ne2000.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688
  1. /*
  2. * QEMU NE2000 emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "net/eth.h"
  26. #include "qemu/module.h"
  27. #include "exec/memory.h"
  28. #include "hw/irq.h"
  29. #include "migration/vmstate.h"
  30. #include "ne2000.h"
  31. #include "trace.h"
  32. /* debug NE2000 card */
  33. //#define DEBUG_NE2000
  34. #define MAX_ETH_FRAME_SIZE 1514
  35. #define E8390_CMD 0x00 /* The command register (for all pages) */
  36. /* Page 0 register offsets. */
  37. #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
  38. #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
  39. #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
  40. #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
  41. #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
  42. #define EN0_TSR 0x04 /* Transmit status reg RD */
  43. #define EN0_TPSR 0x04 /* Transmit starting page WR */
  44. #define EN0_NCR 0x05 /* Number of collision reg RD */
  45. #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
  46. #define EN0_FIFO 0x06 /* FIFO RD */
  47. #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
  48. #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
  49. #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
  50. #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
  51. #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
  52. #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
  53. #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
  54. #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
  55. #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
  56. #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
  57. #define EN0_RSR 0x0c /* rx status reg RD */
  58. #define EN0_RXCR 0x0c /* RX configuration reg WR */
  59. #define EN0_TXCR 0x0d /* TX configuration reg WR */
  60. #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
  61. #define EN0_DCFG 0x0e /* Data configuration reg WR */
  62. #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
  63. #define EN0_IMR 0x0f /* Interrupt mask reg WR */
  64. #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
  65. #define EN1_PHYS 0x11
  66. #define EN1_CURPAG 0x17
  67. #define EN1_MULT 0x18
  68. #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
  69. #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
  70. #define EN3_CONFIG0 0x33
  71. #define EN3_CONFIG1 0x34
  72. #define EN3_CONFIG2 0x35
  73. #define EN3_CONFIG3 0x36
  74. /* Register accessed at EN_CMD, the 8390 base addr. */
  75. #define E8390_STOP 0x01 /* Stop and reset the chip */
  76. #define E8390_START 0x02 /* Start the chip, clear reset */
  77. #define E8390_TRANS 0x04 /* Transmit a frame */
  78. #define E8390_RREAD 0x08 /* Remote read */
  79. #define E8390_RWRITE 0x10 /* Remote write */
  80. #define E8390_NODMA 0x20 /* Remote DMA */
  81. #define E8390_PAGE0 0x00 /* Select page chip registers */
  82. #define E8390_PAGE1 0x40 /* using the two high-order bits */
  83. #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
  84. /* Bits in EN0_ISR - Interrupt status register */
  85. #define ENISR_RX 0x01 /* Receiver, no error */
  86. #define ENISR_TX 0x02 /* Transmitter, no error */
  87. #define ENISR_RX_ERR 0x04 /* Receiver, with error */
  88. #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
  89. #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
  90. #define ENISR_COUNTERS 0x20 /* Counters need emptying */
  91. #define ENISR_RDC 0x40 /* remote dma complete */
  92. #define ENISR_RESET 0x80 /* Reset completed */
  93. #define ENISR_ALL 0x3f /* Interrupts we will enable */
  94. /* Bits in received packet status byte and EN0_RSR*/
  95. #define ENRSR_RXOK 0x01 /* Received a good packet */
  96. #define ENRSR_CRC 0x02 /* CRC error */
  97. #define ENRSR_FAE 0x04 /* frame alignment error */
  98. #define ENRSR_FO 0x08 /* FIFO overrun */
