2
0

net_tx_pkt.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872
  1. /*
  2. * QEMU TX packets abstractions
  3. *
  4. * Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
  5. *
  6. * Developed by Daynix Computing LTD (http://www.daynix.com)
  7. *
  8. * Authors:
  9. * Dmitry Fleytman <dmitry@daynix.com>
  10. * Tamir Shomer <tamirs@daynix.com>
  11. * Yan Vugenfirer <yan@daynix.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  14. * See the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "qemu/osdep.h"
  18. #include "qemu/crc32c.h"
  19. #include "net/eth.h"
  20. #include "net/checksum.h"
  21. #include "net/tap.h"
  22. #include "net/net.h"
  23. #include "hw/pci/pci_device.h"
  24. #include "net_tx_pkt.h"
  25. enum {
  26. NET_TX_PKT_VHDR_FRAG = 0,
  27. NET_TX_PKT_L2HDR_FRAG,
  28. NET_TX_PKT_L3HDR_FRAG,
  29. NET_TX_PKT_PL_START_FRAG
  30. };
  31. /* TX packet private context */
  32. struct NetTxPkt {
  33. struct virtio_net_hdr virt_hdr;
  34. struct iovec *raw;
  35. uint32_t raw_frags;
  36. uint32_t max_raw_frags;
  37. struct iovec *vec;
  38. struct {
  39. struct eth_header eth;
  40. struct vlan_header vlan[3];
  41. } l2_hdr;
  42. union {
  43. struct ip_header ip;
  44. struct ip6_header ip6;
  45. uint8_t octets[ETH_MAX_IP_DGRAM_LEN];
  46. } l3_hdr;
  47. uint32_t payload_len;
  48. uint32_t payload_frags;
  49. uint32_t max_payload_frags;
  50. uint16_t hdr_len;
  51. eth_pkt_types_e packet_type;
  52. uint8_t l4proto;
  53. };
  54. void net_tx_pkt_init(struct NetTxPkt **pkt, uint32_t max_frags)
  55. {
  56. struct NetTxPkt *p = g_malloc0(sizeof *p);
  57. p->vec = g_new(struct iovec, max_frags + NET_TX_PKT_PL_START_FRAG);
  58. p->raw = g_new(struct iovec, max_frags);
  59. p->max_payload_frags = max_frags;
  60. p->max_raw_frags = max_frags;
  61. p->vec[NET_TX_PKT_VHDR_FRAG].iov_base = &p->virt_hdr;
  62. p->vec[NET_TX_PKT_VHDR_FRAG].iov_len = sizeof p->virt_hdr;
  63. p->vec[NET_TX_PKT_L2HDR_FRAG].iov_base = &p->l2_hdr;
  64. p->vec[NET_TX_PKT_L3HDR_FRAG].iov_base = &p->l3_hdr;
  65. *pkt = p;
  66. }
  67. void net_tx_pkt_uninit(struct NetTxPkt *pkt)
  68. {
  69. if (pkt) {
  70. g_free(pkt->vec);
  71. g_free(pkt->raw);
  72. g_free(pkt);
  73. }
  74. }
  75. void net_tx_pkt_update_ip_hdr_checksum(struct NetTxPkt *pkt)
  76. {
  77. uint16_t csum;
  78. assert(pkt);
  79. pkt->l3_hdr.ip.ip_len = cpu_to_be16(pkt->payload_len +
  80. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
  81. pkt->l3_hdr.ip.ip_sum = 0;
  82. csum = net_raw_checksum(pkt->l3_hdr.octets,
  83. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len);
  84. pkt->l3_hdr.ip.ip_sum = cpu_to_be16(csum);
  85. }
  86. void net_tx_pkt_update_ip_checksums(struct NetTxPkt *pkt)
  87. {
  88. uint16_t csum;
  89. uint32_t cntr, cso;
  90. assert(pkt);
  91. uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
  92. void *ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base;
  93. if (pkt->payload_len + pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len >
  94. ETH_MAX_IP_DGRAM_LEN) {
  95. return;
  96. }
  97. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
  98. gso_type == VIRTIO_NET_HDR_GSO_UDP) {
  99. /* Calculate IP header checksum */
  100. net_tx_pkt_update_ip_hdr_checksum(pkt);
