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
  263. _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
  264. _FDT((fdt_setprop_string(fdt, offset, "device_type",
  265. "PowerPC-External-Interrupt-Presentation")));
  266. _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
  267. _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
  268. irange, sizeof(irange))));
  269. _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
  270. _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
  271. g_free(reg);
  272. }
  273. /*
  274. * Adds a PnvPHB to the chip on P8.
  275. * Implemented here, like for defaults PHBs
  276. */
  277. PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
  278. {
  279. Pnv8Chip *chip8 = PNV8_CHIP(chip);
  280. phb->chip = chip;
  281. chip8->phbs[chip8->num_phbs] = phb;
  282. chip8->num_phbs++;
  283. return chip;
  284. }
  285. /*
  286. * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
  287. * HTM is always enabled because TCG does implement HTM, it's just a
  288. * degenerate implementation.
  289. */
  290. static const uint8_t pa_features_207[] = { 24, 0,
  291. 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
  292. 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
  293. 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
  294. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
  295. static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
  296. {
  297. static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
  298. int i;
  299. pnv_dt_xscom(chip, fdt, 0,
  300. cpu_to_be64(PNV_XSCOM_BASE(chip)),
  301. cpu_to_be64(PNV_XSCOM_SIZE),
  302. compat, sizeof(compat));
  303. for (i = 0; i < chip->nr_cores; i++) {
  304. PnvCore *pnv_core = chip->cores[i];
  305. int offset;
  306. offset = pnv_dt_core(chip, pnv_core, fdt);
  307. _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
  308. pa_features_207, sizeof(pa_features_207))));
  309. /* Interrupt Control Presenters (ICP). One per core. */
  310. pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
  311. }
  312. if (chip->ram_size) {
  313. pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
  314. }
  315. }
  316. /*
  317. * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
  318. */
  319. static const uint8_t pa_features_300[] = { 66, 0,
  320. /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
  321. /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
  322. 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
  323. /* 6: DS207 */
  324. 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
  325. /* 16: Vector */
  326. 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
  327. /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
  328. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
  329. /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
  330. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
  331. /* 32: LE atomic, 34: EBB + ext EBB */
  332. 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
  333. /* 40: Radix MMU */
  334. 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
  335. /* 42: PM, 44: PC RA, 46: SC vec'd */
  336. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
  337. /* 48: SIMD, 50: QP BFP, 52: String */
  338. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
  339. /* 54: DecFP, 56: DecI, 58: SHA */
  340. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
  341. /* 60: NM atomic, 62: RNG */
  342. 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
  343. };
  344. static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
  345. {
  346. static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
  347. int i;
  348. pnv_dt_xscom(chip, fdt, 0,
  349. cpu_to_be64(PNV9_XSCOM_BASE(chip)),
  350. cpu_to_be64(PNV9_XSCOM_SIZE),
  351. compat, sizeof(compat));
  352. for (i = 0; i < chip->nr_cores; i++) {
  353. PnvCore *pnv_core = chip->cores[i];
  354. int offset;
  355. offset = pnv_dt_core(chip, pnv_core, fdt);
  356. _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
  357. pa_features_300, sizeof(pa_features_300))));
  358. if (pnv_core->big_core) {
  359. i++; /* Big-core groups two QEMU cores */
  360. }
  361. }
  362. if (chip->ram_size) {
  363. pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
  364. }
  365. pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
  366. }
  367. /*
  368. * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
  369. * always disables copy/paste.
  370. */
  371. static const uint8_t pa_features_31[] = { 74, 0,
  372. /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
  373. /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
  374. 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
  375. /* 6: DS207 */
  376. 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
  377. /* 16: Vector */
  378. 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
  379. /* 18: Vec. Scalar, 20: Vec. XOR */
  380. 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
  381. /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
  382. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
  383. /* 32: LE atomic, 34: EBB + ext EBB */
  384. 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
  385. /* 40: Radix MMU */
  386. 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
  387. /* 42: PM, 44: PC RA, 46: SC vec'd */
  388. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
  389. /* 48: SIMD, 50: QP BFP, 52: String */
  390. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
  391. /* 54: DecFP, 56: DecI, 58: SHA */
  392. 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
  393. /* 60: NM atomic, 62: RNG */
  394. 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
  395. /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
  396. 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
  397. /* 72: [P]HASHST/[P]HASHCHK */
  398. 0x80, 0x00, /* 72 - 73 */
  399. };
  400. static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
  401. {
  402. static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
  403. int i;
  404. pnv_dt_xscom(chip, fdt, 0,
  405. cpu_to_be64(PNV10_XSCOM_BASE(chip)),
  406. cpu_to_be64(PNV10_XSCOM_SIZE),
  407. compat, sizeof(compat));
  408. for (i = 0; i < chip->nr_cores; i++) {
  409. PnvCore *pnv_core = chip->cores[i];
  410. int offset;
  411. offset = pnv_dt_core(chip, pnv_core, fdt);
  412. _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
  413. pa_features_31, sizeof(pa_features_31))));
  414. if (pnv_core->big_core) {
  415. i++; /* Big-core groups two QEMU cores */
  416. }
  417. }
  418. if (chip->ram_size) {
  419. pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
  420. }
  421. pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
  422. }
  423. static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
  424. {
  425. uint32_t io_base = d->ioport_id;
  426. uint32_t io_regs[] = {
  427. cpu_to_be32(1),
  428. cpu_to_be32(io_base),
  429. cpu_to_be32(2)
  430. };
  431. char *name;
  432. int node;
  433. name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
  434. node = fdt_add_subnode(fdt, lpc_off, name);
  435. _FDT(node);
  436. g_free(name);
  437. _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
  438. _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
  439. }
  440. static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
  441. {
  442. const char compatible[] = "ns16550\0pnpPNP,501";
  443. uint32_t io_base = d->ioport_id;
  444. uint32_t io_regs[] = {
  445. cpu_to_be32(1),
  446. cpu_to_be32(io_base),
  447. cpu_to_be32(8)
  448. };
  449. uint32_t irq;
  450. char *name;
  451. int node;
  452. irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
  453. name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
  454. node = fdt_add_subnode(fdt, lpc_off, name);
  455. _FDT(node);
  456. g_free(name);
  457. _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
  458. _FDT((fdt_setprop(fdt, node, "compatible", compatible,
  459. sizeof(compatible))));
  460. _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
  461. _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
  462. _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
  463. _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
  464. fdt_get_phandle(fdt, lpc_off))));
  465. /* This is needed by Linux */
  466. _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
  467. }
  468. static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
  469. {
  470. const char compatible[] = "bt\0ipmi-bt";
  471. uint32_t io_base;
  472. uint32_t io_regs[] = {
  473. cpu_to_be32(1),
  474. 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
  475. cpu_to_be32(3)
  476. };
  477. uint32_t irq;
  478. char *name;
  479. int node;
  480. io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
  481. io_regs[1] = cpu_to_be32(io_base);
  482. irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
  483. name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
  484. node = fdt_add_subnode(fdt, lpc_off, name);
  485. _FDT(node);
  486. g_free(name);
  487. _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
  488. _FDT((fdt_setprop(fdt, node, "compatible", compatible,
  489. sizeof(compatible))));
  490. /* Mark it as reserved to avoid Linux trying to claim it */
  491. _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
  492. _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
  493. _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
  494. fdt_get_phandle(fdt, lpc_off))));
  495. }
  496. typedef struct ForeachPopulateArgs {
  497. void *fdt;
  498. int offset;
  499. } ForeachPopulateArgs;
  500. static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
  501. {
  502. ForeachPopulateArgs *args = opaque;
  503. ISADevice *d = ISA_DEVICE(dev);
  504. if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
  505. pnv_dt_rtc(d, args->fdt, args->offset);
  506. } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
  507. pnv_dt_serial(d, args->fdt, args->offset);
  508. } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
  509. pnv_dt_ipmi_bt(d, args->fdt, args->offset);
  510. } else {
  511. error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
  512. d->ioport_id);
  513. }
  514. return 0;
  515. }
  516. /*
  517. * The default LPC bus of a multichip system is on chip 0. It's
  518. * recognized by the firmware (skiboot) using a "primary" property.
  519. */
  520. static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
  521. {
  522. int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
  523. ForeachPopulateArgs args = {
  524. .fdt = fdt,
  525. .offset = isa_offset,
  526. };
  527. uint32_t phandle;
  528. _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
  529. phandle = qemu_fdt_alloc_phandle(fdt);
  530. assert(phandle > 0);
  531. _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
  532. /*
  533. * ISA devices are not necessarily parented to the ISA bus so we
  534. * can not use object_child_foreach()
  535. */
  536. qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
  537. &args);
  538. }
  539. static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
  540. {
  541. int off;
  542. off = fdt_add_subnode(fdt, 0, "ibm,opal");
  543. off = fdt_add_subnode(fdt, off, "power-mgt");
  544. _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
  545. }
  546. static void *pnv_dt_create(MachineState *machine)
  547. {
  548. PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
  549. PnvMachineState *pnv = PNV_MACHINE(machine);
  550. void *fdt;
  551. char *buf;
  552. int off;
  553. int i;
  554. fdt = g_malloc0(FDT_MAX_SIZE);
  555. _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
  556. /* /qemu node */
  557. _FDT((fdt_add_subnode(fdt, 0, "qemu")));
  558. /* Root node */
  559. _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
  560. _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
  561. _FDT((fdt_setprop_string(fdt, 0, "model",
  562. "IBM PowerNV (emulated by qemu)")));
  563. _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
  564. buf = qemu_uuid_unparse_strdup(&qemu_uuid);
  565. _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
  566. if (qemu_uuid_set) {
  567. _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
  568. }
  569. g_free(buf);
  570. off = fdt_add_subnode(fdt, 0, "chosen");
  571. if (machine->kernel_cmdline) {
  572. _FDT((fdt_setprop_string(fdt, off, "bootargs",
  573. machine->kernel_cmdline)));
  574. }
  575. if (pnv->initrd_size) {
  576. uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
  577. uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
  578. _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
  579. &start_prop, sizeof(start_prop))));
  580. _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
  581. &end_prop, sizeof(end_prop))));
  582. }
  583. /* Populate device tree for each chip */
  584. for (i = 0; i < pnv->num_chips; i++) {
  585. PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
  586. }
  587. /* Populate ISA devices on chip 0 */
  588. pnv_dt_isa(pnv, fdt);
  589. if (pnv->bmc) {
  590. pnv_dt_bmc_sensors(pnv->bmc, fdt);
  591. }
  592. /* Create an extra node for power management on machines that support it */
  593. if (pmc->dt_power_mgt) {
  594. pmc->dt_power_mgt(pnv, fdt);
  595. }
  596. return fdt;
  597. }
  598. static void pnv_powerdown_notify(Notifier *n, void *opaque)
  599. {
  600. PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
  601. if (pnv->bmc) {
  602. pnv_bmc_powerdown(pnv->bmc);
  603. }
  604. }
  605. static void pnv_reset(MachineState *machine, ResetType type)
  606. {
  607. PnvMachineState *pnv = PNV_MACHINE(machine);
  608. IPMIBmc *bmc;
  609. void *fdt;
  610. qemu_devices_reset(type);
  611. /*
  612. * The machine should provide by default an internal BMC simulator.
