2
0

lan9118.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349
  1. /*
  2. * SMSC LAN9118 Ethernet interface emulation
  3. *
  4. * Copyright (c) 2009 CodeSourcery, LLC.
  5. * Written by Paul Brook
  6. *
  7. * This code is licensed under the GNU GPL v2
  8. *
  9. * Contributions after 2012-01-13 are licensed under the terms of the
  10. * GNU GPL, version 2 or (at your option) any later version.
  11. */
  12. #include "qemu/osdep.h"
  13. #include "hw/sysbus.h"
  14. #include "migration/vmstate.h"
  15. #include "net/net.h"
  16. #include "net/eth.h"
  17. #include "hw/irq.h"
  18. #include "hw/net/lan9118_phy.h"
  19. #include "hw/net/lan9118.h"
  20. #include "hw/ptimer.h"
  21. #include "hw/qdev-properties.h"
  22. #include "qapi/error.h"
  23. #include "qemu/log.h"
  24. #include "qemu/module.h"
  25. #include <zlib.h> /* for crc32 */
  26. #include "qom/object.h"
  27. //#define DEBUG_LAN9118
  28. #ifdef DEBUG_LAN9118
  29. #define DPRINTF(fmt, ...) \
  30. do { printf("lan9118: " fmt , ## __VA_ARGS__); } while (0)
  31. #else
  32. #define DPRINTF(fmt, ...) do {} while(0)
  33. #endif
  34. /* The tx and rx fifo ports are a range of aliased 32-bit registers */
  35. #define RX_DATA_FIFO_PORT_FIRST 0x00
  36. #define RX_DATA_FIFO_PORT_LAST 0x1f
  37. #define TX_DATA_FIFO_PORT_FIRST 0x20
  38. #define TX_DATA_FIFO_PORT_LAST 0x3f
  39. #define RX_STATUS_FIFO_PORT 0x40
  40. #define RX_STATUS_FIFO_PEEK 0x44
  41. #define TX_STATUS_FIFO_PORT 0x48
  42. #define TX_STATUS_FIFO_PEEK 0x4c
  43. #define CSR_ID_REV 0x50
  44. #define CSR_IRQ_CFG 0x54
  45. #define CSR_INT_STS 0x58
  46. #define CSR_INT_EN 0x5c
  47. #define CSR_BYTE_TEST 0x64
  48. #define CSR_FIFO_INT 0x68
  49. #define CSR_RX_CFG 0x6c
  50. #define CSR_TX_CFG 0x70
  51. #define CSR_HW_CFG 0x74
  52. #define CSR_RX_DP_CTRL 0x78
  53. #define CSR_RX_FIFO_INF 0x7c
  54. #define CSR_TX_FIFO_INF 0x80
  55. #define CSR_PMT_CTRL 0x84
  56. #define CSR_GPIO_CFG 0x88
  57. #define CSR_GPT_CFG 0x8c
  58. #define CSR_GPT_CNT 0x90
  59. #define CSR_WORD_SWAP 0x98
  60. #define CSR_FREE_RUN 0x9c
  61. #define CSR_RX_DROP 0xa0
  62. #define CSR_MAC_CSR_CMD 0xa4
  63. #define CSR_MAC_CSR_DATA 0xa8
  64. #define CSR_AFC_CFG 0xac
  65. #define CSR_E2P_CMD 0xb0
  66. #define CSR_E2P_DATA 0xb4
  67. #define E2P_CMD_MAC_ADDR_LOADED 0x100
  68. /* IRQ_CFG */
  69. #define IRQ_INT 0x00001000
  70. #define IRQ_EN 0x00000100
  71. #define IRQ_POL 0x00000010
  72. #define IRQ_TYPE 0x00000001
  73. /* INT_STS/INT_EN */
  74. #define SW_INT 0x80000000
  75. #define TXSTOP_INT 0x02000000
  76. #define RXSTOP_INT 0x01000000
  77. #define RXDFH_INT 0x00800000
  78. #define TX_IOC_INT 0x00200000
  79. #define RXD_INT 0x00100000
  80. #define GPT_INT 0x00080000
  81. #define PHY_INT 0x00040000
  82. #define PME_INT 0x00020000
  83. #define TXSO_INT 0x00010000
  84. #define RWT_INT 0x00008000
  85. #define RXE_INT 0x00004000
  86. #define TXE_INT 0x00002000
  87. #define TDFU_INT 0x00000800
  88. #define TDFO_INT 0x00000400
  89. #define TDFA_INT 0x00000200
  90. #define TSFF_INT 0x00000100
  91. #define TSFL_INT 0x00000080
  92. #define RXDF_INT 0x00000040
  93. #define RDFL_INT 0x00000020
  94. #define RSFF_INT 0x00000010
  95. #define RSFL_INT 0x00000008
  96. #define GPIO2_INT 0x00000004
  97. #define GPIO1_INT 0x00000002
  98. #define GPIO0_INT 0x00000001
  99. #define RESERVED_INT 0x7c001000
  100. #define MAC_CR 1
  101. #define MAC_ADDRH 2
  102. #define MAC_ADDRL 3
  103. #define MAC_HASHH 4
  104. #define MAC_HASHL 5
  105. #define MAC_MII_ACC 6
  106. #define MAC_MII_DATA 7
  107. #define MAC_FLOW 8
  108. #define MAC_VLAN1 9 /* TODO */
  109. #define MAC_VLAN2 10 /* TODO */
  110. #define MAC_WUFF 11 /* TODO */
  111. #define MAC_WUCSR 12 /* TODO */
  112. #define MAC_CR_RXALL 0x80000000
  113. #define MAC_CR_RCVOWN 0x00800000
  114. #define MAC_CR_LOOPBK 0x00200000
  115. #define MAC_CR_FDPX 0x00100000
  116. #define MAC_CR_MCPAS 0x00080000
  117. #define MAC_CR_PRMS 0x00040000
  118. #define MAC_CR_INVFILT 0x00020000
  119. #define MAC_CR_PASSBAD 0x00010000
  120. #define MAC_CR_HO 0x00008000
  121. #define MAC_CR_HPFILT 0x00002000
  122. #define MAC_CR_LCOLL 0x00001000
  123. #define MAC_CR_BCAST 0x00000800
  124. #define MAC_CR_DISRTY 0x00000400
  125. #define MAC_CR_PADSTR 0x00000100
  126. #define MAC_CR_BOLMT 0x000000c0
  127. #define MAC_CR_DFCHK 0x00000020
  128. #define MAC_CR_TXEN 0x00000008
  129. #define MAC_CR_RXEN 0x00000004
  130. #define MAC_CR_RESERVED 0x7f404213
  131. #define GPT_TIMER_EN 0x20000000
  132. /*
  133. * The MAC Interface Layer (MIL), within the MAC, contains a 2K Byte transmit
  134. * and a 128 Byte receive FIFO which is separate from the TX and RX FIFOs.