  101. /* Calculate IP pseudo header checksum */
  102. cntr = eth_calc_ip4_pseudo_hdr_csum(ip_hdr, pkt->payload_len, &cso);
  103. csum = cpu_to_be16(~net_checksum_finish(cntr));
  104. } else if (gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
  105. /* Calculate IP pseudo header checksum */
  106. cntr = eth_calc_ip6_pseudo_hdr_csum(ip_hdr, pkt->payload_len,
  107. IP_PROTO_TCP, &cso);
  108. csum = cpu_to_be16(~net_checksum_finish(cntr));
  109. } else {
  110. return;
  111. }
  112. iov_from_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags,
  113. pkt->virt_hdr.csum_offset, &csum, sizeof(csum));
  114. }
  115. bool net_tx_pkt_update_sctp_checksum(struct NetTxPkt *pkt)
  116. {
  117. uint32_t csum = 0;
  118. struct iovec *pl_start_frag = pkt->vec + NET_TX_PKT_PL_START_FRAG;
  119. if (iov_from_buf(pl_start_frag, pkt->payload_frags, 8, &csum, sizeof(csum)) < sizeof(csum)) {
  120. return false;
  121. }
  122. csum = cpu_to_le32(iov_crc32c(0xffffffff, pl_start_frag, pkt->payload_frags));
  123. if (iov_from_buf(pl_start_frag, pkt->payload_frags, 8, &csum, sizeof(csum)) < sizeof(csum)) {
  124. return false;
  125. }
  126. return true;
  127. }
  128. static void net_tx_pkt_calculate_hdr_len(struct NetTxPkt *pkt)
  129. {
  130. pkt->hdr_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len +
  131. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len;
  132. }
  133. static bool net_tx_pkt_parse_headers(struct NetTxPkt *pkt)
  134. {
  135. struct iovec *l2_hdr, *l3_hdr;
  136. size_t bytes_read;
  137. size_t full_ip6hdr_len;
  138. uint16_t l3_proto;
  139. assert(pkt);
  140. l2_hdr = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
  141. l3_hdr = &pkt->vec[NET_TX_PKT_L3HDR_FRAG];
  142. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, 0, l2_hdr->iov_base,
  143. ETH_MAX_L2_HDR_LEN);
  144. if (bytes_read < sizeof(struct eth_header)) {
  145. l2_hdr->iov_len = 0;
  146. return false;
  147. }
  148. l2_hdr->iov_len = sizeof(struct eth_header);
  149. switch (be16_to_cpu(PKT_GET_ETH_HDR(l2_hdr->iov_base)->h_proto)) {
  150. case ETH_P_VLAN:
  151. l2_hdr->iov_len += sizeof(struct vlan_header);
  152. break;
  153. case ETH_P_DVLAN:
  154. l2_hdr->iov_len += 2 * sizeof(struct vlan_header);
  155. break;
  156. }
  157. if (bytes_read < l2_hdr->iov_len) {
  158. l2_hdr->iov_len = 0;
  159. l3_hdr->iov_len = 0;
  160. pkt->packet_type = ETH_PKT_UCAST;
  161. return false;
  162. } else {
  163. l2_hdr->iov_len = ETH_MAX_L2_HDR_LEN;
  164. l2_hdr->iov_len = eth_get_l2_hdr_length(l2_hdr->iov_base);
  165. pkt->packet_type = get_eth_packet_type(l2_hdr->iov_base);
  166. }
  167. l3_proto = eth_get_l3_proto(l2_hdr, 1, l2_hdr->iov_len);
  168. switch (l3_proto) {
  169. case ETH_P_IP:
  170. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  171. l3_hdr->iov_base, sizeof(struct ip_header));
  172. if (bytes_read < sizeof(struct ip_header)) {
  173. l3_hdr->iov_len = 0;
  174. return false;
  175. }
  176. l3_hdr->iov_len = IP_HDR_GET_LEN(l3_hdr->iov_base);
  177. if (l3_hdr->iov_len < sizeof(struct ip_header)) {
  178. l3_hdr->iov_len = 0;
  179. return false;
  180. }
  181. pkt->l4proto = IP_HDR_GET_P(l3_hdr->iov_base);