  613. * If not, try to use the BMC device that was provided on the command
  614. * line.
  615. */
  616. bmc = pnv_bmc_find(&error_fatal);
  617. if (!pnv->bmc) {
  618. if (!bmc) {
  619. if (!qtest_enabled()) {
  620. warn_report("machine has no BMC device. Use '-device "
  621. "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
  622. "to define one");
  623. }
  624. } else {
  625. pnv_bmc_set_pnor(bmc, pnv->pnor);
  626. pnv->bmc = bmc;
  627. }
  628. }
  629. if (machine->fdt) {
  630. fdt = machine->fdt;
  631. } else {
  632. fdt = pnv_dt_create(machine);
  633. /* Pack resulting tree */
  634. _FDT((fdt_pack(fdt)));
  635. }
  636. cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
  637. /* Update machine->fdt with latest fdt */
  638. if (machine->fdt != fdt) {
  639. /*
  640. * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
  641. * the existing machine->fdt to avoid leaking it during
  642. * a reset.
  643. */
  644. g_free(machine->fdt);
  645. machine->fdt = fdt;
  646. }
  647. }
  648. static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
  649. {
  650. Pnv8Chip *chip8 = PNV8_CHIP(chip);
  651. qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
  652. qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
  653. return pnv_lpc_isa_create(&chip8->lpc, true, errp);
  654. }
  655. static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
  656. {
  657. Pnv8Chip *chip8 = PNV8_CHIP(chip);
  658. qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
  659. qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
  660. return pnv_lpc_isa_create(&chip8->lpc, false, errp);
  661. }
  662. static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
  663. {
  664. Pnv9Chip *chip9 = PNV9_CHIP(chip);
  665. qemu_irq irq;
  666. irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
  667. qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
  668. irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
  669. qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
  670. irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
  671. qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
  672. irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
  673. qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
  674. irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
  675. qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
  676. return pnv_lpc_isa_create(&chip9->lpc, false, errp);
  677. }
  678. static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
  679. {
  680. Pnv10Chip *chip10 = PNV10_CHIP(chip);
  681. qemu_irq irq;
  682. irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
  683. qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
  684. irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
  685. qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
  686. irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
  687. qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
  688. irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
  689. qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
  690. irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
  691. qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
  692. return pnv_lpc_isa_create(&chip10->lpc, false, errp);
  693. }
  694. static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
  695. {
  696. return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
  697. }
  698. static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
  699. {
  700. Pnv8Chip *chip8 = PNV8_CHIP(chip);
  701. int i;
  702. ics_pic_print_info(&chip8->psi.ics, buf);
  703. for (i = 0; i < chip8->num_phbs; i++) {
  704. PnvPHB *phb = chip8->phbs[i];
  705. PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
  706. pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
  707. ics_pic_print_info(&phb3->lsis, buf);
  708. }
  709. }
  710. static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
  711. {
  712. GString *buf = opaque;
  713. PnvPHB *phb = (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
  714. if (!phb) {
  715. return 0;
  716. }
  717. pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
  718. return 0;
  719. }
  720. static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
  721. {
  722. Pnv9Chip *chip9 = PNV9_CHIP(chip);
  723. pnv_xive_pic_print_info(&chip9->xive, buf);
  724. pnv_psi_pic_print_info(&chip9->psi, buf);
  725. object_child_foreach_recursive(OBJECT(chip),
  726. pnv_chip_power9_pic_print_info_child, buf);
  727. }
  728. static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
  729. uint32_t core_id)
  730. {
  731. return PNV_XSCOM_EX_BASE(core_id);
  732. }
  733. static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
  734. uint32_t core_id)
  735. {
  736. return PNV9_XSCOM_EC_BASE(core_id);
  737. }
  738. static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
  739. uint32_t core_id)
  740. {
  741. return PNV10_XSCOM_EC_BASE(core_id);
  742. }
  743. static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
  744. {
  745. PowerPCCPUClass *ppc_default =
  746. POWERPC_CPU_CLASS(object_class_by_name(default_type));
  747. PowerPCCPUClass *ppc =
  748. POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
  749. return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
  750. }
  751. static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
  752. {
  753. ISADevice *dev = isa_new("isa-ipmi-bt");
  754. object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
  755. object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
  756. isa_realize_and_unref(dev, bus, &error_fatal);
  757. }
  758. static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
  759. {
  760. Pnv10Chip *chip10 = PNV10_CHIP(chip);
  761. pnv_xive2_pic_print_info(&chip10->xive, buf);
  762. pnv_psi_pic_print_info(&chip10->psi, buf);
  763. object_child_foreach_recursive(OBJECT(chip),
  764. pnv_chip_power9_pic_print_info_child, buf);
  765. }
  766. /* Always give the first 1GB to chip 0 else we won't boot */
  767. static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
  768. {
  769. MachineState *machine = MACHINE(pnv);
  770. uint64_t ram_per_chip;
  771. assert(machine->ram_size >= 1 * GiB);
  772. ram_per_chip = machine->ram_size / pnv->num_chips;
  773. if (ram_per_chip >= 1 * GiB) {
  774. return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
  775. }
  776. assert(pnv->num_chips > 1);
  777. ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
  778. return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
  779. }
  780. static void pnv_init(MachineState *machine)
  781. {
  782. const char *bios_name = machine->firmware ?: FW_FILE_NAME;
  783. PnvMachineState *pnv = PNV_MACHINE(machine);
  784. MachineClass *mc = MACHINE_GET_CLASS(machine);
  785. PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
  786. int max_smt_threads = pmc->max_smt_threads;
  787. char *fw_filename;
  788. long fw_size;
  789. uint64_t chip_ram_start = 0;
  790. int i;
  791. char *chip_typename;
  792. DriveInfo *pnor;
  793. DeviceState *dev;
  794. if (kvm_enabled()) {
  795. error_report("machine %s does not support the KVM accelerator",
  796. mc->name);
  797. exit(EXIT_FAILURE);
  798. }
  799. /* allocate RAM */
  800. if (machine->ram_size < mc->default_ram_size) {
  801. char *sz = size_to_str(mc->default_ram_size);
  802. error_report("Invalid RAM size, should be bigger than %s", sz);
  803. g_free(sz);
  804. exit(EXIT_FAILURE);
  805. }
  806. /* checks for invalid option combinations */
  807. if (machine->dtb && (strlen(machine->kernel_cmdline) != 0)) {
  808. error_report("-append and -dtb cannot be used together, as passed"
  809. " command line is ignored in case of custom dtb");
  810. exit(EXIT_FAILURE);
  811. }
  812. memory_region_add_subregion(get_system_memory(), 0, machine->ram);
  813. /*
  814. * Create our simple PNOR device
  815. */
  816. dev = qdev_new(TYPE_PNV_PNOR);
  817. pnor = drive_get(IF_MTD, 0, 0);
  818. if (!pnor && defaults_enabled()) {
  819. fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, PNOR_FILE_NAME);
  820. if (!fw_filename) {
  821. warn_report("Could not find PNOR '%s'", PNOR_FILE_NAME);
  822. } else {
  823. QemuOpts *opts;
  824. opts = drive_add(IF_MTD, -1, fw_filename, "format=raw,readonly=on");
  825. pnor = drive_new(opts, IF_MTD, &error_fatal);
  826. g_free(fw_filename);
  827. }
  828. }
  829. if (pnor) {
  830. qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
  831. }
  832. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  833. pnv->pnor = PNV_PNOR(dev);
  834. /* load skiboot firmware */
  835. fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  836. if (!fw_filename) {
  837. error_report("Could not find OPAL firmware '%s'", bios_name);
  838. exit(1);
  839. }
  840. fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
  841. if (fw_size < 0) {
  842. error_report("Could not load OPAL firmware '%s'", fw_filename);
  843. exit(1);
  844. }
  845. g_free(fw_filename);
  846. /* load kernel */
  847. if (machine->kernel_filename) {
  848. long kernel_size;
  849. kernel_size = load_image_targphys(machine->kernel_filename,
  850. KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
  851. if (kernel_size < 0) {
  852. error_report("Could not load kernel '%s'",
  853. machine->kernel_filename);
  854. exit(1);
  855. }
  856. }
  857. /* load initrd */
  858. if (machine->initrd_filename) {
  859. pnv->initrd_base = INITRD_LOAD_ADDR;
  860. pnv->initrd_size = load_image_targphys(machine->initrd_filename,
  861. pnv->initrd_base, INITRD_MAX_SIZE);
  862. if (pnv->initrd_size < 0) {
  863. error_report("Could not load initial ram disk '%s'",
  864. machine->initrd_filename);
  865. exit(1);
  866. }
  867. }
  868. /* load dtb if passed */
  869. if (machine->dtb) {
  870. int fdt_size;
  871. warn_report("with manually passed dtb, some options like '-append'"
  872. " will get ignored and the dtb passed will be used as-is");
  873. /* read the file 'machine->dtb', and load it into 'fdt' buffer */
  874. machine->fdt = load_device_tree(machine->dtb, &fdt_size);
  875. if (!machine->fdt) {
  876. error_report("Could not load dtb '%s'", machine->dtb);
  877. exit(1);
  878. }
  879. }
  880. /* MSIs are supported on this platform */
  881. msi_nonbroken = true;
  882. /*
  883. * Check compatibility of the specified CPU with the machine
  884. * default.