  135. */
  136. #define MIL_TXFIFO_SIZE 2048
  137. enum tx_state {
  138. TX_IDLE,
  139. TX_B,
  140. TX_DATA
  141. };
  142. typedef struct {
  143. /* state is a tx_state but we can't put enums in VMStateDescriptions. */
  144. uint32_t state;
  145. uint32_t cmd_a;
  146. uint32_t cmd_b;
  147. int32_t buffer_size;
  148. int32_t offset;
  149. int32_t pad;
  150. int32_t fifo_used;
  151. int32_t len;
  152. uint8_t data[MIL_TXFIFO_SIZE];
  153. } LAN9118Packet;
  154. static const VMStateDescription vmstate_lan9118_packet = {
  155. .name = "lan9118_packet",
  156. .version_id = 1,
  157. .minimum_version_id = 1,
  158. .fields = (const VMStateField[]) {
  159. VMSTATE_UINT32(state, LAN9118Packet),
  160. VMSTATE_UINT32(cmd_a, LAN9118Packet),
  161. VMSTATE_UINT32(cmd_b, LAN9118Packet),
  162. VMSTATE_INT32(buffer_size, LAN9118Packet),
  163. VMSTATE_INT32(offset, LAN9118Packet),
  164. VMSTATE_INT32(pad, LAN9118Packet),
  165. VMSTATE_INT32(fifo_used, LAN9118Packet),
  166. VMSTATE_INT32(len, LAN9118Packet),
  167. VMSTATE_UINT8_ARRAY(data, LAN9118Packet, MIL_TXFIFO_SIZE),
  168. VMSTATE_END_OF_LIST()
  169. }
  170. };
  171. OBJECT_DECLARE_SIMPLE_TYPE(lan9118_state, LAN9118)
  172. struct lan9118_state {
  173. SysBusDevice parent_obj;
  174. NICState *nic;
  175. NICConf conf;
  176. qemu_irq irq;
  177. MemoryRegion mmio;
  178. ptimer_state *timer;
  179. uint32_t irq_cfg;
  180. uint32_t int_sts;
  181. uint32_t int_en;
  182. uint32_t fifo_int;
  183. uint32_t rx_cfg;
  184. uint32_t tx_cfg;
  185. uint32_t hw_cfg;
  186. uint32_t pmt_ctrl;
  187. uint32_t gpio_cfg;
  188. uint32_t gpt_cfg;
  189. uint32_t word_swap;
  190. uint32_t free_timer_start;
  191. uint32_t mac_cmd;
  192. uint32_t mac_data;
  193. uint32_t afc_cfg;
  194. uint32_t e2p_cmd;
  195. uint32_t e2p_data;
  196. uint32_t mac_cr;
  197. uint32_t mac_hashh;
  198. uint32_t mac_hashl;
  199. uint32_t mac_mii_acc;
  200. uint32_t mac_mii_data;
  201. uint32_t mac_flow;
  202. Lan9118PhyState mii;
  203. IRQState mii_irq;
  204. int32_t eeprom_writable;
  205. uint8_t eeprom[128];
  206. int32_t tx_fifo_size;
  207. LAN9118Packet *txp;
  208. LAN9118Packet tx_packet;
  209. int32_t tx_status_fifo_used;
  210. int32_t tx_status_fifo_head;
  211. uint32_t tx_status_fifo[512];
  212. int32_t rx_status_fifo_size;
  213. int32_t rx_status_fifo_used;
  214. int32_t rx_status_fifo_head;
  215. uint32_t rx_status_fifo[896];
  216. int32_t rx_fifo_size;
  217. int32_t rx_fifo_used;
  218. int32_t rx_fifo_head;
  219. uint32_t rx_fifo[3360];
  220. int32_t rx_packet_size_head;
  221. int32_t rx_packet_size_tail;
  222. int32_t rx_packet_size[1024];
  223. int32_t rxp_offset;
  224. int32_t rxp_size;
  225. int32_t rxp_pad;
  226. uint32_t write_word_prev_offset;
  227. uint32_t write_word_n;
  228. uint16_t write_word_l;
  229. uint16_t write_word_h;
  230. uint32_t read_word_prev_offset;
  231. uint32_t read_word_n;
  232. uint32_t read_long;
  233. uint32_t mode_16bit;
  234. };
  235. static const VMStateDescription vmstate_lan9118 = {
  236. .name = "lan9118",
  237. .version_id = 3,
  238. .minimum_version_id = 3,
  239. .fields = (const VMStateField[]) {
  240. VMSTATE_PTIMER(timer, lan9118_state),
  241. VMSTATE_UINT32(irq_cfg, lan9118_state),
  242. VMSTATE_UINT32(int_sts, lan9118_state),
  243. VMSTATE_UINT32(int_en, lan9118_state),
  244. VMSTATE_UINT32(fifo_int, lan9118_state),
  245. VMSTATE_UINT32(rx_cfg, lan9118_state),
  246. VMSTATE_UINT32(tx_cfg, lan9118_state),
  247. VMSTATE_UINT32(hw_cfg, lan9118_state),
  248. VMSTATE_UINT32(pmt_ctrl, lan9118_state),
  249. VMSTATE_UINT32(gpio_cfg, lan9118_state),
  250. VMSTATE_UINT32(gpt_cfg, lan9118_state),
  251. VMSTATE_UINT32(word_swap, lan9118_state),
  252. VMSTATE_UINT32(free_timer_start, lan9118_state),
  253. VMSTATE_UINT32(mac_cmd, lan9118_state),
  254. VMSTATE_UINT32(mac_data, lan9118_state),
  255. VMSTATE_UINT32(afc_cfg, lan9118_state),
  256. VMSTATE_UINT32(e2p_cmd, lan9118_state),
  257. VMSTATE_UINT32(e2p_data, lan9118_state),
  258. VMSTATE_UINT32(mac_cr, lan9118_state),
  259. VMSTATE_UINT32(mac_hashh, lan9118_state),
  260. VMSTATE_UINT32(mac_hashl, lan9118_state),
  261. VMSTATE_UINT32(mac_mii_acc, lan9118_state),
  262. VMSTATE_UINT32(mac_mii_data, lan9118_state),
  263. VMSTATE_UINT32(mac_flow, lan9118_state),
  264. VMSTATE_INT32(eeprom_writable, lan9118_state),
  265. VMSTATE_UINT8_ARRAY(eeprom, lan9118_state, 128),
  266. VMSTATE_INT32(tx_fifo_size, lan9118_state),
  267. /* txp always points at tx_packet so need not be saved */
  268. VMSTATE_STRUCT(tx_packet, lan9118_state, 0,