  182. if (IP_HDR_GET_LEN(l3_hdr->iov_base) != sizeof(struct ip_header)) {
  183. /* copy optional IPv4 header data if any*/
  184. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags,
  185. l2_hdr->iov_len + sizeof(struct ip_header),
  186. l3_hdr->iov_base + sizeof(struct ip_header),
  187. l3_hdr->iov_len - sizeof(struct ip_header));
  188. if (bytes_read < l3_hdr->iov_len - sizeof(struct ip_header)) {
  189. l3_hdr->iov_len = 0;
  190. return false;
  191. }
  192. }
  193. break;
  194. case ETH_P_IPV6:
  195. {
  196. eth_ip6_hdr_info hdrinfo;
  197. if (!eth_parse_ipv6_hdr(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  198. &hdrinfo)) {
  199. l3_hdr->iov_len = 0;
  200. return false;
  201. }
  202. pkt->l4proto = hdrinfo.l4proto;
  203. full_ip6hdr_len = hdrinfo.full_hdr_len;
  204. if (full_ip6hdr_len > ETH_MAX_IP_DGRAM_LEN) {
  205. l3_hdr->iov_len = 0;
  206. return false;
  207. }
  208. bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len,
  209. l3_hdr->iov_base, full_ip6hdr_len);
  210. if (bytes_read < full_ip6hdr_len) {
  211. l3_hdr->iov_len = 0;
  212. return false;
  213. } else {
  214. l3_hdr->iov_len = full_ip6hdr_len;
  215. }
  216. break;
  217. }
  218. default:
  219. l3_hdr->iov_len = 0;
  220. break;
  221. }
  222. net_tx_pkt_calculate_hdr_len(pkt);
  223. return true;
  224. }
  225. static void net_tx_pkt_rebuild_payload(struct NetTxPkt *pkt)
  226. {
  227. pkt->payload_len = iov_size(pkt->raw, pkt->raw_frags) - pkt->hdr_len;
  228. pkt->payload_frags = iov_copy(&pkt->vec[NET_TX_PKT_PL_START_FRAG],
  229. pkt->max_payload_frags,
  230. pkt->raw, pkt->raw_frags,
  231. pkt->hdr_len, pkt->payload_len);
  232. }
  233. bool net_tx_pkt_parse(struct NetTxPkt *pkt)
  234. {
  235. if (net_tx_pkt_parse_headers(pkt)) {
  236. net_tx_pkt_rebuild_payload(pkt);
  237. return true;
  238. } else {
  239. return false;
  240. }
  241. }
  242. struct virtio_net_hdr *net_tx_pkt_get_vhdr(struct NetTxPkt *pkt)
  243. {
  244. assert(pkt);
  245. return &pkt->virt_hdr;
  246. }
  247. static uint8_t net_tx_pkt_get_gso_type(struct NetTxPkt *pkt,
  248. bool tso_enable)
  249. {
  250. uint8_t rc = VIRTIO_NET_HDR_GSO_NONE;
  251. uint16_t l3_proto;
  252. l3_proto = eth_get_l3_proto(&pkt->vec[NET_TX_PKT_L2HDR_FRAG], 1,
  253. pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len);
  254. if (!tso_enable) {
  255. goto func_exit;
  256. }
  257. rc = eth_get_gso_type(l3_proto, pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
  258. pkt->l4proto);
  259. func_exit:
  260. return rc;
  261. }
  262. bool net_tx_pkt_build_vheader(struct NetTxPkt *pkt, bool tso_enable,
  263. bool csum_enable, uint32_t gso_size)
  264. {
  265. struct tcp_hdr l4hdr;
  266. size_t bytes_read;
  267. assert(pkt);
  268. /* csum has to be enabled if tso is. */
  269. assert(csum_enable || !tso_enable);
  270. pkt->virt_hdr.gso_type = net_tx_pkt_get_gso_type(pkt, tso_enable);
  271. switch (pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
  272. case VIRTIO_NET_HDR_GSO_NONE:
  273. pkt->virt_hdr.hdr_len = 0;
  274. pkt->virt_hdr.gso_size = 0;
  275. break;
  276. case VIRTIO_NET_HDR_GSO_UDP:
  277. pkt->virt_hdr.gso_size = gso_size;
  278. pkt->virt_hdr.hdr_len = pkt->hdr_len + sizeof(struct udp_header);
  279. break;