  99. #define ENRSR_MPA 0x10 /* missed pkt */
  100. #define ENRSR_PHY 0x20 /* physical/multicast address */
  101. #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
  102. #define ENRSR_DEF 0x80 /* deferring */
  103. /* Transmitted packet status, EN0_TSR. */
  104. #define ENTSR_PTX 0x01 /* Packet transmitted without error */
  105. #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
  106. #define ENTSR_COL 0x04 /* The transmit collided at least once. */
  107. #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
  108. #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
  109. #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
  110. #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
  111. #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
  112. void ne2000_reset(NE2000State *s)
  113. {
  114. int i;
  115. s->isr = ENISR_RESET;
  116. memcpy(s->mem, &s->c.macaddr, 6);
  117. s->mem[14] = 0x57;
  118. s->mem[15] = 0x57;
  119. /* duplicate prom data */
  120. for(i = 15;i >= 0; i--) {
  121. s->mem[2 * i] = s->mem[i];
  122. s->mem[2 * i + 1] = s->mem[i];
  123. }
  124. }
  125. static void ne2000_update_irq(NE2000State *s)
  126. {
  127. int isr;
  128. isr = (s->isr & s->imr) & 0x7f;
  129. #if defined(DEBUG_NE2000)
  130. printf("NE2000: Set IRQ to %d (%02x %02x)\n",
  131. isr ? 1 : 0, s->isr, s->imr);
  132. #endif
  133. qemu_set_irq(s->irq, (isr != 0));
  134. }
  135. static int ne2000_buffer_full(NE2000State *s)
  136. {
  137. int avail, index, boundary;
  138. if (s->stop <= s->start) {
  139. return 1;
  140. }
  141. index = s->curpag << 8;
  142. boundary = s->boundary << 8;
  143. if (index < boundary)
  144. avail = boundary - index;
  145. else
  146. avail = (s->stop - s->start) - (index - boundary);
  147. if (avail < (MAX_ETH_FRAME_SIZE + 4))
  148. return 1;
  149. return 0;
  150. }
  151. ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
  152. {
  153. NE2000State *s = qemu_get_nic_opaque(nc);
  154. size_t size = size_;
  155. uint8_t *p;
  156. unsigned int total_len, next, avail, len, index, mcast_idx;
  157. static const uint8_t broadcast_macaddr[6] =
  158. { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  159. #if defined(DEBUG_NE2000)
  160. printf("NE2000: received len=%zu\n", size);
  161. #endif
  162. if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
  163. return -1;
  164. /* XXX: check this */
  165. if (s->rxcr & 0x10) {
  166. /* promiscuous: receive all */
  167. } else {
  168. if (!memcmp(buf, broadcast_macaddr, 6)) {
  169. /* broadcast address */
  170. if (!(s->rxcr & 0x04))
  171. return size;
  172. } else if (buf[0] & 0x01) {
  173. /* multicast */
  174. if (!(s->rxcr & 0x08))
  175. return size;
  176. mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
  177. if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
  178. return size;
  179. } else if (s->mem[0] == buf[0] &&
  180. s->mem[2] == buf[1] &&
  181. s->mem[4] == buf[2] &&
  182. s->mem[6] == buf[3] &&
  183. s->mem[8] == buf[4] &&
  184. s->mem[10] == buf[5]) {
  185. /* match */
  186. } else {
  187. return size;
  188. }
  189. }
  190. index = s->curpag << 8;
  191. if (index >= NE2000_PMEM_END) {
  192. index = s->start;
  193. }
  194. /* 4 bytes for header */
  195. total_len = size + 4;
  196. /* address for next packet (4 bytes for CRC) */
  197. next = index + ((total_len + 4 + 255) & ~0xff);
  198. if (next >= s->stop)
  199. next -= (s->stop - s->start);
  200. /* prepare packet header */
  201. p = s->mem + index;
  202. s->rsr = ENRSR_RXOK; /* receive status */
  203. /* XXX: check this */
  204. if (buf[0] & 0x01)
  205. s->rsr |= ENRSR_PHY;
  206. p[0] = s->rsr;
  207. p[1] = next >> 8;
  208. p[2] = total_len;
  209. p[3] = total_len >> 8;
  210. index += 4;
  211. /* write packet data */
  212. while (size > 0) {
  213. if (index <= s->stop)
  214. avail = s->stop - index;
  215. else
  216. break;