  269. vmstate_lan9118_packet, LAN9118Packet),
  270. VMSTATE_INT32(tx_status_fifo_used, lan9118_state),
  271. VMSTATE_INT32(tx_status_fifo_head, lan9118_state),
  272. VMSTATE_UINT32_ARRAY(tx_status_fifo, lan9118_state, 512),
  273. VMSTATE_INT32(rx_status_fifo_size, lan9118_state),
  274. VMSTATE_INT32(rx_status_fifo_used, lan9118_state),
  275. VMSTATE_INT32(rx_status_fifo_head, lan9118_state),
  276. VMSTATE_UINT32_ARRAY(rx_status_fifo, lan9118_state, 896),
  277. VMSTATE_INT32(rx_fifo_size, lan9118_state),
  278. VMSTATE_INT32(rx_fifo_used, lan9118_state),
  279. VMSTATE_INT32(rx_fifo_head, lan9118_state),
  280. VMSTATE_UINT32_ARRAY(rx_fifo, lan9118_state, 3360),
  281. VMSTATE_INT32(rx_packet_size_head, lan9118_state),
  282. VMSTATE_INT32(rx_packet_size_tail, lan9118_state),
  283. VMSTATE_INT32_ARRAY(rx_packet_size, lan9118_state, 1024),
  284. VMSTATE_INT32(rxp_offset, lan9118_state),
  285. VMSTATE_INT32(rxp_size, lan9118_state),
  286. VMSTATE_INT32(rxp_pad, lan9118_state),
  287. VMSTATE_UINT32_V(write_word_prev_offset, lan9118_state, 2),
  288. VMSTATE_UINT32_V(write_word_n, lan9118_state, 2),
  289. VMSTATE_UINT16_V(write_word_l, lan9118_state, 2),
  290. VMSTATE_UINT16_V(write_word_h, lan9118_state, 2),
  291. VMSTATE_UINT32_V(read_word_prev_offset, lan9118_state, 2),
  292. VMSTATE_UINT32_V(read_word_n, lan9118_state, 2),
  293. VMSTATE_UINT32_V(read_long, lan9118_state, 2),
  294. VMSTATE_UINT32_V(mode_16bit, lan9118_state, 2),
  295. VMSTATE_END_OF_LIST()
  296. }
  297. };
  298. static void lan9118_update(lan9118_state *s)
  299. {
  300. int level;
  301. /* TODO: Implement FIFO level IRQs. */
  302. level = (s->int_sts & s->int_en) != 0;
  303. if (level) {
  304. s->irq_cfg |= IRQ_INT;
  305. } else {
  306. s->irq_cfg &= ~IRQ_INT;
  307. }
  308. if ((s->irq_cfg & IRQ_EN) == 0) {
  309. level = 0;
  310. }
  311. if ((s->irq_cfg & (IRQ_TYPE | IRQ_POL)) != (IRQ_TYPE | IRQ_POL)) {
  312. /* Interrupt is active low unless we're configured as
  313. * active-high polarity, push-pull type.
  314. */
  315. level = !level;
  316. }
  317. qemu_set_irq(s->irq, level);
  318. }
  319. static void lan9118_mac_changed(lan9118_state *s)
  320. {
  321. qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
  322. }
  323. static void lan9118_reload_eeprom(lan9118_state *s)
  324. {
  325. int i;
  326. if (s->eeprom[0] != 0xa5) {
  327. s->e2p_cmd &= ~E2P_CMD_MAC_ADDR_LOADED;
  328. DPRINTF("MACADDR load failed\n");
  329. return;
  330. }
  331. for (i = 0; i < 6; i++) {
  332. s->conf.macaddr.a[i] = s->eeprom[i + 1];
  333. }
  334. s->e2p_cmd |= E2P_CMD_MAC_ADDR_LOADED;
  335. DPRINTF("MACADDR loaded from eeprom\n");
  336. lan9118_mac_changed(s);
  337. }
  338. static void lan9118_update_irq(void *opaque, int n, int level)
  339. {
  340. lan9118_state *s = opaque;
  341. if (level) {
  342. s->int_sts |= PHY_INT;
  343. } else {
  344. s->int_sts &= ~PHY_INT;
  345. }
  346. lan9118_update(s);
  347. }
  348. static void lan9118_set_link(NetClientState *nc)
  349. {
  350. lan9118_phy_update_link(&LAN9118(qemu_get_nic_opaque(nc))->mii,
  351. nc->link_down);
  352. }
  353. static void lan9118_reset(DeviceState *d)
  354. {
  355. lan9118_state *s = LAN9118(d);
  356. s->irq_cfg &= (IRQ_TYPE | IRQ_POL);
  357. s->int_sts = 0;
  358. s->int_en = 0;
  359. s->fifo_int = 0x48000000;
  360. s->rx_cfg = 0;
  361. s->tx_cfg = 0;
  362. s->hw_cfg = s->mode_16bit ? 0x00050000 : 0x00050004;
  363. s->pmt_ctrl &= 0x45;
  364. s->gpio_cfg = 0;
  365. s->txp->fifo_used = 0;
  366. s->txp->state = TX_IDLE;
  367. s->txp->cmd_a = 0xffffffffu;
  368. s->txp->cmd_b = 0xffffffffu;
  369. s->txp->len = 0;
  370. s->txp->fifo_used = 0;
  371. s->tx_fifo_size = 4608;
  372. s->tx_status_fifo_used = 0;
  373. s->rx_status_fifo_size = 704;
  374. s->rx_fifo_size = 2640;
  375. s->rx_fifo_used = 0;
  376. s->rx_status_fifo_size = 176;
  377. s->rx_status_fifo_used = 0;
  378. s->rxp_offset = 0;
  379. s->rxp_size = 0;
  380. s->rxp_pad = 0;
  381. s->rx_packet_size_tail = s->rx_packet_size_head;
  382. s->rx_packet_size[s->rx_packet_size_head] = 0;
  383. s->mac_cmd = 0;
  384. s->mac_data = 0;
  385. s->afc_cfg = 0;
  386. s->e2p_cmd = 0;
  387. s->e2p_data = 0;
  388. s->free_timer_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 40;
  389. ptimer_transaction_begin(s->timer);
  390. ptimer_stop(s->timer);
  391. ptimer_set_count(s->timer, 0xffff);
  392. ptimer_transaction_commit(s->timer);
  393. s->gpt_cfg = 0xffff;
  394. s->mac_cr = MAC_CR_PRMS;
  395. s->mac_hashh = 0;
  396. s->mac_hashl = 0;