  280. case VIRTIO_NET_HDR_GSO_TCPV4:
  281. case VIRTIO_NET_HDR_GSO_TCPV6:
  282. bytes_read = iov_to_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG],
  283. pkt->payload_frags, 0, &l4hdr, sizeof(l4hdr));
  284. if (bytes_read < sizeof(l4hdr) ||
  285. l4hdr.th_off * sizeof(uint32_t) < sizeof(l4hdr)) {
  286. return false;
  287. }
  288. pkt->virt_hdr.hdr_len = pkt->hdr_len + l4hdr.th_off * sizeof(uint32_t);
  289. pkt->virt_hdr.gso_size = gso_size;
  290. break;
  291. default:
  292. g_assert_not_reached();
  293. }
  294. if (csum_enable) {
  295. switch (pkt->l4proto) {
  296. case IP_PROTO_TCP:
  297. if (pkt->payload_len < sizeof(struct tcp_hdr)) {
  298. return false;
  299. }
  300. pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
  301. pkt->virt_hdr.csum_start = pkt->hdr_len;
  302. pkt->virt_hdr.csum_offset = offsetof(struct tcp_hdr, th_sum);
  303. break;
  304. case IP_PROTO_UDP:
  305. if (pkt->payload_len < sizeof(struct udp_hdr)) {
  306. return false;
  307. }
  308. pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
  309. pkt->virt_hdr.csum_start = pkt->hdr_len;
  310. pkt->virt_hdr.csum_offset = offsetof(struct udp_hdr, uh_sum);
  311. break;
  312. default:
  313. break;
  314. }
  315. }
  316. return true;
  317. }
  318. void net_tx_pkt_setup_vlan_header_ex(struct NetTxPkt *pkt,
  319. uint16_t vlan, uint16_t vlan_ethtype)
  320. {
  321. assert(pkt);
  322. eth_setup_vlan_headers(pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base,
  323. &pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len,
  324. vlan, vlan_ethtype);
  325. pkt->hdr_len += sizeof(struct vlan_header);
  326. }
  327. bool net_tx_pkt_add_raw_fragment(struct NetTxPkt *pkt, void *base, size_t len)
  328. {
  329. struct iovec *ventry;
  330. assert(pkt);
  331. if (pkt->raw_frags >= pkt->max_raw_frags) {
  332. return false;
  333. }
  334. ventry = &pkt->raw[pkt->raw_frags];
  335. ventry->iov_base = base;
  336. ventry->iov_len = len;
  337. pkt->raw_frags++;
  338. return true;
  339. }
  340. bool net_tx_pkt_has_fragments(struct NetTxPkt *pkt)
  341. {
  342. return pkt->raw_frags > 0;
  343. }
  344. eth_pkt_types_e net_tx_pkt_get_packet_type(struct NetTxPkt *pkt)
  345. {
  346. assert(pkt);
  347. return pkt->packet_type;
  348. }
  349. size_t net_tx_pkt_get_total_len(struct NetTxPkt *pkt)
  350. {
  351. assert(pkt);
  352. return pkt->hdr_len + pkt->payload_len;
  353. }
  354. void net_tx_pkt_dump(struct NetTxPkt *pkt)
  355. {
  356. #ifdef NET_TX_PKT_DEBUG
  357. assert(pkt);
  358. printf("TX PKT: hdr_len: %d, pkt_type: 0x%X, l2hdr_len: %lu, "
  359. "l3hdr_len: %lu, payload_len: %u\n", pkt->hdr_len, pkt->packet_type,
  360. pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len,
  361. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len, pkt->payload_len);
  362. #endif
  363. }
  364. void net_tx_pkt_reset(struct NetTxPkt *pkt,
  365. NetTxPktFreeFrag callback, void *context)
  366. {
  367. int i;
  368. /* no assert, as reset can be called before tx_pkt_init */
  369. if (!pkt) {
  370. return;
  371. }
  372. memset(&pkt->virt_hdr, 0, sizeof(pkt->virt_hdr));
  373. assert(pkt->vec);
  374. pkt->payload_len = 0;
  375. pkt->payload_frags = 0;
  376. if (pkt->max_raw_frags > 0) {