  885. */
  886. if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
  887. error_report("invalid CPU model '%s' for %s machine",
  888. machine->cpu_type, mc->name);
  889. exit(1);
  890. }
  891. /* Create the processor chips */
  892. i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
  893. chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
  894. i, machine->cpu_type);
  895. if (!object_class_by_name(chip_typename)) {
  896. error_report("invalid chip model '%.*s' for %s machine",
  897. i, machine->cpu_type, mc->name);
  898. exit(1);
  899. }
  900. /* Set lpar-per-core mode if lpar-per-thread is not supported */
  901. if (!pmc->has_lpar_per_thread) {
  902. pnv->lpar_per_core = true;
  903. }
  904. pnv->num_chips =
  905. machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
  906. if (pnv->big_core) {
  907. if (machine->smp.threads % 2 == 1) {
  908. error_report("Cannot support %d threads with big-core option "
  909. "because it must be an even number",
  910. machine->smp.threads);
  911. exit(1);
  912. }
  913. max_smt_threads *= 2;
  914. }
  915. if (machine->smp.threads > max_smt_threads) {
  916. error_report("Cannot support more than %d threads/core "
  917. "on %s machine", max_smt_threads, mc->desc);
  918. if (pmc->max_smt_threads == 4) {
  919. error_report("(use big-core=on for 8 threads per core)");
  920. }
  921. exit(1);
  922. }
  923. if (pnv->big_core) {
  924. /*
  925. * powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore
  926. * per core, so adjust topology here. pnv_dt_core() processor
  927. * device-tree and TCG SMT code make the 2 cores appear as one big core
  928. * from software point of view. pnv pervasive models and xscoms tend to
  929. * see the big core as 2 small core halves.
  930. */
  931. machine->smp.cores *= 2;
  932. machine->smp.threads /= 2;
  933. }
  934. if (!is_power_of_2(machine->smp.threads)) {
  935. error_report("Cannot support %d threads/core on a powernv "
  936. "machine because it must be a power of 2",
  937. machine->smp.threads);
  938. exit(1);
  939. }
  940. /*
  941. * TODO: should we decide on how many chips we can create based
  942. * on #cores and Venice vs. Murano vs. Naples chip type etc...,
  943. */
  944. if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
  945. error_report("invalid number of chips: '%d'", pnv->num_chips);
  946. error_printf(
  947. "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
  948. exit(1);
  949. }
  950. pnv->chips = g_new0(PnvChip *, pnv->num_chips);
  951. for (i = 0; i < pnv->num_chips; i++) {
  952. char chip_name[32];
  953. Object *chip = OBJECT(qdev_new(chip_typename));
  954. uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i);
  955. pnv->chips[i] = PNV_CHIP(chip);
  956. /* Distribute RAM among the chips */
  957. object_property_set_int(chip, "ram-start", chip_ram_start,
  958. &error_fatal);
  959. object_property_set_int(chip, "ram-size", chip_ram_size,
  960. &error_fatal);
  961. chip_ram_start += chip_ram_size;
  962. snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
  963. object_property_add_child(OBJECT(pnv), chip_name, chip);
  964. object_property_set_int(chip, "chip-id", i, &error_fatal);
  965. object_property_set_int(chip, "nr-cores", machine->smp.cores,
  966. &error_fatal);
  967. object_property_set_int(chip, "nr-threads", machine->smp.threads,
  968. &error_fatal);
  969. object_property_set_bool(chip, "big-core", pnv->big_core,
  970. &error_fatal);
  971. object_property_set_bool(chip, "lpar-per-core", pnv->lpar_per_core,
  972. &error_fatal);
  973. /*
  974. * The POWER8 machine use the XICS interrupt interface.
  975. * Propagate the XICS fabric to the chip and its controllers.
  976. */
  977. if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
  978. object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
  979. }
  980. if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
  981. object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
  982. &error_abort);
  983. }
  984. sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
  985. }
  986. g_free(chip_typename);
  987. /* Instantiate ISA bus on chip 0 */
  988. pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
  989. /* Create serial port */
  990. serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
  991. /* Create an RTC ISA device too */
  992. mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
  993. /*
  994. * Create the machine BMC simulator and the IPMI BT device for
  995. * communication with the BMC
  996. */
  997. if (defaults_enabled()) {
  998. pnv->bmc = pnv_bmc_create(pnv->pnor);
  999. pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
  1000. }
  1001. /*
  1002. * The PNOR is mapped on the LPC FW address space by the BMC.
  1003. * Since we can not reach the remote BMC machine with LPC memops,
  1004. * map it always for now.
  1005. */
  1006. memory_region_add_subregion(pnv->chips[0]->fw_mr, pnv->pnor->lpc_address,
  1007. &pnv->pnor->mmio);
  1008. /*
  1009. * OpenPOWER systems use a IPMI SEL Event message to notify the
  1010. * host to powerdown
  1011. */
  1012. pnv->powerdown_notifier.notify = pnv_powerdown_notify;
  1013. qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
  1014. /*
  1015. * Create/Connect any machine-specific I2C devices
  1016. */
  1017. if (pmc->i2c_init) {
  1018. pmc->i2c_init(pnv);
  1019. }
  1020. }
  1021. /*
  1022. * 0:21 Reserved - Read as zeros
  1023. * 22:24 Chip ID
  1024. * 25:28 Core number
  1025. * 29:31 Thread ID
  1026. */
  1027. static void pnv_get_pir_tir_p8(PnvChip *chip,
  1028. uint32_t core_id, uint32_t thread_id,
  1029. uint32_t *pir, uint32_t *tir)
  1030. {
  1031. if (pir) {
  1032. *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id;
  1033. }
  1034. if (tir) {
  1035. *tir = thread_id;
  1036. }
  1037. }
  1038. static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
  1039. Error **errp)
  1040. {
  1041. Pnv8Chip *chip8 = PNV8_CHIP(chip);
  1042. Error *local_err = NULL;
  1043. Object *obj;
  1044. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1045. obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
  1046. if (local_err) {
  1047. error_propagate(errp, local_err);
  1048. return;
  1049. }
  1050. pnv_cpu->intc = obj;
  1051. }
  1052. static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
  1053. {
  1054. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1055. icp_reset(ICP(pnv_cpu->intc));
  1056. }
  1057. static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
  1058. {
  1059. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1060. icp_destroy(ICP(pnv_cpu->intc));
  1061. pnv_cpu->intc = NULL;
  1062. }
  1063. static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
  1064. GString *buf)
  1065. {
  1066. icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
  1067. }
  1068. /*
  1069. * 0:48 Reserved - Read as zeroes
  1070. * 49:52 Node ID
  1071. * 53:55 Chip ID
  1072. * 56 Reserved - Read as zero
  1073. * 57:61 Core number
  1074. * 62:63 Thread ID
  1075. *
  1076. * We only care about the lower bits. uint32_t is fine for the moment.
  1077. */
  1078. static void pnv_get_pir_tir_p9(PnvChip *chip,
  1079. uint32_t core_id, uint32_t thread_id,
  1080. uint32_t *pir, uint32_t *tir)
  1081. {
  1082. if (chip->big_core) {
  1083. /* Big-core interleaves thread ID between small-cores */
  1084. thread_id <<= 1;
  1085. thread_id |= core_id & 1;
  1086. core_id >>= 1;
  1087. if (pir) {
  1088. *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
  1089. }
  1090. } else {
  1091. if (pir) {
  1092. *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
  1093. }
  1094. }
  1095. if (tir) {
  1096. *tir = thread_id;
  1097. }
  1098. }
  1099. /*
  1100. * 0:48 Reserved - Read as zeroes
  1101. * 49:52 Node ID
  1102. * 53:55 Chip ID
  1103. * 56 Reserved - Read as zero
  1104. * 57:59 Quad ID
  1105. * 60 Core Chiplet Pair ID
  1106. * 61:63 Thread/Core Chiplet ID t0-t2
  1107. *
  1108. * We only care about the lower bits. uint32_t is fine for the moment.
  1109. */
  1110. static void pnv_get_pir_tir_p10(PnvChip *chip,
  1111. uint32_t core_id, uint32_t thread_id,
  1112. uint32_t *pir, uint32_t *tir)
  1113. {
  1114. if (chip->big_core) {
  1115. /* Big-core interleaves thread ID between small-cores */
  1116. thread_id <<= 1;
  1117. thread_id |= core_id & 1;
  1118. core_id >>= 1;
  1119. if (pir) {
  1120. *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
  1121. }
  1122. } else {
  1123. if (pir) {
  1124. *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
  1125. }
  1126. }
  1127. if (tir) {
  1128. *tir = thread_id;
  1129. }
  1130. }
  1131. static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
  1132. Error **errp)
  1133. {
  1134. Pnv9Chip *chip9 = PNV9_CHIP(chip);
  1135. Error *local_err = NULL;
  1136. Object *obj;
  1137. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1138. /*
  1139. * The core creates its interrupt presenter but the XIVE interrupt
  1140. * controller object is initialized afterwards. Hopefully, it's
  1141. * only used at runtime.
  1142. */
  1143. obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
  1144. &local_err);
  1145. if (local_err) {
  1146. error_propagate(errp, local_err);
  1147. return;
  1148. }
  1149. pnv_cpu->intc = obj;
  1150. }
  1151. static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
  1152. {
  1153. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1154. xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
  1155. }
  1156. static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
  1157. {
  1158. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1159. xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
  1160. pnv_cpu->intc = NULL;
  1161. }
  1162. static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
  1163. GString *buf)
  1164. {
  1165. xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
  1166. }
  1167. static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
  1168. Error **errp)
  1169. {
  1170. Pnv10Chip *chip10 = PNV10_CHIP(chip);
  1171. Error *local_err = NULL;
  1172. Object *obj;
  1173. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1174. /*
  1175. * The core creates its interrupt presenter but the XIVE2 interrupt
  1176. * controller object is initialized afterwards. Hopefully, it's
  1177. * only used at runtime.