  397. s->mac_mii_acc = 0;
  398. s->mac_mii_data = 0;
  399. s->mac_flow = 0;
  400. s->read_word_n = 0;
  401. s->write_word_n = 0;
  402. s->eeprom_writable = 0;
  403. lan9118_reload_eeprom(s);
  404. }
  405. static void rx_fifo_push(lan9118_state *s, uint32_t val)
  406. {
  407. int fifo_pos;
  408. fifo_pos = s->rx_fifo_head + s->rx_fifo_used;
  409. if (fifo_pos >= s->rx_fifo_size)
  410. fifo_pos -= s->rx_fifo_size;
  411. s->rx_fifo[fifo_pos] = val;
  412. s->rx_fifo_used++;
  413. }
  414. /* Return nonzero if the packet is accepted by the filter. */
  415. static int lan9118_filter(lan9118_state *s, const uint8_t *addr)
  416. {
  417. int multicast;
  418. uint32_t hash;
  419. if (s->mac_cr & MAC_CR_PRMS) {
  420. return 1;
  421. }
  422. if (addr[0] == 0xff && addr[1] == 0xff && addr[2] == 0xff &&
  423. addr[3] == 0xff && addr[4] == 0xff && addr[5] == 0xff) {
  424. return (s->mac_cr & MAC_CR_BCAST) == 0;
  425. }
  426. multicast = addr[0] & 1;
  427. if (multicast &&s->mac_cr & MAC_CR_MCPAS) {
  428. return 1;
  429. }
  430. if (multicast ? (s->mac_cr & MAC_CR_HPFILT) == 0
  431. : (s->mac_cr & MAC_CR_HO) == 0) {
  432. /* Exact matching. */
  433. hash = memcmp(addr, s->conf.macaddr.a, 6);
  434. if (s->mac_cr & MAC_CR_INVFILT) {
  435. return hash != 0;
  436. } else {
  437. return hash == 0;
  438. }
  439. } else {
  440. /* Hash matching */
  441. hash = net_crc32(addr, ETH_ALEN) >> 26;
  442. if (hash & 0x20) {
  443. return (s->mac_hashh >> (hash & 0x1f)) & 1;
  444. } else {
  445. return (s->mac_hashl >> (hash & 0x1f)) & 1;
  446. }
  447. }
  448. }
  449. static ssize_t lan9118_receive(NetClientState *nc, const uint8_t *buf,
  450. size_t size)
  451. {
  452. lan9118_state *s = qemu_get_nic_opaque(nc);
  453. int fifo_len;
  454. int offset;
  455. int src_pos;
  456. int n;
  457. int filter;
  458. uint32_t val;
  459. uint32_t crc;
  460. uint32_t status;
  461. if ((s->mac_cr & MAC_CR_RXEN) == 0) {
  462. return -1;
  463. }
  464. if (size >= MIL_TXFIFO_SIZE || size < 14) {
  465. return -1;
  466. }
  467. /* TODO: Implement FIFO overflow notification. */
  468. if (s->rx_status_fifo_used == s->rx_status_fifo_size) {
  469. return -1;
  470. }
  471. filter = lan9118_filter(s, buf);
  472. if (!filter && (s->mac_cr & MAC_CR_RXALL) == 0) {
  473. return size;
  474. }
  475. offset = (s->rx_cfg >> 8) & 0x1f;
  476. n = offset & 3;
  477. fifo_len = (size + n + 3) >> 2;
  478. /* Add a word for the CRC. */
  479. fifo_len++;
  480. if (s->rx_fifo_size - s->rx_fifo_used < fifo_len) {
  481. return -1;
  482. }
  483. DPRINTF("Got packet len:%d fifo:%d filter:%s\n",
  484. (int)size, fifo_len, filter ? "pass" : "fail");
  485. val = 0;
  486. crc = bswap32(crc32(~0, buf, size));
  487. for (src_pos = 0; src_pos < size; src_pos++) {
  488. val = (val >> 8) | ((uint32_t)buf[src_pos] << 24);
  489. n++;
  490. if (n == 4) {
  491. n = 0;
  492. rx_fifo_push(s, val);
  493. val = 0;
  494. }
  495. }
  496. if (n) {
  497. val >>= ((4 - n) * 8);
  498. val |= crc << (n * 8);
  499. rx_fifo_push(s, val);
  500. val = crc >> ((4 - n) * 8);
  501. rx_fifo_push(s, val);
  502. } else {
  503. rx_fifo_push(s, crc);
  504. }
  505. n = s->rx_status_fifo_head + s->rx_status_fifo_used;
  506. if (n >= s->rx_status_fifo_size) {
  507. n -= s->rx_status_fifo_size;
  508. }
  509. s->rx_packet_size[s->rx_packet_size_tail] = fifo_len;
  510. s->rx_packet_size_tail = (s->rx_packet_size_tail + 1023) & 1023;
  511. s->rx_status_fifo_used++;
  512. status = (size + 4) << 16;
  513. if (buf[0] == 0xff && buf[1] == 0xff && buf[2] == 0xff &&
  514. buf[3] == 0xff && buf[4] == 0xff && buf[5] == 0xff) {
  515. status |= 0x00002000;
  516. } else if (buf[0] & 1) {
  517. status |= 0x00000400;
  518. }
  519. if (!filter) {
  520. status |= 0x40000000;
  521. }
  522. s->rx_status_fifo[n] = status;
  523. if (s->rx_status_fifo_used > (s->fifo_int & 0xff)) {
  524. s->int_sts |= RSFL_INT;
  525. }
  526. lan9118_update(s);
  527. return size;
  528. }
  529. static uint32_t rx_fifo_pop(lan9118_state *s)
  530. {
  531. int n;
  532. uint32_t val;
  533. if (s->rxp_size == 0 && s->rxp_pad == 0) {
  534. s->rxp_size = s->rx_packet_size[s->rx_packet_size_head];
  535. s->rx_packet_size[s->rx_packet_size_head] = 0;
  536. if (s->rxp_size != 0) {
  537. s->rx_packet_size_head = (s->rx_packet_size_head + 1023) & 1023;
  538. s->rxp_offset = (s->rx_cfg >> 10) & 7;
  539. n = s->rxp_offset + s->rxp_size;
  540. switch (s->rx_cfg >> 30) {
  541. case 1:
  542. n = (-n) & 3;
  543. break;
  544. case 2:
  545. n = (-n) & 7;
