ns.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846
  1. /*
  2. * QEMU NVM Express Virtual Namespace
  3. *
  4. * Copyright (c) 2019 CNEX Labs
  5. * Copyright (c) 2020 Samsung Electronics
  6. *
  7. * Authors:
  8. * Klaus Jensen <k.jensen@samsung.com>
  9. *
  10. * This work is licensed under the terms of the GNU GPL, version 2. See the
  11. * COPYING file in the top-level directory.
  12. *
  13. */
  14. #include "qemu/osdep.h"
  15. #include "qemu/units.h"
  16. #include "qemu/cutils.h"
  17. #include "qemu/error-report.h"
  18. #include "qapi/error.h"
  19. #include "qemu/bitops.h"
  20. #include "system/system.h"
  21. #include "system/block-backend.h"
  22. #include "nvme.h"
  23. #include "trace.h"
  24. #define MIN_DISCARD_GRANULARITY (4 * KiB)
  25. #define NVME_DEFAULT_ZONE_SIZE (128 * MiB)
  26. void nvme_ns_init_format(NvmeNamespace *ns)
  27. {
  28. NvmeIdNs *id_ns = &ns->id_ns;
  29. NvmeIdNsNvm *id_ns_nvm = &ns->id_ns_nvm;
  30. BlockDriverInfo bdi;
  31. int npdg, ret;
  32. int64_t nlbas;
  33. ns->lbaf = id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(id_ns->flbas)];
  34. ns->lbasz = 1 << ns->lbaf.ds;
  35. nlbas = ns->size / (ns->lbasz + ns->lbaf.ms);
  36. id_ns->nsze = cpu_to_le64(nlbas);
  37. /* no thin provisioning */
  38. id_ns->ncap = id_ns->nsze;
  39. id_ns->nuse = id_ns->ncap;
  40. ns->moff = nlbas << ns->lbaf.ds;
  41. npdg = ns->blkconf.discard_granularity / ns->lbasz;
  42. ret = bdrv_get_info(blk_bs(ns->blkconf.blk), &bdi);
  43. if (ret >= 0 && bdi.cluster_size > ns->blkconf.discard_granularity) {
  44. npdg = bdi.cluster_size / ns->lbasz;
  45. }
  46. id_ns->npda = id_ns->npdg = npdg - 1;
  47. id_ns_nvm->npdal = npdg;
  48. id_ns_nvm->npdgl = npdg;
  49. }
  50. static int nvme_ns_init(NvmeNamespace *ns, Error **errp)
  51. {
  52. static uint64_t ns_count;
  53. NvmeIdNs *id_ns = &ns->id_ns;
  54. NvmeIdNsNvm *id_ns_nvm = &ns->id_ns_nvm;
  55. NvmeIdNsInd *id_ns_ind = &ns->id_ns_ind;
  56. uint8_t ds;
  57. uint16_t ms;
  58. int i;
  59. ns->csi = NVME_CSI_NVM;
  60. ns->status = 0x0;
  61. ns->id_ns.dlfeat = 0x1;
  62. /* support DULBE and I/O optimization fields */
  63. id_ns->nsfeat |= (NVME_ID_NS_NSFEAT_DAE | NVME_ID_NS_NSFEAT_OPTPERF_ALL);
  64. if (ns->params.shared) {
  65. id_ns->nmic |= NVME_ID_NS_IND_NMIC_SHRNS;
  66. id_ns_ind->nmic = NVME_ID_NS_IND_NMIC_SHRNS;
  67. id_ns_ind->nstat = NVME_ID_NS_IND_NSTAT_NRDY;
  68. }
  69. /* Substitute a missing EUI-64 by an autogenerated one */
  70. ++ns_count;
  71. if (!ns->params.eui64 && ns->params.eui64_default) {
  72. ns->params.eui64 = ns_count + NVME_EUI64_DEFAULT;
  73. }
  74. /* simple copy */
  75. id_ns->mssrl = cpu_to_le16(ns->params.mssrl);
  76. id_ns->mcl = cpu_to_le32(ns->params.mcl);
  77. id_ns->msrc = ns->params.msrc;
  78. id_ns->eui64 = cpu_to_be64(ns->params.eui64);
  79. memcpy(&id_ns->nguid, &ns->params.nguid.data, sizeof(id_ns->nguid));
  80. ds = 31 - clz32(ns->blkconf.logical_block_size);
  81. ms = ns->params.ms;
  82. id_ns->mc = NVME_ID_NS_MC_EXTENDED | NVME_ID_NS_MC_SEPARATE;