  377. assert(pkt->raw);
  378. for (i = 0; i < pkt->raw_frags; i++) {
  379. assert(pkt->raw[i].iov_base);
  380. callback(context, pkt->raw[i].iov_base, pkt->raw[i].iov_len);
  381. }
  382. }
  383. pkt->raw_frags = 0;
  384. pkt->hdr_len = 0;
  385. pkt->l4proto = 0;
  386. }
  387. void net_tx_pkt_unmap_frag_pci(void *context, void *base, size_t len)
  388. {
  389. pci_dma_unmap(context, base, len, DMA_DIRECTION_TO_DEVICE, 0);
  390. }
  391. bool net_tx_pkt_add_raw_fragment_pci(struct NetTxPkt *pkt, PCIDevice *pci_dev,
  392. dma_addr_t pa, size_t len)
  393. {
  394. dma_addr_t mapped_len = len;
  395. void *base = pci_dma_map(pci_dev, pa, &mapped_len, DMA_DIRECTION_TO_DEVICE);
  396. if (!base) {
  397. return false;
  398. }
  399. if (mapped_len != len || !net_tx_pkt_add_raw_fragment(pkt, base, len)) {
  400. net_tx_pkt_unmap_frag_pci(pci_dev, base, mapped_len);
  401. return false;
  402. }
  403. return true;
  404. }
  405. static void net_tx_pkt_do_sw_csum(struct NetTxPkt *pkt,
  406. struct iovec *iov, uint32_t iov_len,
  407. uint16_t csl)
  408. {
  409. uint32_t csum_cntr;
  410. uint16_t csum = 0;
  411. uint32_t cso;
  412. /* num of iovec without vhdr */
  413. size_t csum_offset = pkt->virt_hdr.csum_start + pkt->virt_hdr.csum_offset;
  414. uint16_t l3_proto = eth_get_l3_proto(iov, 1, iov->iov_len);
  415. /* Put zero to checksum field */
  416. iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
  417. /* Calculate L4 TCP/UDP checksum */
  418. csum_cntr = 0;
  419. cso = 0;
  420. /* add pseudo header to csum */
  421. if (l3_proto == ETH_P_IP) {
  422. csum_cntr = eth_calc_ip4_pseudo_hdr_csum(
  423. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
  424. csl, &cso);
  425. } else if (l3_proto == ETH_P_IPV6) {
  426. csum_cntr = eth_calc_ip6_pseudo_hdr_csum(
  427. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base,
  428. csl, pkt->l4proto, &cso);
  429. }
  430. /* data checksum */
  431. csum_cntr +=
  432. net_checksum_add_iov(iov, iov_len, pkt->virt_hdr.csum_start, csl, cso);
  433. /* Put the checksum obtained into the packet */
  434. csum = cpu_to_be16(net_checksum_finish_nozero(csum_cntr));
  435. iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum);
  436. }
  437. #define NET_MAX_FRAG_SG_LIST (64)
  438. static size_t net_tx_pkt_fetch_fragment(struct NetTxPkt *pkt,
  439. int *src_idx, size_t *src_offset, size_t src_len,
  440. struct iovec *dst, int *dst_idx)
  441. {
  442. size_t fetched = 0;
  443. struct iovec *src = pkt->vec;
  444. while (fetched < src_len) {
  445. /* no more place in fragment iov */
  446. if (*dst_idx == NET_MAX_FRAG_SG_LIST) {
  447. break;
  448. }
  449. /* no more data in iovec */
  450. if (*src_idx == (pkt->payload_frags + NET_TX_PKT_PL_START_FRAG)) {
  451. break;
  452. }
  453. dst[*dst_idx].iov_base = src[*src_idx].iov_base + *src_offset;
  454. dst[*dst_idx].iov_len = MIN(src[*src_idx].iov_len - *src_offset,
  455. src_len - fetched);
  456. *src_offset += dst[*dst_idx].iov_len;
  457. fetched += dst[*dst_idx].iov_len;
  458. if (*src_offset == src[*src_idx].iov_len) {
  459. *src_offset = 0;
  460. (*src_idx)++;
  461. }
  462. (*dst_idx)++;
  463. }
  464. return fetched;
  465. }
  466. static void net_tx_pkt_sendv(