  546. break;
  547. default:
  548. n = 0;
  549. break;
  550. }
  551. s->rxp_pad = n;
  552. DPRINTF("Pop packet size:%d offset:%d pad: %d\n",
  553. s->rxp_size, s->rxp_offset, s->rxp_pad);
  554. }
  555. }
  556. if (s->rxp_offset > 0) {
  557. s->rxp_offset--;
  558. val = 0;
  559. } else if (s->rxp_size > 0) {
  560. s->rxp_size--;
  561. val = s->rx_fifo[s->rx_fifo_head++];
  562. if (s->rx_fifo_head >= s->rx_fifo_size) {
  563. s->rx_fifo_head -= s->rx_fifo_size;
  564. }
  565. s->rx_fifo_used--;
  566. } else if (s->rxp_pad > 0) {
  567. s->rxp_pad--;
  568. val = 0;
  569. } else {
  570. DPRINTF("RX underflow\n");
  571. s->int_sts |= RXE_INT;
  572. val = 0;
  573. }
  574. lan9118_update(s);
  575. return val;
  576. }
  577. static void do_tx_packet(lan9118_state *s)
  578. {
  579. int n;
  580. uint32_t status;
  581. /* FIXME: Honor TX disable, and allow queueing of packets. */
  582. if (s->mii.control & 0x4000) {
  583. /* This assumes the receive routine doesn't touch the VLANClient. */
  584. qemu_receive_packet(qemu_get_queue(s->nic), s->txp->data, s->txp->len);
  585. } else {
  586. qemu_send_packet(qemu_get_queue(s->nic), s->txp->data, s->txp->len);
  587. }
  588. s->txp->fifo_used = 0;
  589. if (s->tx_status_fifo_used == 512) {
  590. /* Status FIFO full */
  591. return;
  592. }
  593. /* Add entry to status FIFO. */
  594. status = s->txp->cmd_b & 0xffff0000u;
  595. DPRINTF("Sent packet tag:%04x len %d\n", status >> 16, s->txp->len);
  596. n = (s->tx_status_fifo_head + s->tx_status_fifo_used) & 511;
  597. s->tx_status_fifo[n] = status;
  598. s->tx_status_fifo_used++;
  599. /*
  600. * Generate TSFL interrupt if TX FIFO level exceeds the level
  601. * specified in the FIFO_INT TX Status Level field.
  602. */
  603. if (s->tx_status_fifo_used > ((s->fifo_int >> 16) & 0xff)) {
  604. s->int_sts |= TSFL_INT;
  605. }
  606. if (s->tx_status_fifo_used == 512) {
  607. s->int_sts |= TSFF_INT;
  608. /* TODO: Stop transmission. */
  609. }
  610. }
  611. static uint32_t rx_status_fifo_pop(lan9118_state *s)
  612. {
  613. uint32_t val;
  614. val = s->rx_status_fifo[s->rx_status_fifo_head];
  615. if (s->rx_status_fifo_used != 0) {
  616. s->rx_status_fifo_used--;
  617. s->rx_status_fifo_head++;
  618. if (s->rx_status_fifo_head >= s->rx_status_fifo_size) {
  619. s->rx_status_fifo_head -= s->rx_status_fifo_size;
  620. }
  621. /* ??? What value should be returned when the FIFO is empty? */
  622. DPRINTF("RX status pop 0x%08x\n", val);
  623. }
  624. return val;
  625. }
  626. static uint32_t tx_status_fifo_pop(lan9118_state *s)
  627. {
  628. uint32_t val;
  629. val = s->tx_status_fifo[s->tx_status_fifo_head];
  630. if (s->tx_status_fifo_used != 0) {
  631. s->tx_status_fifo_used--;
  632. s->tx_status_fifo_head = (s->tx_status_fifo_head + 1) & 511;
  633. /* ??? What value should be returned when the FIFO is empty? */
  634. }
  635. return val;
  636. }
  637. static void tx_fifo_push(lan9118_state *s, uint32_t val)
  638. {
  639. int n;
  640. if (s->txp->fifo_used == s->tx_fifo_size) {
  641. s->int_sts |= TDFO_INT;
  642. return;
  643. }
  644. switch (s->txp->state) {
  645. case TX_IDLE:
  646. s->txp->cmd_a = val & 0x831f37ff;
  647. s->txp->fifo_used++;
  648. s->txp->state = TX_B;
  649. s->txp->buffer_size = extract32(s->txp->cmd_a, 0, 11);
  650. s->txp->offset = extract32(s->txp->cmd_a, 16, 5);
  651. break;
  652. case TX_B:
  653. if (s->txp->cmd_a & 0x2000) {
  654. /* First segment */
  655. s->txp->cmd_b = val;
  656. s->txp->fifo_used++;
  657. /* End alignment does not include command words. */
  658. n = (s->txp->buffer_size + s->txp->offset + 3) >> 2;
  659. switch ((n >> 24) & 3) {
  660. case 1:
  661. n = (-n) & 3;
  662. break;
  663. case 2:
  664. n = (-n) & 7;
  665. break;
  666. default:
  667. n = 0;
  668. }
  669. s->txp->pad = n;
  670. s->txp->len = 0;
  671. }
  672. DPRINTF("Block len:%d offset:%d pad:%d cmd %08x\n",
  673. s->txp->buffer_size, s->txp->offset, s->txp->pad,
  674. s->txp->cmd_a);
  675. s->txp->state = TX_DATA;
  676. break;
  677. case TX_DATA:
  678. if (s->txp->offset >= 4) {
  679. s->txp->offset -= 4;
  680. break;
  681. }
  682. if (s->txp->buffer_size <= 0 && s->txp->pad != 0) {
  683. s->txp->pad--;
  684. } else {
  685. n = MIN(4, s->txp->buffer_size + s->txp->offset);
  686. while (s->txp->offset) {
  687. val >>= 8;
  688. n--;
  689. s->txp->offset--;
  690. }
  691. /* Documentation is somewhat unclear on the ordering of bytes
  692. in FIFO words. Empirical results show it to be little-endian.