  83. if (ms && ns->params.mset) {
  84. id_ns->flbas |= NVME_ID_NS_FLBAS_EXTENDED;
  85. }
  86. id_ns->dpc = 0x1f;
  87. id_ns->dps = ns->params.pi;
  88. if (ns->params.pi && ns->params.pil) {
  89. id_ns->dps |= NVME_ID_NS_DPS_FIRST_EIGHT;
  90. }
  91. ns->pif = ns->params.pif;
  92. static const NvmeLBAF defaults[16] = {
  93. [0] = { .ds = 9 },
  94. [1] = { .ds = 9, .ms = 8 },
  95. [2] = { .ds = 9, .ms = 16 },
  96. [3] = { .ds = 9, .ms = 64 },
  97. [4] = { .ds = 12 },
  98. [5] = { .ds = 12, .ms = 8 },
  99. [6] = { .ds = 12, .ms = 16 },
  100. [7] = { .ds = 12, .ms = 64 },
  101. };
  102. ns->nlbaf = 8;
  103. memcpy(&id_ns->lbaf, &defaults, sizeof(defaults));
  104. for (i = 0; i < ns->nlbaf; i++) {
  105. NvmeLBAF *lbaf = &id_ns->lbaf[i];
  106. if (lbaf->ds == ds) {
  107. if (lbaf->ms == ms) {
  108. id_ns->flbas |= i;
  109. goto lbaf_found;
  110. }
  111. }
  112. }
  113. /* add non-standard lba format */
  114. id_ns->lbaf[ns->nlbaf].ds = ds;
  115. id_ns->lbaf[ns->nlbaf].ms = ms;
  116. ns->nlbaf++;
  117. id_ns->flbas |= i;
  118. lbaf_found:
  119. id_ns_nvm->elbaf[i] = (ns->pif & 0x3) << 7;
  120. id_ns->nlbaf = ns->nlbaf - 1;
  121. nvme_ns_init_format(ns);
  122. return 0;
  123. }
  124. static int nvme_ns_init_blk(NvmeNamespace *ns, Error **errp)
  125. {
  126. bool read_only;
  127. if (!blkconf_blocksizes(&ns->blkconf, errp)) {
  128. return -1;
  129. }
  130. read_only = !blk_supports_write_perm(ns->blkconf.blk);
  131. if (!blkconf_apply_backend_options(&ns->blkconf, read_only, false, errp)) {
  132. return -1;
  133. }
  134. if (ns->blkconf.discard_granularity == -1) {
  135. ns->blkconf.discard_granularity =
  136. MAX(ns->blkconf.logical_block_size, MIN_DISCARD_GRANULARITY);
  137. }
  138. ns->size = blk_getlength(ns->blkconf.blk);
  139. if (ns->size < 0) {
  140. error_setg_errno(errp, -ns->size, "could not get blockdev size");
  141. return -1;
  142. }
  143. return 0;
  144. }
  145. static int nvme_ns_zoned_check_calc_geometry(NvmeNamespace *ns, Error **errp)
  146. {
  147. uint64_t zone_size, zone_cap;
  148. /* Make sure that the values of ZNS properties are sane */
  149. if (ns->params.zone_size_bs) {
  150. zone_size = ns->params.zone_size_bs;
  151. } else {
  152. zone_size = NVME_DEFAULT_ZONE_SIZE;
  153. }
  154. if (ns->params.zone_cap_bs) {
  155. zone_cap = ns->params.zone_cap_bs;
  156. } else {
  157. zone_cap = zone_size;
  158. }
  159. if (zone_cap > zone_size) {
  160. error_setg(errp, "zone capacity %"PRIu64"B exceeds "
  161. "zone size %"PRIu64"B", zone_cap, zone_size);
  162. return -1;
  163. }
  164. if (zone_size < ns->lbasz) {
  165. error_setg(errp, "zone size %"PRIu64"B too small, "
  166. "must be at least %zuB", zone_size, ns->lbasz);
  167. return -1;
  168. }
  169. if (zone_cap < ns->lbasz) {
  170. error_setg(errp, "zone capacity %"PRIu64"B too small, "
  171. "must be at least %zuB", zone_cap, ns->lbasz);
  172. return -1;
  173. }
  174. /*
  175. * Save the main zone geometry values to avoid
  176. * calculating them later again.