  1178. */
  1179. obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
  1180. &local_err);
  1181. if (local_err) {
  1182. error_propagate(errp, local_err);
  1183. return;
  1184. }
  1185. pnv_cpu->intc = obj;
  1186. }
  1187. static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
  1188. {
  1189. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1190. xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
  1191. }
  1192. static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
  1193. {
  1194. PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
  1195. xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
  1196. pnv_cpu->intc = NULL;
  1197. }
  1198. static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
  1199. GString *buf)
  1200. {
  1201. xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
  1202. }
  1203. /*
  1204. * Allowed core identifiers on a POWER8 Processor Chip :
  1205. *
  1206. * <EX0 reserved>
  1207. * EX1 - Venice only
  1208. * EX2 - Venice only
  1209. * EX3 - Venice only
  1210. * EX4
  1211. * EX5
  1212. * EX6
  1213. * <EX7,8 reserved> <reserved>
  1214. * EX9 - Venice only
  1215. * EX10 - Venice only
  1216. * EX11 - Venice only
  1217. * EX12
  1218. * EX13
  1219. * EX14
  1220. * <EX15 reserved>
  1221. */
  1222. #define POWER8E_CORE_MASK (0x7070ull)
  1223. #define POWER8_CORE_MASK (0x7e7eull)
  1224. /*
  1225. * POWER9 has 24 cores, ids starting at 0x0
  1226. */
  1227. #define POWER9_CORE_MASK (0xffffffffffffffull)
  1228. #define POWER10_CORE_MASK (0xffffffffffffffull)
  1229. static void pnv_chip_power8_instance_init(Object *obj)
  1230. {
  1231. Pnv8Chip *chip8 = PNV8_CHIP(obj);
  1232. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
  1233. int i;
  1234. object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
  1235. (Object **)&chip8->xics,
  1236. object_property_allow_set_link,
  1237. OBJ_PROP_LINK_STRONG);
  1238. object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
  1239. object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
  1240. object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
  1241. object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
  1242. if (defaults_enabled()) {
  1243. chip8->num_phbs = pcc->num_phbs;
  1244. for (i = 0; i < chip8->num_phbs; i++) {
  1245. Object *phb = object_new(TYPE_PNV_PHB);
  1246. /*
  1247. * We need the chip to parent the PHB to allow the DT
  1248. * to build correctly (via pnv_xscom_dt()).
  1249. *
  1250. * TODO: the PHB should be parented by a PEC device that, at
  1251. * this moment, is not modelled powernv8/phb3.
  1252. */
  1253. object_property_add_child(obj, "phb[*]", phb);
  1254. chip8->phbs[i] = PNV_PHB(phb);
  1255. }
  1256. }
  1257. }
  1258. static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
  1259. {
  1260. PnvChip *chip = PNV_CHIP(chip8);
  1261. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
  1262. int i, j;
  1263. char *name;
  1264. name = g_strdup_printf("icp-%x", chip->chip_id);
  1265. memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
  1266. g_free(name);
  1267. memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
  1268. &chip8->icp_mmio);
  1269. /* Map the ICP registers for each thread */
  1270. for (i = 0; i < chip->nr_cores; i++) {
  1271. PnvCore *pnv_core = chip->cores[i];
  1272. int core_hwid = CPU_CORE(pnv_core)->core_id;
  1273. for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
  1274. uint32_t pir;
  1275. PnvICPState *icp;
  1276. pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL);
  1277. icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
  1278. memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
  1279. &icp->mmio);
  1280. }
  1281. }
  1282. }
  1283. static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
  1284. {
  1285. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
  1286. PnvChip *chip = PNV_CHIP(dev);
  1287. Pnv8Chip *chip8 = PNV8_CHIP(dev);
  1288. Pnv8Psi *psi8 = &chip8->psi;
  1289. Error *local_err = NULL;
  1290. int i;
  1291. assert(chip8->xics);
  1292. /* XSCOM bridge is first */
  1293. pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
  1294. pcc->parent_realize(dev, &local_err);
  1295. if (local_err) {
  1296. error_propagate(errp, local_err);
  1297. return;
  1298. }
  1299. /* Processor Service Interface (PSI) Host Bridge */
  1300. object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
  1301. &error_fatal);
  1302. object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
  1303. OBJECT(chip8->xics), &error_abort);
  1304. if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
  1305. return;
  1306. }
  1307. pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
  1308. &PNV_PSI(psi8)->xscom_regs);
  1309. /* Create LPC controller */
  1310. qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
  1311. pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
  1312. chip->fw_mr = &chip8->lpc.isa_fw;
  1313. chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
  1314. (uint64_t) PNV_XSCOM_BASE(chip),
  1315. PNV_XSCOM_LPC_BASE);
  1316. /*
  1317. * Interrupt Management Area. This is the memory region holding
  1318. * all the Interrupt Control Presenter (ICP) registers
  1319. */
  1320. pnv_chip_icp_realize(chip8, &local_err);
  1321. if (local_err) {
  1322. error_propagate(errp, local_err);
  1323. return;
  1324. }
  1325. /* HOMER (must be created before OCC) */
  1326. object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
  1327. &error_abort);
  1328. if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
  1329. return;
  1330. }
  1331. /* Homer Xscom region */
  1332. pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
  1333. /* Homer RAM region */
  1334. memory_region_add_subregion(get_system_memory(), chip8->homer.base,
  1335. &chip8->homer.mem);
  1336. /* Create the simplified OCC model */
  1337. object_property_set_link(OBJECT(&chip8->occ), "homer",
  1338. OBJECT(&chip8->homer), &error_abort);
  1339. if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
  1340. return;
  1341. }
  1342. pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
  1343. qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
  1344. qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
  1345. /* OCC SRAM model */
  1346. memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
  1347. &chip8->occ.sram_regs);
  1348. /* PHB controllers */
  1349. for (i = 0; i < chip8->num_phbs; i++) {
  1350. PnvPHB *phb = chip8->phbs[i];
  1351. object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
  1352. object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
  1353. &error_fatal);
  1354. object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
  1355. &error_fatal);
  1356. if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
  1357. return;
  1358. }
  1359. }
  1360. }
  1361. static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
  1362. {
  1363. addr &= (PNV_XSCOM_SIZE - 1);
  1364. return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
  1365. }
  1366. static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
  1367. {
  1368. DeviceClass *dc = DEVICE_CLASS(klass);
  1369. PnvChipClass *k = PNV_CHIP_CLASS(klass);
  1370. k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
  1371. k->cores_mask = POWER8E_CORE_MASK;
  1372. k->num_phbs = 3;
  1373. k->get_pir_tir = pnv_get_pir_tir_p8;
  1374. k->intc_create = pnv_chip_power8_intc_create;
  1375. k->intc_reset = pnv_chip_power8_intc_reset;
  1376. k->intc_destroy = pnv_chip_power8_intc_destroy;
  1377. k->intc_print_info = pnv_chip_power8_intc_print_info;
  1378. k->isa_create = pnv_chip_power8_isa_create;
  1379. k->dt_populate = pnv_chip_power8_dt_populate;
  1380. k->pic_print_info = pnv_chip_power8_pic_print_info;
  1381. k->xscom_core_base = pnv_chip_power8_xscom_core_base;
  1382. k->xscom_pcba = pnv_chip_power8_xscom_pcba;
  1383. dc->desc = "PowerNV Chip POWER8E";
  1384. device_class_set_parent_realize(dc, pnv_chip_power8_realize,
  1385. &k->parent_realize);
  1386. }
  1387. static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
  1388. {
  1389. DeviceClass *dc = DEVICE_CLASS(klass);
  1390. PnvChipClass *k = PNV_CHIP_CLASS(klass);
  1391. k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
  1392. k->cores_mask = POWER8_CORE_MASK;
  1393. k->num_phbs = 3;
  1394. k->get_pir_tir = pnv_get_pir_tir_p8;
  1395. k->intc_create = pnv_chip_power8_intc_create;
  1396. k->intc_reset = pnv_chip_power8_intc_reset;
  1397. k->intc_destroy = pnv_chip_power8_intc_destroy;
  1398. k->intc_print_info = pnv_chip_power8_intc_print_info;
  1399. k->isa_create = pnv_chip_power8_isa_create;
  1400. k->dt_populate = pnv_chip_power8_dt_populate;
  1401. k->pic_print_info = pnv_chip_power8_pic_print_info;
  1402. k->xscom_core_base = pnv_chip_power8_xscom_core_base;
  1403. k->xscom_pcba = pnv_chip_power8_xscom_pcba;
  1404. dc->desc = "PowerNV Chip POWER8";
  1405. device_class_set_parent_realize(dc, pnv_chip_power8_realize,
  1406. &k->parent_realize);
  1407. }
  1408. static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
  1409. {
  1410. DeviceClass *dc = DEVICE_CLASS(klass);
  1411. PnvChipClass *k = PNV_CHIP_CLASS(klass);
  1412. k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
  1413. k->cores_mask = POWER8_CORE_MASK;
  1414. k->num_phbs = 4;
  1415. k->get_pir_tir = pnv_get_pir_tir_p8;
  1416. k->intc_create = pnv_chip_power8_intc_create;
  1417. k->intc_reset = pnv_chip_power8_intc_reset;
  1418. k->intc_destroy = pnv_chip_power8_intc_destroy;
  1419. k->intc_print_info = pnv_chip_power8_intc_print_info;
  1420. k->isa_create = pnv_chip_power8nvl_isa_create;
  1421. k->dt_populate = pnv_chip_power8_dt_populate;
  1422. k->pic_print_info = pnv_chip_power8_pic_print_info;
  1423. k->xscom_core_base = pnv_chip_power8_xscom_core_base;
  1424. k->xscom_pcba = pnv_chip_power8_xscom_pcba;
  1425. dc->desc = "PowerNV Chip POWER8NVL";
  1426. device_class_set_parent_realize(dc, pnv_chip_power8_realize,
  1427. &k->parent_realize);
  1428. }
  1429. static void pnv_chip_power9_instance_init(Object *obj)
  1430. {
  1431. PnvChip *chip = PNV_CHIP(obj);
  1432. Pnv9Chip *chip9 = PNV9_CHIP(obj);
  1433. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
  1434. int i;
  1435. object_initialize_child(obj, "adu", &chip9->adu, TYPE_PNV_ADU);
  1436. object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
  1437. object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
  1438. "xive-fabric");
  1439. object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
  1440. object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
  1441. object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
  1442. object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
  1443. object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
  1444. object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
  1445. /* Number of PECs is the chip default */
  1446. chip->num_pecs = pcc->num_pecs;
  1447. for (i = 0; i < chip->num_pecs; i++) {
  1448. object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
  1449. TYPE_PNV_PHB4_PEC);
  1450. }
  1451. for (i = 0; i < pcc->i2c_num_engines; i++) {
  1452. object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
  1453. }
  1454. }
  1455. static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
  1456. PnvCore *pnv_core,
  1457. const char *type)
  1458. {
  1459. char eq_name[32];
  1460. int core_id = CPU_CORE(pnv_core)->core_id;
  1461. snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
  1462. object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
  1463. sizeof(*eq), type,
  1464. &error_fatal, NULL);
  1465. object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
  1466. qdev_realize(DEVICE(eq), NULL, &error_fatal);
  1467. }
  1468. static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
  1469. {
  1470. PnvChip *chip = PNV_CHIP(chip9);
  1471. int i;
  1472. chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
  1473. chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
  1474. for (i = 0; i < chip9->nr_quads; i++) {
  1475. PnvQuad *eq = &chip9->quads[i];
  1476. pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