  693. */
  694. while (n--) {
  695. if (s->txp->len == MIL_TXFIFO_SIZE) {
  696. /*
  697. * No more space in the FIFO. The datasheet is not
  698. * precise about this case. We choose what is easiest
  699. * to model: the packet is truncated, and TXE is raised.
  700. *
  701. * Note, it could be a fragmented packet, but we currently
  702. * do not handle that (see earlier TX_B case).
  703. */
  704. qemu_log_mask(LOG_GUEST_ERROR,
  705. "MIL TX FIFO overrun, discarding %u byte%s\n",
  706. n, n > 1 ? "s" : "");
  707. s->int_sts |= TXE_INT;
  708. break;
  709. }
  710. s->txp->data[s->txp->len] = val & 0xff;
  711. s->txp->len++;
  712. val >>= 8;
  713. s->txp->buffer_size--;
  714. }
  715. s->txp->fifo_used++;
  716. }
  717. if (s->txp->buffer_size <= 0 && s->txp->pad == 0) {
  718. if (s->txp->cmd_a & 0x1000) {
  719. do_tx_packet(s);
  720. }
  721. if (s->txp->cmd_a & 0x80000000) {
  722. s->int_sts |= TX_IOC_INT;
  723. }
  724. s->txp->state = TX_IDLE;
  725. }
  726. break;
  727. }
  728. }
  729. static void do_mac_write(lan9118_state *s, int reg, uint32_t val)
  730. {
  731. switch (reg) {
  732. case MAC_CR:
  733. if ((s->mac_cr & MAC_CR_RXEN) != 0 && (val & MAC_CR_RXEN) == 0) {
  734. s->int_sts |= RXSTOP_INT;
  735. }
  736. s->mac_cr = val & ~MAC_CR_RESERVED;
  737. DPRINTF("MAC_CR: %08x\n", val);
  738. break;
  739. case MAC_ADDRH:
  740. s->conf.macaddr.a[4] = val & 0xff;
  741. s->conf.macaddr.a[5] = (val >> 8) & 0xff;
  742. lan9118_mac_changed(s);
  743. break;
  744. case MAC_ADDRL:
  745. s->conf.macaddr.a[0] = val & 0xff;
  746. s->conf.macaddr.a[1] = (val >> 8) & 0xff;
  747. s->conf.macaddr.a[2] = (val >> 16) & 0xff;
  748. s->conf.macaddr.a[3] = (val >> 24) & 0xff;
  749. lan9118_mac_changed(s);
  750. break;
  751. case MAC_HASHH:
  752. s->mac_hashh = val;
  753. break;
  754. case MAC_HASHL:
  755. s->mac_hashl = val;
  756. break;
  757. case MAC_MII_ACC:
  758. s->mac_mii_acc = val & 0xffc2;
  759. if (val & 2) {
  760. DPRINTF("PHY write %d = 0x%04x\n",
  761. (val >> 6) & 0x1f, s->mac_mii_data);
  762. lan9118_phy_write(&s->mii, (val >> 6) & 0x1f, s->mac_mii_data);
  763. } else {
  764. s->mac_mii_data = lan9118_phy_read(&s->mii, (val >> 6) & 0x1f);
  765. DPRINTF("PHY read %d = 0x%04x\n",
  766. (val >> 6) & 0x1f, s->mac_mii_data);
  767. }
  768. break;
  769. case MAC_MII_DATA:
  770. s->mac_mii_data = val & 0xffff;
  771. break;
  772. case MAC_FLOW:
  773. s->mac_flow = val & 0xffff0000;
  774. break;
  775. case MAC_VLAN1:
  776. /* Writing to this register changes a condition for
  777. * FrameTooLong bit in rx_status. Since we do not set
  778. * FrameTooLong anyway, just ignore write to this.
  779. */
  780. break;
  781. default:
  782. qemu_log_mask(LOG_GUEST_ERROR,
  783. "lan9118: Unimplemented MAC register write: %d = 0x%x\n",
  784. s->mac_cmd & 0xf, val);
  785. }
  786. }
  787. static uint32_t do_mac_read(lan9118_state *s, int reg)
  788. {
  789. switch (reg) {
  790. case MAC_CR:
  791. return s->mac_cr;
  792. case MAC_ADDRH:
  793. return s->conf.macaddr.a[4] | (s->conf.macaddr.a[5] << 8);
  794. case MAC_ADDRL:
  795. return s->conf.macaddr.a[0] | (s->conf.macaddr.a[1] << 8)
  796. | (s->conf.macaddr.a[2] << 16) | (s->conf.macaddr.a[3] << 24);
  797. case MAC_HASHH:
  798. return s->mac_hashh;
  799. case MAC_HASHL:
  800. return s->mac_hashl;
  801. case MAC_MII_ACC:
  802. return s->mac_mii_acc;
  803. case MAC_MII_DATA:
  804. return s->mac_mii_data;
  805. case MAC_FLOW:
  806. return s->mac_flow;
  807. default:
  808. qemu_log_mask(LOG_GUEST_ERROR,
  809. "lan9118: Unimplemented MAC register read: %d\n",
  810. s->mac_cmd & 0xf);
  811. return 0;
  812. }
  813. }
  814. static void lan9118_eeprom_cmd(lan9118_state *s, int cmd, int addr)
  815. {
  816. s->e2p_cmd = (s->e2p_cmd & E2P_CMD_MAC_ADDR_LOADED) | (cmd << 28) | addr;
  817. switch (cmd) {
  818. case 0:
  819. s->e2p_data = s->eeprom[addr];
  820. DPRINTF("EEPROM Read %d = 0x%02x\n", addr, s->e2p_data);
  821. break;
  822. case 1:
  823. s->eeprom_writable = 0;
  824. DPRINTF("EEPROM Write Disable\n");
  825. break;
  826. case 2: /* EWEN */
  827. s->eeprom_writable = 1;
  828. DPRINTF("EEPROM Write Enable\n");
  829. break;
  830. case 3: /* WRITE */
  831. if (s->eeprom_writable) {
  832. s->eeprom[addr] &= s->e2p_data;
  833. DPRINTF("EEPROM Write %d = 0x%02x\n", addr, s->e2p_data);