  177. */
  178. ns->zone_size = zone_size / ns->lbasz;
  179. ns->zone_capacity = zone_cap / ns->lbasz;
  180. ns->num_zones = le64_to_cpu(ns->id_ns.nsze) / ns->zone_size;
  181. /* Do a few more sanity checks of ZNS properties */
  182. if (!ns->num_zones) {
  183. error_setg(errp,
  184. "insufficient drive capacity, must be at least the size "
  185. "of one zone (%"PRIu64"B)", zone_size);
  186. return -1;
  187. }
  188. return 0;
  189. }
  190. static void nvme_ns_zoned_init_state(NvmeNamespace *ns)
  191. {
  192. uint64_t start = 0, zone_size = ns->zone_size;
  193. uint64_t capacity = ns->num_zones * zone_size;
  194. NvmeZone *zone;
  195. int i;
  196. ns->zone_array = g_new0(NvmeZone, ns->num_zones);
  197. if (ns->params.zd_extension_size) {
  198. ns->zd_extensions = g_malloc0(ns->params.zd_extension_size *
  199. ns->num_zones);
  200. }
  201. QTAILQ_INIT(&ns->exp_open_zones);
  202. QTAILQ_INIT(&ns->imp_open_zones);
  203. QTAILQ_INIT(&ns->closed_zones);
  204. QTAILQ_INIT(&ns->full_zones);
  205. zone = ns->zone_array;
  206. for (i = 0; i < ns->num_zones; i++, zone++) {
  207. if (start + zone_size > capacity) {
  208. zone_size = capacity - start;
  209. }
  210. zone->d.zt = NVME_ZONE_TYPE_SEQ_WRITE;
  211. nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY);
  212. zone->d.za = 0;
  213. zone->d.zcap = ns->zone_capacity;
  214. zone->d.zslba = start;
  215. zone->d.wp = start;
  216. zone->w_ptr = start;
  217. start += zone_size;
  218. }
  219. ns->zone_size_log2 = 0;
  220. if (is_power_of_2(ns->zone_size)) {
  221. ns->zone_size_log2 = 63 - clz64(ns->zone_size);
  222. }
  223. }
  224. static void nvme_ns_init_zoned(NvmeNamespace *ns)
  225. {
  226. NvmeIdNsZoned *id_ns_z;
  227. int i;
  228. nvme_ns_zoned_init_state(ns);
  229. id_ns_z = g_new0(NvmeIdNsZoned, 1);
  230. /* MAR/MOR are zeroes-based, FFFFFFFFFh means no limit */
  231. id_ns_z->mar = cpu_to_le32(ns->params.max_active_zones - 1);
  232. id_ns_z->mor = cpu_to_le32(ns->params.max_open_zones - 1);
  233. id_ns_z->zoc = 0;
  234. id_ns_z->ozcs = ns->params.cross_zone_read ?
  235. NVME_ID_NS_ZONED_OZCS_RAZB : 0x00;
  236. for (i = 0; i <= ns->id_ns.nlbaf; i++) {
  237. id_ns_z->lbafe[i].zsze = cpu_to_le64(ns->zone_size);
  238. id_ns_z->lbafe[i].zdes =
  239. ns->params.zd_extension_size >> 6; /* Units of 64B */
  240. }
  241. if (ns->params.zrwas) {
  242. ns->zns.numzrwa = ns->params.numzrwa ?