  467. void *opaque, const struct iovec *iov, int iov_cnt,
  468. const struct iovec *virt_iov, int virt_iov_cnt)
  469. {
  470. NetClientState *nc = opaque;
  471. if (qemu_get_vnet_hdr_len(nc->peer)) {
  472. qemu_sendv_packet(nc, virt_iov, virt_iov_cnt);
  473. } else {
  474. qemu_sendv_packet(nc, iov, iov_cnt);
  475. }
  476. }
  477. static bool net_tx_pkt_tcp_fragment_init(struct NetTxPkt *pkt,
  478. struct iovec *fragment,
  479. int *pl_idx,
  480. size_t *l4hdr_len,
  481. int *src_idx,
  482. size_t *src_offset,
  483. size_t *src_len)
  484. {
  485. struct iovec *l4 = fragment + NET_TX_PKT_PL_START_FRAG;
  486. size_t bytes_read = 0;
  487. struct tcp_hdr *th;
  488. if (!pkt->payload_frags) {
  489. return false;
  490. }
  491. l4->iov_len = pkt->virt_hdr.hdr_len - pkt->hdr_len;
  492. l4->iov_base = g_malloc(l4->iov_len);
  493. *src_idx = NET_TX_PKT_PL_START_FRAG;
  494. while (pkt->vec[*src_idx].iov_len < l4->iov_len - bytes_read) {
  495. memcpy((char *)l4->iov_base + bytes_read, pkt->vec[*src_idx].iov_base,
  496. pkt->vec[*src_idx].iov_len);
  497. bytes_read += pkt->vec[*src_idx].iov_len;
  498. (*src_idx)++;
  499. if (*src_idx >= pkt->payload_frags + NET_TX_PKT_PL_START_FRAG) {
  500. g_free(l4->iov_base);
  501. return false;
  502. }
  503. }
  504. *src_offset = l4->iov_len - bytes_read;
  505. memcpy((char *)l4->iov_base + bytes_read, pkt->vec[*src_idx].iov_base,
  506. *src_offset);
  507. th = l4->iov_base;
  508. th->th_flags &= ~(TH_FIN | TH_PUSH);
  509. *pl_idx = NET_TX_PKT_PL_START_FRAG + 1;
  510. *l4hdr_len = l4->iov_len;
  511. *src_len = pkt->virt_hdr.gso_size;
  512. return true;
  513. }
  514. static void net_tx_pkt_tcp_fragment_deinit(struct iovec *fragment)
  515. {
  516. g_free(fragment[NET_TX_PKT_PL_START_FRAG].iov_base);
  517. }
  518. static void net_tx_pkt_tcp_fragment_fix(struct NetTxPkt *pkt,
  519. struct iovec *fragment,
  520. size_t fragment_len,
  521. uint8_t gso_type)
  522. {
  523. struct iovec *l3hdr = fragment + NET_TX_PKT_L3HDR_FRAG;
  524. struct iovec *l4hdr = fragment + NET_TX_PKT_PL_START_FRAG;
  525. struct ip_header *ip = l3hdr->iov_base;
  526. struct ip6_header *ip6 = l3hdr->iov_base;
  527. size_t len = l3hdr->iov_len + l4hdr->iov_len + fragment_len;
  528. switch (gso_type) {
  529. case VIRTIO_NET_HDR_GSO_TCPV4:
  530. ip->ip_len = cpu_to_be16(len);
  531. eth_fix_ip4_checksum(l3hdr->iov_base, l3hdr->iov_len);
  532. break;
  533. case VIRTIO_NET_HDR_GSO_TCPV6:
  534. len -= sizeof(struct ip6_header);
  535. ip6->ip6_ctlun.ip6_un1.ip6_un1_plen = cpu_to_be16(len);
  536. break;
  537. }
  538. }
  539. static void net_tx_pkt_tcp_fragment_advance(struct NetTxPkt *pkt,
  540. struct iovec *fragment,
  541. size_t fragment_len,
  542. uint8_t gso_type)
  543. {
  544. struct iovec *l3hdr = fragment + NET_TX_PKT_L3HDR_FRAG;
  545. struct iovec *l4hdr = fragment + NET_TX_PKT_PL_START_FRAG;
  546. struct ip_header *ip = l3hdr->iov_base;
  547. struct tcp_hdr *th = l4hdr->iov_base;
  548. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4) {
  549. ip->ip_id = cpu_to_be16(be16_to_cpu(ip->ip_id) + 1);
  550. }
  551. th->th_seq = cpu_to_be32(be32_to_cpu(th->th_seq) + fragment_len);
  552. th->th_flags &= ~TH_CWR;
  553. }