  834. } else {
  835. DPRINTF("EEPROM Write %d (ignored)\n", addr);
  836. }
  837. break;
  838. case 4: /* WRAL */
  839. if (s->eeprom_writable) {
  840. for (addr = 0; addr < 128; addr++) {
  841. s->eeprom[addr] &= s->e2p_data;
  842. }
  843. DPRINTF("EEPROM Write All 0x%02x\n", s->e2p_data);
  844. } else {
  845. DPRINTF("EEPROM Write All (ignored)\n");
  846. }
  847. break;
  848. case 5: /* ERASE */
  849. if (s->eeprom_writable) {
  850. s->eeprom[addr] = 0xff;
  851. DPRINTF("EEPROM Erase %d\n", addr);
  852. } else {
  853. DPRINTF("EEPROM Erase %d (ignored)\n", addr);
  854. }
  855. break;
  856. case 6: /* ERAL */
  857. if (s->eeprom_writable) {
  858. memset(s->eeprom, 0xff, 128);
  859. DPRINTF("EEPROM Erase All\n");
  860. } else {
  861. DPRINTF("EEPROM Erase All (ignored)\n");
  862. }
  863. break;
  864. case 7: /* RELOAD */
  865. lan9118_reload_eeprom(s);
  866. break;
  867. }
  868. }
  869. static void lan9118_tick(void *opaque)
  870. {
  871. lan9118_state *s = (lan9118_state *)opaque;
  872. if (s->int_en & GPT_INT) {
  873. s->int_sts |= GPT_INT;
  874. }
  875. lan9118_update(s);
  876. }
  877. static void lan9118_writel(void *opaque, hwaddr offset,
  878. uint64_t val, unsigned size)
  879. {
  880. lan9118_state *s = (lan9118_state *)opaque;
  881. offset &= 0xff;
  882. //DPRINTF("Write reg 0x%02x = 0x%08x\n", (int)offset, val);
  883. if (offset >= TX_DATA_FIFO_PORT_FIRST &&
  884. offset <= TX_DATA_FIFO_PORT_LAST) {
  885. /* TX FIFO */
  886. tx_fifo_push(s, val);
  887. return;
  888. }
  889. switch (offset) {
  890. case CSR_IRQ_CFG:
  891. /* TODO: Implement interrupt deassertion intervals. */
  892. val &= (IRQ_EN | IRQ_POL | IRQ_TYPE);
  893. s->irq_cfg = (s->irq_cfg & IRQ_INT) | val;
  894. break;
  895. case CSR_INT_STS:
  896. s->int_sts &= ~val;
  897. break;
  898. case CSR_INT_EN:
  899. s->int_en = val & ~RESERVED_INT;
  900. s->int_sts |= val & SW_INT;
  901. break;
  902. case CSR_FIFO_INT:
  903. DPRINTF("FIFO INT levels %08x\n", val);
  904. s->fifo_int = val;
  905. break;
  906. case CSR_RX_CFG:
  907. if (val & 0x8000) {
  908. /* RX_DUMP */
  909. s->rx_fifo_used = 0;
  910. s->rx_status_fifo_used = 0;
  911. s->rx_packet_size_tail = s->rx_packet_size_head;
  912. s->rx_packet_size[s->rx_packet_size_head] = 0;
  913. }
  914. s->rx_cfg = val & 0xcfff1ff0;
  915. break;
  916. case CSR_TX_CFG:
  917. if (val & 0x8000) {
  918. s->tx_status_fifo_used = 0;
  919. }
  920. if (val & 0x4000) {
  921. s->txp->state = TX_IDLE;
  922. s->txp->fifo_used = 0;
  923. s->txp->cmd_a = 0xffffffff;
  924. }
  925. s->tx_cfg = val & 6;
  926. break;
  927. case CSR_HW_CFG:
  928. if (val & 1) {
  929. /* SRST */
  930. lan9118_reset(DEVICE(s));
  931. } else {
  932. s->hw_cfg = (val & 0x003f300) | (s->hw_cfg & 0x4);
  933. }
  934. break;
  935. case CSR_RX_DP_CTRL:
  936. if (val & 0x80000000) {
  937. /* Skip forward to next packet. */
  938. s->rxp_pad = 0;
  939. s->rxp_offset = 0;
  940. if (s->rxp_size == 0) {
  941. /* Pop a word to start the next packet. */
  942. rx_fifo_pop(s);
  943. s->rxp_pad = 0;
  944. s->rxp_offset = 0;
  945. }
  946. s->rx_fifo_head += s->rxp_size;
  947. if (s->rx_fifo_head >= s->rx_fifo_size) {
  948. s->rx_fifo_head -= s->rx_fifo_size;
  949. }
  950. }
  951. break;
  952. case CSR_PMT_CTRL:
  953. if (val & 0x400) {
  954. lan9118_phy_reset(&s->mii);
  955. }
  956. s->pmt_ctrl &= ~0x34e;
  957. s->pmt_ctrl |= (val & 0x34e);
  958. break;
  959. case CSR_GPIO_CFG:
  960. /* Probably just enabling LEDs. */
  961. s->gpio_cfg = val & 0x7777071f;
  962. break;
  963. case CSR_GPT_CFG:
  964. if ((s->gpt_cfg ^ val) & GPT_TIMER_EN) {
  965. ptimer_transaction_begin(s->timer);
  966. if (val & GPT_TIMER_EN) {
  967. ptimer_set_count(s->timer, val & 0xffff);
  968. ptimer_run(s->timer, 0);
  969. } else {
  970. ptimer_stop(s->timer);
  971. ptimer_set_count(s->timer, 0xffff);
  972. }
  973. ptimer_transaction_commit(s->timer);
  974. }
  975. s->gpt_cfg = val & (GPT_TIMER_EN | 0xffff);
  976. break;
  977. case CSR_WORD_SWAP:
  978. /* Ignored because we're in 32-bit mode. */
  979. s->word_swap = val;
  980. break;
  981. case CSR_MAC_CSR_CMD:
  982. s->mac_cmd = val & 0x4000000f;
  983. if (val & 0x80000000) {
  984. if (val & 0x40000000) {
  985. s->mac_data = do_mac_read(s, val & 0xf);
  986. DPRINTF("MAC read %d = 0x%08x\n", val & 0xf, s->mac_data);