  243. ns->params.numzrwa : ns->num_zones;
  244. ns->zns.zrwas = ns->params.zrwas >> ns->lbaf.ds;
  245. ns->zns.zrwafg = ns->params.zrwafg >> ns->lbaf.ds;
  246. id_ns_z->ozcs |= NVME_ID_NS_ZONED_OZCS_ZRWASUP;
  247. id_ns_z->zrwacap = NVME_ID_NS_ZONED_ZRWACAP_EXPFLUSHSUP;
  248. id_ns_z->numzrwa = cpu_to_le32(ns->params.numzrwa);
  249. id_ns_z->zrwas = cpu_to_le16(ns->zns.zrwas);
  250. id_ns_z->zrwafg = cpu_to_le16(ns->zns.zrwafg);
  251. }
  252. id_ns_z->ozcs = cpu_to_le16(id_ns_z->ozcs);
  253. ns->csi = NVME_CSI_ZONED;
  254. ns->id_ns.nsze = cpu_to_le64(ns->num_zones * ns->zone_size);
  255. ns->id_ns.ncap = ns->id_ns.nsze;
  256. ns->id_ns.nuse = ns->id_ns.ncap;
  257. /*
  258. * The device uses the BDRV_BLOCK_ZERO flag to determine the "deallocated"
  259. * status of logical blocks. Since the spec defines that logical blocks
  260. * SHALL be deallocated when then zone is in the Empty or Offline states,
  261. * we can only support DULBE if the zone size is a multiple of the
  262. * calculated NPDG.
  263. */
  264. if (ns->zone_size % (ns->id_ns.npdg + 1)) {
  265. warn_report("the zone size (%"PRIu64" blocks) is not a multiple of "
  266. "the calculated deallocation granularity (%d blocks); "
  267. "DULBE support disabled",
  268. ns->zone_size, ns->id_ns.npdg + 1);
  269. ns->id_ns.nsfeat &= ~0x4;
  270. }
  271. ns->id_ns_zoned = id_ns_z;
  272. }
  273. static void nvme_clear_zone(NvmeNamespace *ns, NvmeZone *zone)
  274. {
  275. uint8_t state;
  276. zone->w_ptr = zone->d.wp;
  277. state = nvme_get_zone_state(zone);
  278. if (zone->d.wp != zone->d.zslba ||
  279. (zone->d.za & NVME_ZA_ZD_EXT_VALID)) {
  280. if (state != NVME_ZONE_STATE_CLOSED) {
  281. trace_pci_nvme_clear_ns_close(state, zone->d.zslba);
  282. nvme_set_zone_state(zone, NVME_ZONE_STATE_CLOSED);
  283. }
  284. nvme_aor_inc_active(ns);
  285. QTAILQ_INSERT_HEAD(&ns->closed_zones, zone, entry);
  286. } else {
  287. trace_pci_nvme_clear_ns_reset(state, zone->d.zslba);
  288. if (zone->d.za & NVME_ZA_ZRWA_VALID) {
  289. zone->d.za &= ~NVME_ZA_ZRWA_VALID;
  290. ns->zns.numzrwa++;
  291. }
  292. nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY);
  293. }
  294. }
  295. /*
  296. * Close all the zones that are currently open.