  554. static void net_tx_pkt_udp_fragment_init(struct NetTxPkt *pkt,
  555. int *pl_idx,
  556. size_t *l4hdr_len,
  557. int *src_idx, size_t *src_offset,
  558. size_t *src_len)
  559. {
  560. *pl_idx = NET_TX_PKT_PL_START_FRAG;
  561. *l4hdr_len = 0;
  562. *src_idx = NET_TX_PKT_PL_START_FRAG;
  563. *src_offset = 0;
  564. *src_len = IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size);
  565. }
  566. static void net_tx_pkt_udp_fragment_fix(struct NetTxPkt *pkt,
  567. struct iovec *fragment,
  568. size_t fragment_offset,
  569. size_t fragment_len)
  570. {
  571. bool more_frags = fragment_offset + fragment_len < pkt->payload_len;
  572. uint16_t orig_flags;
  573. struct iovec *l3hdr = fragment + NET_TX_PKT_L3HDR_FRAG;
  574. struct ip_header *ip = l3hdr->iov_base;
  575. uint16_t frag_off_units = fragment_offset / IP_FRAG_UNIT_SIZE;
  576. uint16_t new_ip_off;
  577. assert(fragment_offset % IP_FRAG_UNIT_SIZE == 0);
  578. assert((frag_off_units & ~IP_OFFMASK) == 0);
  579. orig_flags = be16_to_cpu(ip->ip_off) & ~(IP_OFFMASK | IP_MF);
  580. new_ip_off = frag_off_units | orig_flags | (more_frags ? IP_MF : 0);
  581. ip->ip_off = cpu_to_be16(new_ip_off);
  582. ip->ip_len = cpu_to_be16(l3hdr->iov_len + fragment_len);
  583. eth_fix_ip4_checksum(l3hdr->iov_base, l3hdr->iov_len);
  584. }
  585. static bool net_tx_pkt_do_sw_fragmentation(struct NetTxPkt *pkt,
  586. NetTxPktSend callback,
  587. void *context)
  588. {
  589. uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
  590. struct iovec fragment[NET_MAX_FRAG_SG_LIST];
  591. size_t fragment_len;
  592. size_t l4hdr_len;
  593. size_t src_len;
  594. int src_idx, dst_idx, pl_idx;
  595. size_t src_offset;
  596. size_t fragment_offset = 0;
  597. struct virtio_net_hdr virt_hdr = {
  598. .flags = pkt->virt_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM ?
  599. VIRTIO_NET_HDR_F_DATA_VALID : 0
  600. };
  601. /* Copy headers */
  602. fragment[NET_TX_PKT_VHDR_FRAG].iov_base = &virt_hdr;
  603. fragment[NET_TX_PKT_VHDR_FRAG].iov_len = sizeof(virt_hdr);
  604. fragment[NET_TX_PKT_L2HDR_FRAG] = pkt->vec[NET_TX_PKT_L2HDR_FRAG];
  605. fragment[NET_TX_PKT_L3HDR_FRAG] = pkt->vec[NET_TX_PKT_L3HDR_FRAG];
  606. switch (gso_type) {
  607. case VIRTIO_NET_HDR_GSO_TCPV4:
  608. case VIRTIO_NET_HDR_GSO_TCPV6:
  609. if (!net_tx_pkt_tcp_fragment_init(pkt, fragment, &pl_idx, &l4hdr_len,
  610. &src_idx, &src_offset, &src_len)) {
  611. return false;
  612. }
  613. break;
  614. case VIRTIO_NET_HDR_GSO_UDP:
  615. net_tx_pkt_do_sw_csum(pkt, &pkt->vec[NET_TX_PKT_L2HDR_FRAG],
  616. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1,
  617. pkt->payload_len);
  618. net_tx_pkt_udp_fragment_init(pkt, &pl_idx, &l4hdr_len,
  619. &src_idx, &src_offset, &src_len);
  620. break;
  621. default:
  622. abort();
  623. }
  624. /* Put as much data as possible and send */
  625. while (true) {
  626. dst_idx = pl_idx;
  627. fragment_len = net_tx_pkt_fetch_fragment(pkt,
  628. &src_idx, &src_offset, src_len, fragment, &dst_idx);
  629. if (!fragment_len) {
  630. break;
  631. }
  632. switch (gso_type) {
  633. case VIRTIO_NET_HDR_GSO_TCPV4:
  634. case VIRTIO_NET_HDR_GSO_TCPV6:
  635. net_tx_pkt_tcp_fragment_fix(pkt, fragment, fragment_len, gso_type);