  217. len = size;
  218. if (len > avail)
  219. len = avail;
  220. memcpy(s->mem + index, buf, len);
  221. buf += len;
  222. index += len;
  223. if (index == s->stop)
  224. index = s->start;
  225. size -= len;
  226. }
  227. s->curpag = next >> 8;
  228. /* now we can signal we have received something */
  229. s->isr |= ENISR_RX;
  230. ne2000_update_irq(s);
  231. return size_;
  232. }
  233. static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  234. {
  235. NE2000State *s = opaque;
  236. int offset, page, index;
  237. addr &= 0xf;
  238. trace_ne2000_ioport_write(addr, val);
  239. if (addr == E8390_CMD) {
  240. /* control register */
  241. s->cmd = val;
  242. if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
  243. s->isr &= ~ENISR_RESET;
  244. /* test specific case: zero length transfer */
  245. if ((val & (E8390_RREAD | E8390_RWRITE)) &&
  246. s->rcnt == 0) {
  247. s->isr |= ENISR_RDC;
  248. ne2000_update_irq(s);
  249. }
  250. if (val & E8390_TRANS) {
  251. index = (s->tpsr << 8);
  252. /* XXX: next 2 lines are a hack to make netware 3.11 work */
  253. if (index >= NE2000_PMEM_END)
  254. index -= NE2000_PMEM_SIZE;
  255. /* fail safe: check range on the transmitted length */
  256. if (index + s->tcnt <= NE2000_PMEM_END) {
  257. qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
  258. s->tcnt);
  259. }
  260. /* signal end of transfer */
  261. s->tsr = ENTSR_PTX;
  262. s->isr |= ENISR_TX;
  263. s->cmd &= ~E8390_TRANS;
  264. ne2000_update_irq(s);
  265. }
  266. }
  267. } else {
  268. page = s->cmd >> 6;
  269. offset = addr | (page << 4);
  270. switch(offset) {
  271. case EN0_STARTPG:
  272. if (val << 8 <= NE2000_PMEM_END) {
  273. s->start = val << 8;
  274. }
  275. break;
  276. case EN0_STOPPG:
  277. if (val << 8 <= NE2000_PMEM_END) {
  278. s->stop = val << 8;
  279. }
  280. break;
  281. case EN0_BOUNDARY:
  282. if (val << 8 < NE2000_PMEM_END) {
  283. s->boundary = val;
  284. }
  285. break;
  286. case EN0_IMR:
  287. s->imr = val;
  288. ne2000_update_irq(s);
  289. break;
  290. case EN0_TPSR:
  291. s->tpsr = val;
  292. break;
  293. case EN0_TCNTLO:
  294. s->tcnt = (s->tcnt & 0xff00) | val;
  295. break;
  296. case EN0_TCNTHI:
  297. s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
  298. break;
  299. case EN0_RSARLO:
  300. s->rsar = (s->rsar & 0xff00) | val;
  301. break;
  302. case EN0_RSARHI:
  303. s->rsar = (s->rsar & 0x00ff) | (val << 8);
  304. break;
  305. case EN0_RCNTLO:
  306. s->rcnt = (s->rcnt & 0xff00) | val;
  307. break;
  308. case EN0_RCNTHI:
  309. s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
  310. break;
  311. case EN0_RXCR:
  312. s->rxcr = val;
  313. break;
  314. case EN0_DCFG:
  315. s->dcfg = val;
  316. break;
  317. case EN0_ISR:
  318. s->isr &= ~(val & 0x7f);
  319. ne2000_update_irq(s);
  320. break;
  321. case EN1_PHYS ... EN1_PHYS + 5:
  322. s->phys[offset - EN1_PHYS] = val;
  323. break;
  324. case EN1_CURPAG:
  325. if (val << 8 < NE2000_PMEM_END) {
  326. s->curpag = val;
  327. }
  328. break;
  329. case EN1_MULT ... EN1_MULT + 7:
  330. s->mult[offset - EN1_MULT] = val;
  331. break;
  332. }
  333. }
  334. }
  335. static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
  336. {
  337. NE2000State *s = opaque;
  338. int offset, page, ret;
  339. addr &= 0xf;
  340. if (addr == E8390_CMD) {
  341. ret = s->cmd;
  342. } else {
  343. page = s->cmd >> 6;
  344. offset = addr | (page << 4);
  345. switch(offset) {
  346. case EN0_TSR:
  347. ret = s->tsr;
  348. break;
  349. case EN0_BOUNDARY:
  350. ret = s->boundary;
  351. break;
  352. case EN0_ISR:
  353. ret = s->isr;
  354. break;
  355. case EN0_RSARLO:
  356. ret = s->rsar & 0x00ff;
  357. break;
  358. case EN0_RSARHI:
  359. ret = s->rsar >> 8;
  360. break;
  361. case EN1_PHYS ... EN1_PHYS + 5:
  362. ret = s->phys[offset - EN1_PHYS];
  363. break;
  364. case EN1_CURPAG:
  365. ret = s->curpag;
  366. break;
  367. case EN1_MULT ... EN1_MULT + 7:
  368. ret = s->mult[offset - EN1_MULT];
  369. break;
  370. case EN0_RSR:
  371. ret = s->rsr;
  372. break;
  373. case EN2_STARTPG:
  374. ret = s->start >> 8;
  375. break;
  376. case EN2_STOPPG:
  377. ret = s->stop >> 8;
  378. break;
  379. case EN0_RTL8029ID0:
  380. ret = 0x50;
  381. break;
  382. case EN0_RTL8029ID1:
  383. ret = 0x43;
  384. break;
  385. case EN3_CONFIG0:
  386. ret = 0; /* 10baseT media */
  387. break;
  388. case EN3_CONFIG2:
  389. ret = 0x40; /* 10baseT active */
  390. break;
  391. case EN3_CONFIG3:
  392. ret = 0x40; /* Full duplex */
  393. break;
  394. default:
  395. ret = 0x00;
  396. break;
  397. }
  398. }
  399. trace_ne2000_ioport_read(addr, ret);
  400. return ret;
  401. }
  402. static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
  403. uint32_t val)
  404. {
  405. if (addr < 32 ||
  406. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  407. s->mem[addr] = val;
  408. }
  409. }
  410. static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
  411. uint32_t val)
  412. {
  413. addr &= ~1; /* XXX: check exact behaviour if not even */
  414. if (addr < 32 ||
  415. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  416. *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
  417. }
  418. }
  419. static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
  420. uint32_t val)
  421. {
  422. addr &= ~1; /* XXX: check exact behaviour if not even */
  423. if (addr < 32
  424. || (addr >= NE2000_PMEM_START
  425. && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
  426. stl_le_p(s->mem + addr, val);
  427. }
  428. }
  429. static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
  430. {
  431. if (addr < 32 ||
  432. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  433. return s->mem[addr];
  434. } else {
  435. return 0xff;
  436. }
  437. }
  438. static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
  439. {
  440. addr &= ~1; /* XXX: check exact behaviour if not even */
  441. if (addr < 32 ||
  442. (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
  443. return le16_to_cpu(*(uint16_t *)(s->mem + addr));
  444. } else {
  445. return 0xffff;
  446. }
  447. }
  448. static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
  449. {
  450. addr &= ~1; /* XXX: check exact behaviour if not even */
  451. if (addr < 32
  452. || (addr >= NE2000_PMEM_START
  453. && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
  454. return ldl_le_p(s->mem + addr);
  455. } else {
  456. return 0xffffffff;
  457. }
  458. }
  459. static inline void ne2000_dma_update(NE2000State *s, int len)
  460. {
  461. s->rsar += len;
  462. /* wrap */
  463. /* XXX: check what to do if rsar > stop */
  464. if (s->rsar == s->stop)
  465. s->rsar = s->start;
  466. if (s->rcnt <= len) {
  467. s->rcnt = 0;
  468. /* signal end of transfer */
  469. s->isr |= ENISR_RDC;
  470. ne2000_update_irq(s);
  471. } else {
  472. s->rcnt -= len;
  473. }
  474. }
  475. static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  476. {
  477. NE2000State *s = opaque;
  478. #ifdef DEBUG_NE2000
  479. printf("NE2000: asic write val=0x%04x\n", val);
  480. #endif
  481. if (s->rcnt == 0)
  482. return;
  483. if (s->dcfg & 0x01) {
  484. /* 16 bit access */
  485. ne2000_mem_writew(s, s->rsar, val);
  486. ne2000_dma_update(s, 2);
  487. } else {
  488. /* 8 bit access */
  489. ne2000_mem_writeb(s, s->rsar, val);
  490. ne2000_dma_update(s, 1);
  491. }
  492. }
  493. static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
  494. {
  495. NE2000State *s = opaque;
  496. int ret;
  497. if (s->dcfg & 0x01) {
  498. /* 16 bit access */
  499. ret = ne2000_mem_readw(s, s->rsar);
  500. ne2000_dma_update(s, 2);
  501. } else {
  502. /* 8 bit access */
  503. ret = ne2000_mem_readb(s, s->rsar);
  504. ne2000_dma_update(s, 1);
  505. }