  1477. PNV_QUAD_TYPE_NAME("power9"));
  1478. pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
  1479. &eq->xscom_regs);
  1480. }
  1481. }
  1482. static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
  1483. {
  1484. Pnv9Chip *chip9 = PNV9_CHIP(chip);
  1485. int i;
  1486. for (i = 0; i < chip->num_pecs; i++) {
  1487. PnvPhb4PecState *pec = &chip9->pecs[i];
  1488. PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
  1489. uint32_t pec_cplt_base;
  1490. uint32_t pec_nest_base;
  1491. uint32_t pec_pci_base;
  1492. object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
  1493. object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
  1494. &error_fatal);
  1495. object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
  1496. &error_fatal);
  1497. if (!qdev_realize(DEVICE(pec), NULL, errp)) {
  1498. return;
  1499. }
  1500. pec_cplt_base = pecc->xscom_cplt_base(pec);
  1501. pec_nest_base = pecc->xscom_nest_base(pec);
  1502. pec_pci_base = pecc->xscom_pci_base(pec);
  1503. pnv_xscom_add_subregion(chip, pec_cplt_base,
  1504. &pec->nest_pervasive.xscom_ctrl_regs_mr);
  1505. pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
  1506. pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
  1507. }
  1508. }
  1509. static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
  1510. {
  1511. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
  1512. Pnv9Chip *chip9 = PNV9_CHIP(dev);
  1513. PnvChip *chip = PNV_CHIP(dev);
  1514. Pnv9Psi *psi9 = &chip9->psi;
  1515. Error *local_err = NULL;
  1516. int i;
  1517. /* XSCOM bridge is first */
  1518. pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
  1519. pcc->parent_realize(dev, &local_err);
  1520. if (local_err) {
  1521. error_propagate(errp, local_err);
  1522. return;
  1523. }
  1524. /* ADU */
  1525. object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
  1526. &error_abort);
  1527. if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
  1528. return;
  1529. }
  1530. pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
  1531. &chip9->adu.xscom_regs);
  1532. pnv_chip_quad_realize(chip9, &local_err);
  1533. if (local_err) {
  1534. error_propagate(errp, local_err);
  1535. return;
  1536. }
  1537. /* XIVE interrupt controller (POWER9) */
  1538. object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
  1539. PNV9_XIVE_IC_BASE(chip), &error_fatal);
  1540. object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
  1541. PNV9_XIVE_VC_BASE(chip), &error_fatal);
  1542. object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
  1543. PNV9_XIVE_PC_BASE(chip), &error_fatal);
  1544. object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
  1545. PNV9_XIVE_TM_BASE(chip), &error_fatal);
  1546. object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
  1547. &error_abort);
  1548. if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
  1549. return;
  1550. }
  1551. pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
  1552. &chip9->xive.xscom_regs);
  1553. /* Processor Service Interface (PSI) Host Bridge */
  1554. object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
  1555. &error_fatal);
  1556. /* This is the only device with 4k ESB pages */
  1557. object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
  1558. &error_fatal);
  1559. if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
  1560. return;
  1561. }
  1562. pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
  1563. &PNV_PSI(psi9)->xscom_regs);
  1564. /* LPC */
  1565. if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
  1566. return;
  1567. }
  1568. memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
  1569. &chip9->lpc.xscom_regs);
  1570. chip->fw_mr = &chip9->lpc.isa_fw;
  1571. chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
  1572. (uint64_t) PNV9_LPCM_BASE(chip));
  1573. /* ChipTOD */
  1574. object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
  1575. chip->chip_id == 0, &error_abort);
  1576. object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
  1577. chip->chip_id == 1, &error_abort);
  1578. object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
  1579. &error_abort);
  1580. if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
  1581. return;
  1582. }
  1583. pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
  1584. &chip9->chiptod.xscom_regs);
  1585. /* SBE */
  1586. if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
  1587. return;
  1588. }
  1589. pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
  1590. &chip9->sbe.xscom_ctrl_regs);
  1591. pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
  1592. &chip9->sbe.xscom_mbox_regs);
  1593. qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
  1594. DEVICE(psi9), PSIHB9_IRQ_PSU));
  1595. /* HOMER (must be created before OCC) */
  1596. object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
  1597. &error_abort);
  1598. if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
  1599. return;
  1600. }
  1601. /* Homer Xscom region */
  1602. pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
  1603. /* Homer RAM region */
  1604. memory_region_add_subregion(get_system_memory(), chip9->homer.base,
  1605. &chip9->homer.mem);
  1606. /* Create the simplified OCC model */
  1607. object_property_set_link(OBJECT(&chip9->occ), "homer",
  1608. OBJECT(&chip9->homer), &error_abort);
  1609. if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
  1610. return;
  1611. }
  1612. pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
  1613. qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
  1614. DEVICE(psi9), PSIHB9_IRQ_OCC));
  1615. /* OCC SRAM model */
  1616. memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
  1617. &chip9->occ.sram_regs);
  1618. /* PEC PHBs */
  1619. pnv_chip_power9_pec_realize(chip, &local_err);
  1620. if (local_err) {
  1621. error_propagate(errp, local_err);
  1622. return;
  1623. }
  1624. /*
  1625. * I2C
  1626. */
  1627. for (i = 0; i < pcc->i2c_num_engines; i++) {
  1628. Object *obj = OBJECT(&chip9->i2c[i]);
  1629. object_property_set_int(obj, "engine", i + 1, &error_fatal);
  1630. object_property_set_int(obj, "num-busses",
  1631. pcc->i2c_ports_per_engine[i],
  1632. &error_fatal);
  1633. object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
  1634. if (!qdev_realize(DEVICE(obj), NULL, errp)) {
  1635. return;
  1636. }
  1637. pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
  1638. (chip9->i2c[i].engine - 1) *
  1639. PNV9_XSCOM_I2CM_SIZE,
  1640. &chip9->i2c[i].xscom_regs);
  1641. qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
  1642. qdev_get_gpio_in(DEVICE(psi9),
  1643. PSIHB9_IRQ_SBE_I2C));
  1644. }
  1645. }
  1646. static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
  1647. {
  1648. addr &= (PNV9_XSCOM_SIZE - 1);
  1649. return addr >> 3;
  1650. }
  1651. static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
  1652. {
  1653. DeviceClass *dc = DEVICE_CLASS(klass);
  1654. PnvChipClass *k = PNV_CHIP_CLASS(klass);
  1655. static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
  1656. k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
  1657. k->cores_mask = POWER9_CORE_MASK;
  1658. k->get_pir_tir = pnv_get_pir_tir_p9;
  1659. k->intc_create = pnv_chip_power9_intc_create;
  1660. k->intc_reset = pnv_chip_power9_intc_reset;
  1661. k->intc_destroy = pnv_chip_power9_intc_destroy;
  1662. k->intc_print_info = pnv_chip_power9_intc_print_info;
  1663. k->isa_create = pnv_chip_power9_isa_create;
  1664. k->dt_populate = pnv_chip_power9_dt_populate;
  1665. k->pic_print_info = pnv_chip_power9_pic_print_info;
  1666. k->xscom_core_base = pnv_chip_power9_xscom_core_base;
  1667. k->xscom_pcba = pnv_chip_power9_xscom_pcba;
  1668. dc->desc = "PowerNV Chip POWER9";
  1669. k->num_pecs = PNV9_CHIP_MAX_PEC;
  1670. k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
  1671. k->i2c_ports_per_engine = i2c_ports_per_engine;
  1672. device_class_set_parent_realize(dc, pnv_chip_power9_realize,
  1673. &k->parent_realize);
  1674. }
  1675. static void pnv_chip_power10_instance_init(Object *obj)
  1676. {
  1677. PnvChip *chip = PNV_CHIP(obj);
  1678. Pnv10Chip *chip10 = PNV10_CHIP(obj);
  1679. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
  1680. int i;
  1681. object_initialize_child(obj, "adu", &chip10->adu, TYPE_PNV_ADU);
  1682. object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
  1683. object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
  1684. "xive-fabric");
  1685. object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
  1686. object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
  1687. object_initialize_child(obj, "chiptod", &chip10->chiptod,
  1688. TYPE_PNV10_CHIPTOD);
  1689. object_initialize_child(obj, "occ", &chip10->occ, TYPE_PNV10_OCC);
  1690. object_initialize_child(obj, "sbe", &chip10->sbe, TYPE_PNV10_SBE);
  1691. object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
  1692. object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
  1693. TYPE_PNV_N1_CHIPLET);
  1694. chip->num_pecs = pcc->num_pecs;
  1695. for (i = 0; i < chip->num_pecs; i++) {
  1696. object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
  1697. TYPE_PNV_PHB5_PEC);
  1698. }
  1699. for (i = 0; i < pcc->i2c_num_engines; i++) {
  1700. object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
  1701. }
  1702. for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
  1703. object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i],
  1704. TYPE_PNV_SPI);
  1705. }
  1706. }
  1707. static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
  1708. {
  1709. PnvChip *chip = PNV_CHIP(chip10);
  1710. int i;
  1711. chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
  1712. chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
  1713. for (i = 0; i < chip10->nr_quads; i++) {
  1714. PnvQuad *eq = &chip10->quads[i];
  1715. pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
  1716. PNV_QUAD_TYPE_NAME("power10"));
  1717. pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
  1718. &eq->xscom_regs);
  1719. pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
  1720. &eq->xscom_qme_regs);
  1721. }
  1722. }
  1723. static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
  1724. {
  1725. Pnv10Chip *chip10 = PNV10_CHIP(chip);
  1726. int i;
  1727. for (i = 0; i < chip->num_pecs; i++) {
  1728. PnvPhb4PecState *pec = &chip10->pecs[i];
  1729. PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
  1730. uint32_t pec_cplt_base;
  1731. uint32_t pec_nest_base;
  1732. uint32_t pec_pci_base;
  1733. object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
  1734. object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
  1735. &error_fatal);
  1736. object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
  1737. &error_fatal);
  1738. if (!qdev_realize(DEVICE(pec), NULL, errp)) {
  1739. return;
  1740. }
  1741. pec_cplt_base = pecc->xscom_cplt_base(pec);
  1742. pec_nest_base = pecc->xscom_nest_base(pec);
  1743. pec_pci_base = pecc->xscom_pci_base(pec);
  1744. pnv_xscom_add_subregion(chip, pec_cplt_base,
  1745. &pec->nest_pervasive.xscom_ctrl_regs_mr);
  1746. pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
  1747. pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
  1748. }
  1749. }
  1750. static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
  1751. {
  1752. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
  1753. PnvChip *chip = PNV_CHIP(dev);
  1754. Pnv10Chip *chip10 = PNV10_CHIP(dev);
  1755. Error *local_err = NULL;
  1756. int i;
  1757. /* XSCOM bridge is first */
  1758. pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
  1759. pcc->parent_realize(dev, &local_err);
  1760. if (local_err) {
  1761. error_propagate(errp, local_err);
  1762. return;
  1763. }
  1764. /* ADU */
  1765. object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
  1766. &error_abort);
  1767. if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
  1768. return;
  1769. }
  1770. pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
  1771. &chip10->adu.xscom_regs);
  1772. pnv_chip_power10_quad_realize(chip10, &local_err);
  1773. if (local_err) {