  297. */
  298. static void nvme_zoned_ns_shutdown(NvmeNamespace *ns)
  299. {
  300. NvmeZone *zone, *next;
  301. QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
  302. QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
  303. nvme_aor_dec_active(ns);
  304. nvme_clear_zone(ns, zone);
  305. }
  306. QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
  307. QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
  308. nvme_aor_dec_open(ns);
  309. nvme_aor_dec_active(ns);
  310. nvme_clear_zone(ns, zone);
  311. }
  312. QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
  313. QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
  314. nvme_aor_dec_open(ns);
  315. nvme_aor_dec_active(ns);
  316. nvme_clear_zone(ns, zone);
  317. }
  318. assert(ns->nr_open_zones == 0);
  319. }
  320. static NvmeRuHandle *nvme_find_ruh_by_attr(NvmeEnduranceGroup *endgrp,
  321. uint8_t ruha, uint16_t *ruhid)
  322. {
  323. for (uint16_t i = 0; i < endgrp->fdp.nruh; i++) {
  324. NvmeRuHandle *ruh = &endgrp->fdp.ruhs[i];
  325. if (ruh->ruha == ruha) {
  326. *ruhid = i;
  327. return ruh;
  328. }
  329. }
  330. return NULL;
  331. }
  332. static bool nvme_ns_init_fdp(NvmeNamespace *ns, Error **errp)
  333. {
  334. NvmeEnduranceGroup *endgrp = ns->endgrp;
  335. NvmeRuHandle *ruh;
  336. uint8_t lbafi = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
  337. g_autofree unsigned int *ruhids = NULL;
  338. unsigned int n, m, *ruhid;
  339. const char *endptr, *token;
  340. char *r, *p;
  341. uint16_t *ph;
  342. if (!ns->params.fdp.ruhs) {
  343. ns->fdp.nphs = 1;
  344. ph = ns->fdp.phs = g_new(uint16_t, 1);
  345. ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_CTRL, ph);
  346. if (!ruh) {
  347. ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_UNUSED, ph);
  348. if (!ruh) {
  349. error_setg(errp, "no unused reclaim unit handles left");
  350. return false;
  351. }
  352. ruh->ruha = NVME_RUHA_CTRL;
  353. ruh->lbafi = lbafi;
  354. ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds;
  355. for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) {
  356. ruh->rus[rg].ruamw = ruh->ruamw;
  357. }
  358. } else if (ruh->lbafi != lbafi) {
  359. error_setg(errp, "lba format index of controller assigned "
  360. "reclaim unit handle does not match namespace lba "
  361. "format index");
  362. return false;
  363. }
  364. return true;
  365. }
  366. ruhid = ruhids = g_new0(unsigned int, endgrp->fdp.nruh);
  367. r = p = strdup(ns->params.fdp.ruhs);
  368. /* parse the placement handle identifiers */
  369. while ((token = qemu_strsep(&p, ";")) != NULL) {
  370. if (qemu_strtoui(token, &endptr, 0, &n) < 0) {
  371. error_setg(errp, "cannot parse reclaim unit handle identifier");
  372. free(r);
  373. return false;
  374. }
  375. m = n;
  376. /* parse range */
  377. if (*endptr == '-') {
  378. token = endptr + 1;
  379. if (qemu_strtoui(token, NULL, 0, &m) < 0) {
  380. error_setg(errp, "cannot parse reclaim unit handle identifier");
  381. free(r);
  382. return false;
  383. }
  384. if (m < n) {
  385. error_setg(errp, "invalid reclaim unit handle identifier range");
  386. free(r);
  387. return false;
  388. }
  389. }
  390. for (; n <= m; n++) {
  391. if (ns->fdp.nphs++ == endgrp->fdp.nruh) {
  392. error_setg(errp, "too many placement handles");
  393. free(r);
  394. return false;
  395. }
  396. *ruhid++ = n;
  397. }
  398. }
  399. free(r);
  400. /* verify that the ruhids are unique */