  636. net_tx_pkt_do_sw_csum(pkt, fragment + NET_TX_PKT_L2HDR_FRAG,
  637. dst_idx - NET_TX_PKT_L2HDR_FRAG,
  638. l4hdr_len + fragment_len);
  639. break;
  640. case VIRTIO_NET_HDR_GSO_UDP:
  641. net_tx_pkt_udp_fragment_fix(pkt, fragment, fragment_offset,
  642. fragment_len);
  643. break;
  644. }
  645. callback(context,
  646. fragment + NET_TX_PKT_L2HDR_FRAG, dst_idx - NET_TX_PKT_L2HDR_FRAG,
  647. fragment + NET_TX_PKT_VHDR_FRAG, dst_idx - NET_TX_PKT_VHDR_FRAG);
  648. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
  649. gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
  650. net_tx_pkt_tcp_fragment_advance(pkt, fragment, fragment_len,
  651. gso_type);
  652. }
  653. fragment_offset += fragment_len;
  654. }
  655. if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 ||
  656. gso_type == VIRTIO_NET_HDR_GSO_TCPV6) {
  657. net_tx_pkt_tcp_fragment_deinit(fragment);
  658. }
  659. return true;
  660. }
  661. bool net_tx_pkt_send(struct NetTxPkt *pkt, NetClientState *nc)
  662. {
  663. bool offload = qemu_get_vnet_hdr_len(nc->peer);
  664. return net_tx_pkt_send_custom(pkt, offload, net_tx_pkt_sendv, nc);
  665. }
  666. bool net_tx_pkt_send_custom(struct NetTxPkt *pkt, bool offload,
  667. NetTxPktSend callback, void *context)
  668. {
  669. assert(pkt);
  670. uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN;
  671. /*
  672. * Since underlying infrastructure does not support IP datagrams longer
  673. * than 64K we should drop such packets and don't even try to send
  674. */
  675. if (VIRTIO_NET_HDR_GSO_NONE != gso_type) {
  676. if (pkt->payload_len >
  677. ETH_MAX_IP_DGRAM_LEN -
  678. pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len) {
  679. return false;
  680. }
  681. }
  682. if (offload || gso_type == VIRTIO_NET_HDR_GSO_NONE) {
  683. if (!offload && pkt->virt_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
  684. pkt->virt_hdr.flags &= ~VIRTIO_NET_HDR_F_NEEDS_CSUM;
  685. net_tx_pkt_do_sw_csum(pkt, &pkt->vec[NET_TX_PKT_L2HDR_FRAG],
  686. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1,
  687. pkt->payload_len);
  688. }
  689. net_tx_pkt_fix_ip6_payload_len(pkt);
  690. callback(context, pkt->vec + NET_TX_PKT_L2HDR_FRAG,
  691. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - NET_TX_PKT_L2HDR_FRAG,
  692. pkt->vec + NET_TX_PKT_VHDR_FRAG,
  693. pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - NET_TX_PKT_VHDR_FRAG);
  694. return true;
  695. }
  696. return net_tx_pkt_do_sw_fragmentation(pkt, callback, context);
  697. }
  698. void net_tx_pkt_fix_ip6_payload_len(struct NetTxPkt *pkt)
  699. {
  700. struct iovec *l2 = &pkt->vec[NET_TX_PKT_L2HDR_FRAG];
  701. if (eth_get_l3_proto(l2, 1, l2->iov_len) == ETH_P_IPV6) {
  702. /*
  703. * TODO: if qemu would support >64K packets - add jumbo option check
  704. * something like that:
  705. * 'if (ip6->ip6_plen == 0 && !has_jumbo_option(ip6)) {'
  706. */
  707. if (pkt->l3_hdr.ip6.ip6_plen == 0) {
  708. if (pkt->payload_len <= ETH_MAX_IP_DGRAM_LEN) {
  709. pkt->l3_hdr.ip6.ip6_plen = htons(pkt->payload_len);
  710. }
  711. /*
  712. * TODO: if qemu would support >64K packets
  713. * add jumbo option for packets greater then 65,535 bytes
  714. */
  715. }
  716. }
  717. }