  506. #ifdef DEBUG_NE2000
  507. printf("NE2000: asic read val=0x%04x\n", ret);
  508. #endif
  509. return ret;
  510. }
  511. static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
  512. {
  513. NE2000State *s = opaque;
  514. #ifdef DEBUG_NE2000
  515. printf("NE2000: asic writel val=0x%04x\n", val);
  516. #endif
  517. if (s->rcnt == 0)
  518. return;
  519. /* 32 bit access */
  520. ne2000_mem_writel(s, s->rsar, val);
  521. ne2000_dma_update(s, 4);
  522. }
  523. static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
  524. {
  525. NE2000State *s = opaque;
  526. int ret;
  527. /* 32 bit access */
  528. ret = ne2000_mem_readl(s, s->rsar);
  529. ne2000_dma_update(s, 4);
  530. #ifdef DEBUG_NE2000
  531. printf("NE2000: asic readl val=0x%04x\n", ret);
  532. #endif
  533. return ret;
  534. }
  535. static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
  536. {
  537. /* nothing to do (end of reset pulse) */
  538. }
  539. static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
  540. {
  541. NE2000State *s = opaque;
  542. ne2000_reset(s);
  543. return 0;
  544. }
  545. static int ne2000_post_load(void* opaque, int version_id)
  546. {
  547. NE2000State* s = opaque;
  548. if (version_id < 2) {
  549. s->rxcr = 0x0c;
  550. }
  551. return 0;
  552. }
  553. const VMStateDescription vmstate_ne2000 = {
  554. .name = "ne2000",
  555. .version_id = 2,
  556. .minimum_version_id = 0,
  557. .post_load = ne2000_post_load,
  558. .fields = (const VMStateField[]) {
  559. VMSTATE_UINT8_V(rxcr, NE2000State, 2),
  560. VMSTATE_UINT8(cmd, NE2000State),
  561. VMSTATE_UINT32(start, NE2000State),
  562. VMSTATE_UINT32(stop, NE2000State),
  563. VMSTATE_UINT8(boundary, NE2000State),
  564. VMSTATE_UINT8(tsr, NE2000State),
  565. VMSTATE_UINT8(tpsr, NE2000State),
  566. VMSTATE_UINT16(tcnt, NE2000State),
  567. VMSTATE_UINT16(rcnt, NE2000State),
  568. VMSTATE_UINT32(rsar, NE2000State),
  569. VMSTATE_UINT8(rsr, NE2000State),
  570. VMSTATE_UINT8(isr, NE2000State),
  571. VMSTATE_UINT8(dcfg, NE2000State),
  572. VMSTATE_UINT8(imr, NE2000State),
  573. VMSTATE_BUFFER(phys, NE2000State),
  574. VMSTATE_UINT8(curpag, NE2000State),
  575. VMSTATE_BUFFER(mult, NE2000State),
  576. VMSTATE_UNUSED(4), /* was irq */
  577. VMSTATE_BUFFER(mem, NE2000State),
  578. VMSTATE_END_OF_LIST()
  579. }
  580. };
  581. static uint64_t ne2000_read(void *opaque, hwaddr addr,
  582. unsigned size)
  583. {
  584. NE2000State *s = opaque;
  585. uint64_t val;
  586. if (addr < 0x10 && size == 1) {
  587. val = ne2000_ioport_read(s, addr);
  588. } else if (addr == 0x10) {
  589. if (size <= 2) {
  590. val = ne2000_asic_ioport_read(s, addr);
  591. } else {
  592. val = ne2000_asic_ioport_readl(s, addr);
  593. }
  594. } else if (addr == 0x1f && size == 1) {
  595. val = ne2000_reset_ioport_read(s, addr);
  596. } else {
  597. val = ((uint64_t)1 << (size * 8)) - 1;
  598. }
  599. trace_ne2000_read(addr, val);
  600. return val;
  601. }
  602. static void ne2000_write(void *opaque, hwaddr addr,
  603. uint64_t data, unsigned size)
  604. {
  605. NE2000State *s = opaque;
  606. trace_ne2000_write(addr, data);
  607. if (addr < 0x10 && size == 1) {
  608. ne2000_ioport_write(s, addr, data);
  609. } else if (addr == 0x10) {
  610. if (size <= 2) {
  611. ne2000_asic_ioport_write(s, addr, data);
  612. } else {
  613. ne2000_asic_ioport_writel(s, addr, data);
  614. }
  615. } else if (addr == 0x1f && size == 1) {
  616. ne2000_reset_ioport_write(s, addr, data);
  617. }
  618. }
  619. static const MemoryRegionOps ne2000_ops = {
  620. .read = ne2000_read,
  621. .write = ne2000_write,
  622. .endianness = DEVICE_LITTLE_ENDIAN,
  623. };
  624. /***********************************************************/
  625. /* PCI NE2000 definitions */
  626. void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
  627. {
  628. memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
  629. }