  401. for (unsigned int i = 0; i < ns->fdp.nphs; i++) {
  402. for (unsigned int j = i + 1; j < ns->fdp.nphs; j++) {
  403. if (ruhids[i] == ruhids[j]) {
  404. error_setg(errp, "duplicate reclaim unit handle identifier: %u",
  405. ruhids[i]);
  406. return false;
  407. }
  408. }
  409. }
  410. ph = ns->fdp.phs = g_new(uint16_t, ns->fdp.nphs);
  411. ruhid = ruhids;
  412. /* verify the identifiers */
  413. for (unsigned int i = 0; i < ns->fdp.nphs; i++, ruhid++, ph++) {
  414. if (*ruhid >= endgrp->fdp.nruh) {
  415. error_setg(errp, "invalid reclaim unit handle identifier");
  416. return false;
  417. }
  418. ruh = &endgrp->fdp.ruhs[*ruhid];
  419. switch (ruh->ruha) {
  420. case NVME_RUHA_UNUSED:
  421. ruh->ruha = NVME_RUHA_HOST;
  422. ruh->lbafi = lbafi;
  423. ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds;
  424. for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) {
  425. ruh->rus[rg].ruamw = ruh->ruamw;
  426. }
  427. break;
  428. case NVME_RUHA_HOST:
  429. if (ruh->lbafi != lbafi) {
  430. error_setg(errp, "lba format index of host assigned"
  431. "reclaim unit handle does not match namespace "
  432. "lba format index");
  433. return false;
  434. }
  435. break;
  436. case NVME_RUHA_CTRL:
  437. error_setg(errp, "reclaim unit handle is controller assigned");
  438. return false;
  439. default:
  440. abort();
  441. }
  442. *ph = *ruhid;
  443. }
  444. return true;
  445. }
  446. static int nvme_ns_check_constraints(NvmeNamespace *ns, Error **errp)
  447. {
  448. unsigned int pi_size;
  449. if (!ns->blkconf.blk) {
  450. error_setg(errp, "block backend not configured");
  451. return -1;
  452. }
  453. if (ns->params.pi) {
  454. if (ns->params.pi > NVME_ID_NS_DPS_TYPE_3) {
  455. error_setg(errp, "invalid 'pi' value");
  456. return -1;
  457. }
  458. switch (ns->params.pif) {
  459. case NVME_PI_GUARD_16:
  460. pi_size = 8;
  461. break;
  462. case NVME_PI_GUARD_64:
  463. pi_size = 16;
  464. break;
  465. default:
  466. error_setg(errp, "invalid 'pif'");
  467. return -1;
  468. }
  469. if (ns->params.ms < pi_size) {
  470. error_setg(errp, "at least %u bytes of metadata required to "
  471. "enable protection information", pi_size);
  472. return -1;
  473. }
  474. }
  475. if (ns->params.nsid > NVME_MAX_NAMESPACES) {
  476. error_setg(errp, "invalid namespace id (must be between 0 and %d)",
  477. NVME_MAX_NAMESPACES);
  478. return -1;
  479. }
  480. if (ns->params.zoned && ns->endgrp && ns->endgrp->fdp.enabled) {
  481. error_setg(errp, "cannot be a zoned- in an FDP configuration");
  482. return -1;
  483. }
  484. if (ns->params.zoned) {
  485. if (ns->params.max_active_zones) {
  486. if (ns->params.max_open_zones > ns->params.max_active_zones) {
  487. error_setg(errp, "max_open_zones (%u) exceeds "
  488. "max_active_zones (%u)", ns->params.max_open_zones,
  489. ns->params.max_active_zones);
  490. return -1;
  491. }
  492. if (!ns->params.max_open_zones) {
  493. ns->params.max_open_zones = ns->params.max_active_zones;
  494. }
  495. }
  496. if (ns->params.zd_extension_size) {
  497. if (ns->params.zd_extension_size & 0x3f) {
  498. error_setg(errp, "zone descriptor extension size must be a "
  499. "multiple of 64B");
  500. return -1;
  501. }
  502. if ((ns->params.zd_extension_size >> 6) > 0xff) {
  503. error_setg(errp,
  504. "zone descriptor extension size is too large");
  505. return -1;
  506. }
  507. }
  508. if (ns->params.zrwas) {