  1774. error_propagate(errp, local_err);
  1775. return;
  1776. }
  1777. /* XIVE2 interrupt controller (POWER10) */
  1778. object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
  1779. PNV10_XIVE2_IC_BASE(chip), &error_fatal);
  1780. object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
  1781. PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
  1782. object_property_set_int(OBJECT(&chip10->xive), "end-bar",
  1783. PNV10_XIVE2_END_BASE(chip), &error_fatal);
  1784. object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
  1785. PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
  1786. object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
  1787. PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
  1788. object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
  1789. PNV10_XIVE2_TM_BASE(chip), &error_fatal);
  1790. object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
  1791. &error_abort);
  1792. if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
  1793. return;
  1794. }
  1795. pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
  1796. &chip10->xive.xscom_regs);
  1797. /* Processor Service Interface (PSI) Host Bridge */
  1798. object_property_set_int(OBJECT(&chip10->psi), "bar",
  1799. PNV10_PSIHB_BASE(chip), &error_fatal);
  1800. /* PSI can now be configured to use 64k ESB pages on POWER10 */
  1801. object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
  1802. &error_fatal);
  1803. if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
  1804. return;
  1805. }
  1806. pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
  1807. &PNV_PSI(&chip10->psi)->xscom_regs);
  1808. /* LPC */
  1809. if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
  1810. return;
  1811. }
  1812. memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
  1813. &chip10->lpc.xscom_regs);
  1814. chip->fw_mr = &chip10->lpc.isa_fw;
  1815. chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
  1816. (uint64_t) PNV10_LPCM_BASE(chip));
  1817. /* ChipTOD */
  1818. object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
  1819. chip->chip_id == 0, &error_abort);
  1820. object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
  1821. chip->chip_id == 1, &error_abort);
  1822. object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
  1823. &error_abort);
  1824. if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
  1825. return;
  1826. }
  1827. pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
  1828. &chip10->chiptod.xscom_regs);
  1829. /* HOMER (must be created before OCC) */
  1830. object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
  1831. &error_abort);
  1832. if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
  1833. return;
  1834. }
  1835. /* Homer Xscom region */
  1836. pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
  1837. &chip10->homer.pba_regs);
  1838. /* Homer RAM region */
  1839. memory_region_add_subregion(get_system_memory(), chip10->homer.base,
  1840. &chip10->homer.mem);
  1841. /* Create the simplified OCC model */
  1842. object_property_set_link(OBJECT(&chip10->occ), "homer",
  1843. OBJECT(&chip10->homer), &error_abort);
  1844. if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
  1845. return;
  1846. }
  1847. pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
  1848. &chip10->occ.xscom_regs);
  1849. qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
  1850. DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
  1851. /* OCC SRAM model */
  1852. memory_region_add_subregion(get_system_memory(),
  1853. PNV10_OCC_SENSOR_BASE(chip),
  1854. &chip10->occ.sram_regs);
  1855. /* SBE */
  1856. if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
  1857. return;
  1858. }
  1859. pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
  1860. &chip10->sbe.xscom_ctrl_regs);
  1861. pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
  1862. &chip10->sbe.xscom_mbox_regs);
  1863. qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
  1864. DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
  1865. /* N1 chiplet */
  1866. if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
  1867. return;
  1868. }
  1869. pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
  1870. &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
  1871. pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
  1872. &chip10->n1_chiplet.xscom_pb_eq_mr);
  1873. pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
  1874. &chip10->n1_chiplet.xscom_pb_es_mr);
  1875. /* PHBs */
  1876. pnv_chip_power10_phb_realize(chip, &local_err);
  1877. if (local_err) {
  1878. error_propagate(errp, local_err);
  1879. return;
  1880. }
  1881. /*
  1882. * I2C
  1883. */
  1884. for (i = 0; i < pcc->i2c_num_engines; i++) {
  1885. Object *obj = OBJECT(&chip10->i2c[i]);
  1886. object_property_set_int(obj, "engine", i + 1, &error_fatal);
  1887. object_property_set_int(obj, "num-busses",
  1888. pcc->i2c_ports_per_engine[i],
  1889. &error_fatal);
  1890. object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
  1891. if (!qdev_realize(DEVICE(obj), NULL, errp)) {
  1892. return;
  1893. }
  1894. pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
  1895. (chip10->i2c[i].engine - 1) *
  1896. PNV10_XSCOM_I2CM_SIZE,
  1897. &chip10->i2c[i].xscom_regs);
  1898. qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
  1899. qdev_get_gpio_in(DEVICE(&chip10->psi),
  1900. PSIHB9_IRQ_SBE_I2C));
  1901. }
  1902. /* PIB SPI Controller */
  1903. for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
  1904. object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num",
  1905. i, &error_fatal);
  1906. /* pib_spic[2] connected to 25csm04 which implements 1 byte transfer */
  1907. object_property_set_int(OBJECT(&chip10->pib_spic[i]), "transfer_len",
  1908. (i == 2) ? 1 : 4, &error_fatal);
  1909. object_property_set_int(OBJECT(&chip10->pib_spic[i]), "chip-id",
  1910. chip->chip_id, &error_fatal);
  1911. if (!sysbus_realize(SYS_BUS_DEVICE(OBJECT
  1912. (&chip10->pib_spic[i])), errp)) {
  1913. return;
  1914. }
  1915. pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE +
  1916. i * PNV10_XSCOM_PIB_SPIC_SIZE,
  1917. &chip10->pib_spic[i].xscom_spic_regs);
  1918. }
  1919. }
  1920. static void pnv_rainier_i2c_init(PnvMachineState *pnv)
  1921. {
  1922. int i;
  1923. for (i = 0; i < pnv->num_chips; i++) {
  1924. Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
  1925. /*
  1926. * Add a PCA9552 I2C device for PCIe hotplug control
  1927. * to engine 2, bus 1, address 0x63
  1928. */
  1929. I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
  1930. "pca9552", 0x63);
  1931. /*
  1932. * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
  1933. * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
  1934. * after hypervisor code sets a SLOTx_EN pin high.
  1935. */
  1936. qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
  1937. qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
  1938. qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
  1939. qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
  1940. qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
  1941. /*
  1942. * Add a PCA9554 I2C device for cable card presence detection
  1943. * to engine 2, bus 1, address 0x25
  1944. */
  1945. i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
  1946. }
  1947. }
  1948. static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
  1949. {
  1950. addr &= (PNV10_XSCOM_SIZE - 1);
  1951. return addr >> 3;
  1952. }
  1953. static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
  1954. {
  1955. DeviceClass *dc = DEVICE_CLASS(klass);
  1956. PnvChipClass *k = PNV_CHIP_CLASS(klass);
  1957. static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
  1958. k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
  1959. k->cores_mask = POWER10_CORE_MASK;
  1960. k->get_pir_tir = pnv_get_pir_tir_p10;
  1961. k->intc_create = pnv_chip_power10_intc_create;
  1962. k->intc_reset = pnv_chip_power10_intc_reset;
  1963. k->intc_destroy = pnv_chip_power10_intc_destroy;
  1964. k->intc_print_info = pnv_chip_power10_intc_print_info;
  1965. k->isa_create = pnv_chip_power10_isa_create;
  1966. k->dt_populate = pnv_chip_power10_dt_populate;
  1967. k->pic_print_info = pnv_chip_power10_pic_print_info;
  1968. k->xscom_core_base = pnv_chip_power10_xscom_core_base;
  1969. k->xscom_pcba = pnv_chip_power10_xscom_pcba;
  1970. dc->desc = "PowerNV Chip POWER10";
  1971. k->num_pecs = PNV10_CHIP_MAX_PEC;
  1972. k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
  1973. k->i2c_ports_per_engine = i2c_ports_per_engine;
  1974. device_class_set_parent_realize(dc, pnv_chip_power10_realize,
  1975. &k->parent_realize);
  1976. }
  1977. static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip,
  1978. Error **errp)
  1979. {
  1980. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
  1981. int cores_max;
  1982. /*
  1983. * No custom mask for this chip, let's use the default one from *
  1984. * the chip class
  1985. */
  1986. if (!chip->cores_mask) {
  1987. chip->cores_mask = pcc->cores_mask;
  1988. }
  1989. /* filter alien core ids ! some are reserved */
  1990. if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
  1991. error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
  1992. chip->cores_mask);
  1993. return;
  1994. }
  1995. chip->cores_mask &= pcc->cores_mask;
  1996. /* Ensure small-cores a paired up in big-core mode */
  1997. if (pnv->big_core) {
  1998. uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL;
  1999. uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL;
  2000. if (even_cores ^ (odd_cores >> 1)) {
  2001. error_setg(errp, "warning: unpaired cores in big-core mode !");
  2002. return;
  2003. }
  2004. }
  2005. /* now that we have a sane layout, let check the number of cores */
  2006. cores_max = ctpop64(chip->cores_mask);
  2007. if (chip->nr_cores > cores_max) {
  2008. error_setg(errp, "warning: too many cores for chip ! Limit is %d",
  2009. cores_max);
  2010. return;
  2011. }
  2012. }
  2013. static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
  2014. {
  2015. PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
  2016. PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(pnv);
  2017. Error *error = NULL;
  2018. PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
  2019. const char *typename = pnv_chip_core_typename(chip);
  2020. int i, core_hwid;
  2021. if (!object_class_by_name(typename)) {
  2022. error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
  2023. return;
  2024. }
  2025. /* Cores */
  2026. pnv_chip_core_sanitize(pnv, chip, &error);
  2027. if (error) {
  2028. error_propagate(errp, error);
  2029. return;
  2030. }
  2031. chip->cores = g_new0(PnvCore *, chip->nr_cores);
  2032. for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
  2033. && (i < chip->nr_cores); core_hwid++) {
  2034. char core_name[32];
  2035. PnvCore *pnv_core;
  2036. uint64_t xscom_core_base;
  2037. if (!(chip->cores_mask & (1ull << core_hwid))) {
  2038. continue;
  2039. }
  2040. pnv_core = PNV_CORE(object_new(typename));
  2041. snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
  2042. object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
  2043. chip->cores[i] = pnv_core;
  2044. object_property_set_int(OBJECT(pnv_core), "nr-threads",
  2045. chip->nr_threads, &error_fatal);
  2046. object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
  2047. core_hwid, &error_fatal);
  2048. object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
  2049. &error_fatal);
  2050. object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
  2051. &error_fatal);
  2052. object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core,
  2053. &error_fatal);
  2054. object_property_set_bool(OBJECT(pnv_core), "quirk-tb-big-core",
  2055. pmc->quirk_tb_big_core, &error_fatal);
  2056. object_property_set_bool(OBJECT(pnv_core), "lpar-per-core",
  2057. chip->lpar_per_core, &error_fatal);
  2058. object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
  2059. &error_abort);
  2060. qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
  2061. /* Each core has an XSCOM MMIO region */
  2062. xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
  2063. pnv_xscom_add_subregion(chip, xscom_core_base,
  2064. &pnv_core->xscom_regs);
  2065. i++;
  2066. }
  2067. }
  2068. static void pnv_chip_realize(DeviceState *dev, Error **errp)
  2069. {
  2070. PnvChip *chip = PNV_CHIP(dev);
  2071. Error *error = NULL;
  2072. /* Cores */
  2073. pnv_chip_core_realize(chip, &error);
  2074. if (error) {
  2075. error_propagate(errp, error);
  2076. return;
  2077. }
  2078. }
  2079. static const Property pnv_chip_properties[] = {
  2080. DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
  2081. DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
  2082. DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
  2083. DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
  2084. DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
  2085. DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
  2086. DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false),
  2087. DEFINE_PROP_BOOL("lpar-per-core", PnvChip, lpar_per_core, false),
  2088. };
  2089. static void pnv_chip_class_init(ObjectClass *klass, void *data)
  2090. {
  2091. DeviceClass *dc = DEVICE_CLASS(klass);
  2092. set_bit(DEVICE_CATEGORY_CPU, dc->categories);
  2093. dc->realize = pnv_chip_realize;
  2094. device_class_set_props(dc, pnv_chip_properties);
  2095. dc->desc = "PowerNV Chip";
  2096. }
  2097. PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
  2098. {
  2099. int i;
  2100. for (i = 0; i < chip->nr_cores; i++) {
  2101. PnvCore *pc = chip->cores[i];
  2102. CPUCore *cc = CPU_CORE(pc);
  2103. if (cc->core_id == core_id) {
  2104. return pc;
  2105. }
  2106. }
  2107. return NULL;
  2108. }
  2109. PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
  2110. {
  2111. int i, j;
  2112. for (i = 0; i < chip->nr_cores; i++) {
  2113. PnvCore *pc = chip->cores[i];
  2114. CPUCore *cc = CPU_CORE(pc);
  2115. for (j = 0; j < cc->nr_threads; j++) {
  2116. if (ppc_cpu_pir(pc->threads[j]) == pir) {
  2117. return pc->threads[j];
  2118. }
  2119. }
  2120. }
  2121. return NULL;
  2122. }
  2123. static void pnv_chip_foreach_cpu(PnvChip *chip,
  2124. void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
  2125. void *opaque)
  2126. {
  2127. int i, j;
  2128. for (i = 0; i < chip->nr_cores; i++) {
  2129. PnvCore *pc = chip->cores[i];
  2130. for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
  2131. fn(chip, pc->threads[j], opaque);
  2132. }
  2133. }
  2134. }
  2135. static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
  2136. {
  2137. PnvMachineState *pnv = PNV_MACHINE(xi);
  2138. int i, j;
  2139. for (i = 0; i < pnv->num_chips; i++) {
  2140. Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
  2141. if (ics_valid_irq(&chip8->psi.ics, irq)) {
  2142. return &chip8->psi.ics;
  2143. }
  2144. for (j = 0; j < chip8->num_phbs; j++) {
  2145. PnvPHB *phb = chip8->phbs[j];
  2146. PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
  2147. if (ics_valid_irq(&phb3->lsis, irq)) {
  2148. return &phb3->lsis;
  2149. }
  2150. if (ics_valid_irq(ICS(&phb3->msis), irq)) {
  2151. return ICS(&phb3->msis);
  2152. }
  2153. }
  2154. }
  2155. return NULL;
  2156. }
  2157. PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
  2158. {
  2159. int i;
  2160. for (i = 0; i < pnv->num_chips; i++) {
  2161. PnvChip *chip = pnv->chips[i];
  2162. if (chip->chip_id == chip_id) {
  2163. return chip;
  2164. }
  2165. }
  2166. return NULL;
  2167. }
  2168. static void pnv_ics_resend(XICSFabric *xi)
  2169. {
  2170. PnvMachineState *pnv = PNV_MACHINE(xi);
  2171. int i, j;
  2172. for (i = 0; i < pnv->num_chips; i++) {
  2173. Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
  2174. ics_resend(&chip8->psi.ics);
  2175. for (j = 0; j < chip8->num_phbs; j++) {
  2176. PnvPHB *phb = chip8->phbs[j];
  2177. PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
  2178. ics_resend(&phb3->lsis);
  2179. ics_resend(ICS(&phb3->msis));
  2180. }
  2181. }
  2182. }
  2183. static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
  2184. {
  2185. PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
  2186. return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
  2187. }
  2188. static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
  2189. void *opaque)
  2190. {
  2191. PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
  2192. }
  2193. static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
  2194. {
  2195. PnvMachineState *pnv = PNV_MACHINE(obj);
  2196. int i;
  2197. for (i = 0; i < pnv->num_chips; i++) {
  2198. PnvChip *chip = pnv->chips[i];
  2199. /* First CPU presenters */
  2200. pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
  2201. /* Then other devices, PHB, PSI, XIVE */
  2202. PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
  2203. }
  2204. }
  2205. static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
  2206. uint8_t nvt_blk, uint32_t nvt_idx,
  2207. bool crowd, bool cam_ignore, uint8_t priority,
  2208. uint32_t logic_serv,
  2209. XiveTCTXMatch *match)
  2210. {
  2211. PnvMachineState *pnv = PNV_MACHINE(xfb);
  2212. int total_count = 0;
  2213. int i;
  2214. for (i = 0; i < pnv->num_chips; i++) {
  2215. Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
  2216. XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
  2217. XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
  2218. int count;
  2219. count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, crowd,
  2220. cam_ignore, priority, logic_serv, match);
  2221. if (count < 0) {
  2222. return count;
  2223. }
  2224. total_count += count;
  2225. }
  2226. return total_count;
  2227. }
  2228. static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
  2229. uint8_t nvt_blk, uint32_t nvt_idx,
  2230. bool crowd, bool cam_ignore, uint8_t priority,
  2231. uint32_t logic_serv,
  2232. XiveTCTXMatch *match)
  2233. {
  2234. PnvMachineState *pnv = PNV_MACHINE(xfb);
  2235. int total_count = 0;
  2236. int i;
  2237. for (i = 0; i < pnv->num_chips; i++) {
  2238. Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
  2239. XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
  2240. XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
  2241. int count;
  2242. count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, crowd,
  2243. cam_ignore, priority, logic_serv, match);
  2244. if (count < 0) {
  2245. return count;
  2246. }
  2247. total_count += count;
  2248. }
  2249. return total_count;
  2250. }
  2251. static int pnv10_xive_broadcast(XiveFabric *xfb,
  2252. uint8_t nvt_blk, uint32_t nvt_idx,
  2253. bool crowd, bool cam_ignore,
  2254. uint8_t priority)
  2255. {
  2256. PnvMachineState *pnv = PNV_MACHINE(xfb);
  2257. int i;
  2258. for (i = 0; i < pnv->num_chips; i++) {
  2259. Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
  2260. XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
  2261. XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
  2262. xpc->broadcast(xptr, nvt_blk, nvt_idx, crowd, cam_ignore, priority);
  2263. }
  2264. return 0;
  2265. }
  2266. static bool pnv_machine_get_big_core(Object *obj, Error **errp)
  2267. {
  2268. PnvMachineState *pnv = PNV_MACHINE(obj);
  2269. return pnv->big_core;
  2270. }
  2271. static void pnv_machine_set_big_core(Object *obj, bool value, Error **errp)
  2272. {
  2273. PnvMachineState *pnv = PNV_MACHINE(obj);
  2274. pnv->big_core = value;
  2275. }
  2276. static bool pnv_machine_get_lpar_per_core(Object *obj, Error **errp)
  2277. {
  2278. PnvMachineState *pnv = PNV_MACHINE(obj);
  2279. return pnv->lpar_per_core;
  2280. }
  2281. static void pnv_machine_set_lpar_per_core(Object *obj, bool value, Error **errp)
  2282. {
  2283. PnvMachineState *pnv = PNV_MACHINE(obj);
  2284. pnv->lpar_per_core = value;
  2285. }
  2286. static bool pnv_machine_get_hb(Object *obj, Error **errp)
  2287. {
  2288. PnvMachineState *pnv = PNV_MACHINE(obj);
  2289. return !!pnv->fw_load_addr;
  2290. }
  2291. static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
  2292. {
  2293. PnvMachineState *pnv = PNV_MACHINE(obj);
  2294. if (value) {
  2295. pnv->fw_load_addr = 0x8000000;
  2296. }
  2297. }
  2298. static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
  2299. {
  2300. MachineClass *mc = MACHINE_CLASS(oc);
  2301. XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
  2302. PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
  2303. static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
  2304. static GlobalProperty phb_compat[] = {
  2305. { TYPE_PNV_PHB, "version", "3" },
  2306. { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
  2307. };
  2308. mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
  2309. mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
  2310. compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
  2311. xic->icp_get = pnv_icp_get;
  2312. xic->ics_get = pnv_ics_get;
  2313. xic->ics_resend = pnv_ics_resend;
  2314. pmc->compat = compat;
  2315. pmc->compat_size = sizeof(compat);
  2316. pmc->max_smt_threads = 8;
  2317. /* POWER8 is always lpar-per-core mode */
  2318. pmc->has_lpar_per_thread = false;
  2319. machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
  2320. }
  2321. static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
  2322. {
  2323. MachineClass *mc = MACHINE_CLASS(oc);
  2324. XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
  2325. PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
  2326. static const char compat[] = "qemu,powernv9\0ibm,powernv";
  2327. static GlobalProperty phb_compat[] = {
  2328. { TYPE_PNV_PHB, "version", "4" },
  2329. { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
  2330. };
  2331. mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
  2332. mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
  2333. compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
  2334. xfc->match_nvt = pnv_match_nvt;
  2335. pmc->compat = compat;
  2336. pmc->compat_size = sizeof(compat);
  2337. pmc->max_smt_threads = 4;
  2338. pmc->has_lpar_per_thread = true;
  2339. pmc->dt_power_mgt = pnv_dt_power_mgt;
  2340. machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
  2341. object_class_property_add_bool(oc, "big-core",
  2342. pnv_machine_get_big_core,
  2343. pnv_machine_set_big_core);
  2344. object_class_property_set_description(oc, "big-core",
  2345. "Use big-core (aka fused-core) mode");
  2346. object_class_property_add_bool(oc, "lpar-per-core",
  2347. pnv_machine_get_lpar_per_core,
  2348. pnv_machine_set_lpar_per_core);
  2349. object_class_property_set_description(oc, "lpar-per-core",
  2350. "Use 1 LPAR per core mode");
  2351. }
  2352. static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
  2353. {
  2354. MachineClass *mc = MACHINE_CLASS(oc);
  2355. PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
  2356. XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
  2357. static const char compat[] = "qemu,powernv10\0ibm,powernv";
  2358. static GlobalProperty phb_compat[] = {
  2359. { TYPE_PNV_PHB, "version", "5" },
  2360. { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
  2361. };
  2362. mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
  2363. compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
  2364. mc->alias = "powernv";
  2365. pmc->compat = compat;
  2366. pmc->compat_size = sizeof(compat);
  2367. pmc->max_smt_threads = 4;
  2368. pmc->has_lpar_per_thread = true;
  2369. pmc->quirk_tb_big_core = true;
  2370. pmc->dt_power_mgt = pnv_dt_power_mgt;
  2371. xfc->match_nvt = pnv10_xive_match_nvt;
  2372. xfc->broadcast = pnv10_xive_broadcast;
  2373. machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
  2374. }
  2375. static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
  2376. {
  2377. MachineClass *mc = MACHINE_CLASS(oc);
  2378. pnv_machine_p10_common_class_init(oc, data);
  2379. mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
  2380. /*
  2381. * This is the parent of POWER10 Rainier class, so properies go here
  2382. * rather than common init (which would add them to both parent and
  2383. * child which is invalid).