  509. if (ns->params.zrwas % ns->blkconf.logical_block_size) {
  510. error_setg(errp, "zone random write area size (zoned.zrwas "
  511. "%"PRIu64") must be a multiple of the logical "
  512. "block size (logical_block_size %"PRIu32")",
  513. ns->params.zrwas, ns->blkconf.logical_block_size);
  514. return -1;
  515. }
  516. if (ns->params.zrwafg == -1) {
  517. ns->params.zrwafg = ns->blkconf.logical_block_size;
  518. }
  519. if (ns->params.zrwas % ns->params.zrwafg) {
  520. error_setg(errp, "zone random write area size (zoned.zrwas "
  521. "%"PRIu64") must be a multiple of the zone random "
  522. "write area flush granularity (zoned.zrwafg, "
  523. "%"PRIu64")", ns->params.zrwas, ns->params.zrwafg);
  524. return -1;
  525. }
  526. if (ns->params.max_active_zones) {
  527. if (ns->params.numzrwa > ns->params.max_active_zones) {
  528. error_setg(errp, "number of zone random write area "
  529. "resources (zoned.numzrwa, %d) must be less "
  530. "than or equal to maximum active resources "
  531. "(zoned.max_active_zones, %d)",
  532. ns->params.numzrwa,
  533. ns->params.max_active_zones);
  534. return -1;
  535. }
  536. }
  537. }
  538. }
  539. return 0;
  540. }
  541. int nvme_ns_setup(NvmeNamespace *ns, Error **errp)
  542. {
  543. if (nvme_ns_check_constraints(ns, errp)) {
  544. return -1;
  545. }
  546. if (nvme_ns_init_blk(ns, errp)) {
  547. return -1;
  548. }
  549. if (nvme_ns_init(ns, errp)) {
  550. return -1;
  551. }
  552. if (ns->params.zoned) {
  553. if (nvme_ns_zoned_check_calc_geometry(ns, errp) != 0) {
  554. return -1;
  555. }
  556. nvme_ns_init_zoned(ns);
  557. }
  558. if (ns->endgrp && ns->endgrp->fdp.enabled) {
  559. if (!nvme_ns_init_fdp(ns, errp)) {
  560. return -1;
  561. }
  562. }
  563. return 0;
  564. }
  565. void nvme_ns_drain(NvmeNamespace *ns)
  566. {
  567. blk_drain(ns->blkconf.blk);
  568. }
  569. void nvme_ns_shutdown(NvmeNamespace *ns)
  570. {
  571. blk_flush(ns->blkconf.blk);
  572. if (ns->params.zoned) {
  573. nvme_zoned_ns_shutdown(ns);
  574. }
  575. }
  576. void nvme_ns_cleanup(NvmeNamespace *ns)
  577. {
  578. if (ns->params.zoned) {
  579. g_free(ns->id_ns_zoned);
  580. g_free(ns->zone_array);
  581. g_free(ns->zd_extensions);
  582. }
  583. if (ns->endgrp && ns->endgrp->fdp.enabled) {
  584. g_free(ns->fdp.phs);
  585. }
  586. }
  587. static void nvme_ns_unrealize(DeviceState *dev)
  588. {
  589. NvmeNamespace *ns = NVME_NS(dev);
  590. nvme_ns_drain(ns);
  591. nvme_ns_shutdown(ns);
  592. nvme_ns_cleanup(ns);
  593. }
  594. static void nvme_ns_realize(DeviceState *dev, Error **errp)
  595. {
  596. NvmeNamespace *ns = NVME_NS(dev);
  597. BusState *s = qdev_get_parent_bus(dev);
  598. NvmeCtrl *n = NVME(s->parent);
  599. NvmeSubsystem *subsys = n->subsys;
  600. uint32_t nsid = ns->params.nsid;
  601. int i;
  602. assert(subsys);
  603. /* reparent to subsystem bus */
  604. if (!qdev_set_parent_bus(dev, &subsys->bus.parent_bus, errp)) {
  605. return;
  606. }
  607. ns->subsys = subsys;
  608. ns->endgrp = &subsys->endgrp;
  609. if (nvme_ns_setup(ns, errp)) {
  610. return;
  611. }
  612. if (!nsid) {
  613. for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
  614. if (nvme_subsys_ns(subsys, i)) {
  615. continue;
  616. }
  617. nsid = ns->params.nsid = i;
  618. break;
  619. }
  620. if (!nsid) {
  621. error_setg(errp, "no free namespace id");
  622. return;
  623. }
  624. } else if (nvme_subsys_ns(subsys, nsid)) {
  625. error_setg(errp, "namespace id '%d' already allocated", nsid);
  626. return;
  627. }
  628. subsys->namespaces[nsid] = ns;
  629. ns->id_ns.endgid = cpu_to_le16(0x1);
  630. ns->id_ns_ind.endgrpid = cpu_to_le16(0x1);
  631. if (!ns->params.shared) {
  632. ns->ctrl = n;
  633. }
  634. }
  635. static const Property nvme_ns_props[] = {
  636. DEFINE_BLOCK_PROPERTIES(NvmeNamespace, blkconf),
  637. DEFINE_PROP_BOOL("detached", NvmeNamespace, params.detached, false),
  638. DEFINE_PROP_BOOL("shared", NvmeNamespace, params.shared, true),
  639. DEFINE_PROP_UINT32("nsid", NvmeNamespace, params.nsid, 0),
  640. DEFINE_PROP_UUID_NODEFAULT("uuid", NvmeNamespace, params.uuid),
  641. DEFINE_PROP_NGUID_NODEFAULT("nguid", NvmeNamespace, params.nguid),
  642. DEFINE_PROP_UINT64("eui64", NvmeNamespace, params.eui64, 0),
  643. DEFINE_PROP_UINT16("ms", NvmeNamespace, params.ms, 0),
  644. DEFINE_PROP_UINT8("mset", NvmeNamespace, params.mset, 0),
  645. DEFINE_PROP_UINT8("pi", NvmeNamespace, params.pi, 0),
  646. DEFINE_PROP_UINT8("pil", NvmeNamespace, params.pil, 0),
  647. DEFINE_PROP_UINT8("pif", NvmeNamespace, params.pif, 0),
  648. DEFINE_PROP_UINT16("mssrl", NvmeNamespace, params.mssrl, 128),
  649. DEFINE_PROP_UINT32("mcl", NvmeNamespace, params.mcl, 128),
  650. DEFINE_PROP_UINT8("msrc", NvmeNamespace, params.msrc, 127),
  651. DEFINE_PROP_BOOL("zoned", NvmeNamespace, params.zoned, false),
  652. DEFINE_PROP_SIZE("zoned.zone_size", NvmeNamespace, params.zone_size_bs,
  653. NVME_DEFAULT_ZONE_SIZE),
  654. DEFINE_PROP_SIZE("zoned.zone_capacity", NvmeNamespace, params.zone_cap_bs,
  655. 0),
  656. DEFINE_PROP_BOOL("zoned.cross_read", NvmeNamespace,
  657. params.cross_zone_read, false),
  658. DEFINE_PROP_UINT32("zoned.max_active", NvmeNamespace,
  659. params.max_active_zones, 0),
  660. DEFINE_PROP_UINT32("zoned.max_open", NvmeNamespace,
  661. params.max_open_zones, 0),
  662. DEFINE_PROP_UINT32("zoned.descr_ext_size", NvmeNamespace,
  663. params.zd_extension_size, 0),
  664. DEFINE_PROP_UINT32("zoned.numzrwa", NvmeNamespace, params.numzrwa, 0),
  665. DEFINE_PROP_SIZE("zoned.zrwas", NvmeNamespace, params.zrwas, 0),
  666. DEFINE_PROP_SIZE("zoned.zrwafg", NvmeNamespace, params.zrwafg, -1),
  667. DEFINE_PROP_BOOL("eui64-default", NvmeNamespace, params.eui64_default,
  668. false),
  669. DEFINE_PROP_STRING("fdp.ruhs", NvmeNamespace, params.fdp.ruhs),
  670. };
  671. static void nvme_ns_class_init(ObjectClass *oc, void *data)
  672. {
  673. DeviceClass *dc = DEVICE_CLASS(oc);
  674. set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
  675. dc->bus_type = TYPE_NVME_BUS;
  676. dc->realize = nvme_ns_realize;
  677. dc->unrealize = nvme_ns_unrealize;
  678. device_class_set_props(dc, nvme_ns_props);
  679. dc->desc = "Virtual NVMe namespace";
  680. }
  681. static void nvme_ns_instance_init(Object *obj)
  682. {
  683. NvmeNamespace *ns = NVME_NS(obj);
  684. char *bootindex = g_strdup_printf("/namespace@%d,0", ns->params.nsid);
  685. device_add_bootindex_property(obj, &ns->bootindex, "bootindex",
  686. bootindex, DEVICE(obj));
  687. g_free(bootindex);
  688. }
  689. static const TypeInfo nvme_ns_info = {
  690. .name = TYPE_NVME_NS,
  691. .parent = TYPE_DEVICE,
  692. .class_init = nvme_ns_class_init,
  693. .instance_size = sizeof(NvmeNamespace),
  694. .instance_init = nvme_ns_instance_init,
  695. };
  696. static void nvme_ns_register_types(void)
  697. {
  698. type_register_static(&nvme_ns_info);
  699. }
  700. type_init(nvme_ns_register_types)