  2384. */
  2385. object_class_property_add_bool(oc, "big-core",
  2386. pnv_machine_get_big_core,
  2387. pnv_machine_set_big_core);
  2388. object_class_property_set_description(oc, "big-core",
  2389. "Use big-core (aka fused-core) mode");
  2390. object_class_property_add_bool(oc, "lpar-per-core",
  2391. pnv_machine_get_lpar_per_core,
  2392. pnv_machine_set_lpar_per_core);
  2393. object_class_property_set_description(oc, "lpar-per-core",
  2394. "Use 1 LPAR per core mode");
  2395. }
  2396. static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
  2397. {
  2398. MachineClass *mc = MACHINE_CLASS(oc);
  2399. PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
  2400. pnv_machine_p10_common_class_init(oc, data);
  2401. mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
  2402. pmc->i2c_init = pnv_rainier_i2c_init;
  2403. }
  2404. static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
  2405. {
  2406. CPUPPCState *env = cpu_env(cs);
  2407. cpu_synchronize_state(cs);
  2408. ppc_cpu_do_system_reset(cs);
  2409. if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
  2410. /*
  2411. * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
  2412. * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
  2413. * (PPC_BIT(43)).
  2414. */
  2415. if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
  2416. warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
  2417. env->spr[SPR_SRR1] |= SRR1_WAKERESET;
  2418. }
  2419. } else {
  2420. /*
  2421. * For non-powersave system resets, SRR1[42:45] are defined to be
  2422. * implementation-dependent. The POWER9 User Manual specifies that
  2423. * an external (SCOM driven, which may come from a BMC nmi command or
  2424. * another CPU requesting a NMI IPI) system reset exception should be
  2425. * 0b0010 (PPC_BIT(44)).
  2426. */
  2427. env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
  2428. }
  2429. if (arg.host_int == 1) {
  2430. cpu_resume(cs);
  2431. }
  2432. }
  2433. /*
  2434. * Send a SRESET (NMI) interrupt to the CPU, and resume execution if it was
  2435. * paused.
  2436. */
  2437. void pnv_cpu_do_nmi_resume(CPUState *cs)
  2438. {
  2439. async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(1));
  2440. }
  2441. static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
  2442. {
  2443. async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(0));
  2444. }
  2445. static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
  2446. {
  2447. PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
  2448. int i;
  2449. for (i = 0; i < pnv->num_chips; i++) {
  2450. pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
  2451. }
  2452. }
  2453. static void pnv_machine_class_init(ObjectClass *oc, void *data)
  2454. {
  2455. MachineClass *mc = MACHINE_CLASS(oc);
  2456. InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
  2457. NMIClass *nc = NMI_CLASS(oc);
  2458. mc->desc = "IBM PowerNV (Non-Virtualized)";
  2459. mc->init = pnv_init;
  2460. mc->reset = pnv_reset;
  2461. mc->max_cpus = MAX_CPUS;
  2462. /* Pnv provides a AHCI device for storage */
  2463. mc->block_default_type = IF_IDE;
  2464. mc->no_parallel = 1;
  2465. mc->default_boot_order = NULL;
  2466. /*
  2467. * RAM defaults to less than 2048 for 32-bit hosts, and large
  2468. * enough to fit the maximum initrd size at it's load address
  2469. */
  2470. mc->default_ram_size = 1 * GiB;
  2471. mc->default_ram_id = "pnv.ram";
  2472. ispc->print_info = pnv_pic_print_info;
  2473. nc->nmi_monitor_handler = pnv_nmi;
  2474. object_class_property_add_bool(oc, "hb-mode",
  2475. pnv_machine_get_hb, pnv_machine_set_hb);
  2476. object_class_property_set_description(oc, "hb-mode",
  2477. "Use a hostboot like boot loader");
  2478. }
  2479. #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
  2480. { \
  2481. .name = type, \
  2482. .class_init = class_initfn, \
  2483. .parent = TYPE_PNV8_CHIP, \
  2484. }
  2485. #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
  2486. { \
  2487. .name = type, \
  2488. .class_init = class_initfn, \
  2489. .parent = TYPE_PNV9_CHIP, \
  2490. }
  2491. #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
  2492. { \
  2493. .name = type, \
  2494. .class_init = class_initfn, \
  2495. .parent = TYPE_PNV10_CHIP, \
  2496. }
  2497. static const TypeInfo types[] = {
  2498. {
  2499. .name = MACHINE_TYPE_NAME("powernv10-rainier"),
  2500. .parent = MACHINE_TYPE_NAME("powernv10"),
  2501. .class_init = pnv_machine_p10_rainier_class_init,
  2502. },
  2503. {
  2504. .name = MACHINE_TYPE_NAME("powernv10"),
  2505. .parent = TYPE_PNV_MACHINE,
  2506. .class_init = pnv_machine_power10_class_init,
  2507. .interfaces = (InterfaceInfo[]) {
  2508. { TYPE_XIVE_FABRIC },
  2509. { },
  2510. },
  2511. },
  2512. {
  2513. .name = MACHINE_TYPE_NAME("powernv9"),
  2514. .parent = TYPE_PNV_MACHINE,
  2515. .class_init = pnv_machine_power9_class_init,
  2516. .interfaces = (InterfaceInfo[]) {
  2517. { TYPE_XIVE_FABRIC },
  2518. { },
  2519. },
  2520. },
  2521. {
  2522. .name = MACHINE_TYPE_NAME("powernv8"),
  2523. .parent = TYPE_PNV_MACHINE,
  2524. .class_init = pnv_machine_power8_class_init,
  2525. .interfaces = (InterfaceInfo[]) {
  2526. { TYPE_XICS_FABRIC },
  2527. { },
  2528. },
  2529. },
  2530. {
  2531. .name = TYPE_PNV_MACHINE,
  2532. .parent = TYPE_MACHINE,
  2533. .abstract = true,
  2534. .instance_size = sizeof(PnvMachineState),
  2535. .class_init = pnv_machine_class_init,
  2536. .class_size = sizeof(PnvMachineClass),
  2537. .interfaces = (InterfaceInfo[]) {
  2538. { TYPE_INTERRUPT_STATS_PROVIDER },
  2539. { TYPE_NMI },
  2540. { },
  2541. },
  2542. },
  2543. {
  2544. .name = TYPE_PNV_CHIP,
  2545. .parent = TYPE_SYS_BUS_DEVICE,
  2546. .class_init = pnv_chip_class_init,
  2547. .instance_size = sizeof(PnvChip),
  2548. .class_size = sizeof(PnvChipClass),
  2549. .abstract = true,
  2550. },
  2551. /*
  2552. * P10 chip and variants
  2553. */
  2554. {
  2555. .name = TYPE_PNV10_CHIP,
  2556. .parent = TYPE_PNV_CHIP,
  2557. .instance_init = pnv_chip_power10_instance_init,
  2558. .instance_size = sizeof(Pnv10Chip),
  2559. },
  2560. DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
  2561. /*
  2562. * P9 chip and variants
  2563. */
  2564. {
  2565. .name = TYPE_PNV9_CHIP,
  2566. .parent = TYPE_PNV_CHIP,
  2567. .instance_init = pnv_chip_power9_instance_init,
  2568. .instance_size = sizeof(Pnv9Chip),
  2569. },
  2570. DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
  2571. /*
  2572. * P8 chip and variants
  2573. */
  2574. {
  2575. .name = TYPE_PNV8_CHIP,
  2576. .parent = TYPE_PNV_CHIP,
  2577. .instance_init = pnv_chip_power8_instance_init,
  2578. .instance_size = sizeof(Pnv8Chip),
  2579. },
  2580. DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
  2581. DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
  2582. DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
  2583. pnv_chip_power8nvl_class_init),
  2584. };
  2585. DEFINE_TYPES(types)