  987. } else {
  988. DPRINTF("MAC write %d = 0x%08x\n", val & 0xf, s->mac_data);
  989. do_mac_write(s, val & 0xf, s->mac_data);
  990. }
  991. }
  992. break;
  993. case CSR_MAC_CSR_DATA:
  994. s->mac_data = val;
  995. break;
  996. case CSR_AFC_CFG:
  997. s->afc_cfg = val & 0x00ffffff;
  998. break;
  999. case CSR_E2P_CMD:
  1000. lan9118_eeprom_cmd(s, (val >> 28) & 7, val & 0x7f);
  1001. break;
  1002. case CSR_E2P_DATA:
  1003. s->e2p_data = val & 0xff;
  1004. break;
  1005. default:
  1006. qemu_log_mask(LOG_GUEST_ERROR, "lan9118_write: Bad reg 0x%x = %x\n",
  1007. (int)offset, (int)val);
  1008. break;
  1009. }
  1010. lan9118_update(s);
  1011. }
  1012. static void lan9118_writew(void *opaque, hwaddr offset,
  1013. uint32_t val)
  1014. {
  1015. lan9118_state *s = (lan9118_state *)opaque;
  1016. offset &= 0xff;
  1017. if (s->write_word_prev_offset != (offset & ~0x3)) {
  1018. /* New offset, reset word counter */
  1019. s->write_word_n = 0;
  1020. s->write_word_prev_offset = offset & ~0x3;
  1021. }
  1022. if (offset & 0x2) {
  1023. s->write_word_h = val;
  1024. } else {
  1025. s->write_word_l = val;
  1026. }
  1027. //DPRINTF("Writew reg 0x%02x = 0x%08x\n", (int)offset, val);
  1028. s->write_word_n++;
  1029. if (s->write_word_n == 2) {
  1030. s->write_word_n = 0;
  1031. lan9118_writel(s, offset & ~3, s->write_word_l +
  1032. (s->write_word_h << 16), 4);
  1033. }
  1034. }
  1035. static void lan9118_16bit_mode_write(void *opaque, hwaddr offset,
  1036. uint64_t val, unsigned size)
  1037. {
  1038. switch (size) {
  1039. case 2:
  1040. lan9118_writew(opaque, offset, (uint32_t)val);
  1041. return;
  1042. case 4:
  1043. lan9118_writel(opaque, offset, val, size);
  1044. return;
  1045. }
  1046. qemu_log_mask(LOG_GUEST_ERROR,
  1047. "lan9118_16bit_mode_write: Bad size 0x%x\n", size);
  1048. }
  1049. static uint64_t lan9118_readl(void *opaque, hwaddr offset,
  1050. unsigned size)
  1051. {
  1052. lan9118_state *s = (lan9118_state *)opaque;
  1053. //DPRINTF("Read reg 0x%02x\n", (int)offset);
  1054. if (offset <= RX_DATA_FIFO_PORT_LAST) {
  1055. /* RX FIFO */
  1056. return rx_fifo_pop(s);
  1057. }
  1058. switch (offset) {
  1059. case RX_STATUS_FIFO_PORT:
  1060. return rx_status_fifo_pop(s);
  1061. case RX_STATUS_FIFO_PEEK:
  1062. return s->rx_status_fifo[s->rx_status_fifo_head];
  1063. case TX_STATUS_FIFO_PORT:
  1064. return tx_status_fifo_pop(s);
  1065. case TX_STATUS_FIFO_PEEK:
  1066. return s->tx_status_fifo[s->tx_status_fifo_head];
  1067. case CSR_ID_REV:
  1068. return 0x01180001;
  1069. case CSR_IRQ_CFG:
  1070. return s->irq_cfg;
  1071. case CSR_INT_STS:
  1072. return s->int_sts;
  1073. case CSR_INT_EN:
  1074. return s->int_en;
  1075. case CSR_BYTE_TEST:
  1076. return 0x87654321;
  1077. case CSR_FIFO_INT:
  1078. return s->fifo_int;
  1079. case CSR_RX_CFG:
  1080. return s->rx_cfg;
  1081. case CSR_TX_CFG:
  1082. return s->tx_cfg;
  1083. case CSR_HW_CFG:
  1084. return s->hw_cfg;
  1085. case CSR_RX_DP_CTRL:
  1086. return 0;
  1087. case CSR_RX_FIFO_INF:
  1088. return (s->rx_status_fifo_used << 16) | (s->rx_fifo_used << 2);
  1089. case CSR_TX_FIFO_INF:
  1090. return (s->tx_status_fifo_used << 16)
  1091. | (s->tx_fifo_size - s->txp->fifo_used);
  1092. case CSR_PMT_CTRL:
  1093. return s->pmt_ctrl;
  1094. case CSR_GPIO_CFG:
  1095. return s->gpio_cfg;
  1096. case CSR_GPT_CFG:
  1097. return s->gpt_cfg;
  1098. case CSR_GPT_CNT:
  1099. return ptimer_get_count(s->timer);
  1100. case CSR_WORD_SWAP:
  1101. return s->word_swap;
  1102. case CSR_FREE_RUN:
  1103. return (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 40) - s->free_timer_start;
  1104. case CSR_RX_DROP:
  1105. /* TODO: Implement dropped frames counter. */
  1106. return 0;
  1107. case CSR_MAC_CSR_CMD:
  1108. return s->mac_cmd;
  1109. case CSR_MAC_CSR_DATA:
  1110. return s->mac_data;
  1111. case CSR_AFC_CFG:
  1112. return s->afc_cfg;
  1113. case CSR_E2P_CMD:
  1114. return s->e2p_cmd;
  1115. case CSR_E2P_DATA:
  1116. return s->e2p_data;
  1117. }
  1118. qemu_log_mask(LOG_GUEST_ERROR, "lan9118_read: Bad reg 0x%x\n", (int)offset);
  1119. return 0;
  1120. }
  1121. static uint32_t lan9118_readw(void *opaque, hwaddr offset)
  1122. {
  1123. lan9118_state *s = (lan9118_state *)opaque;
  1124. uint32_t val;
  1125. if (s->read_word_prev_offset != (offset & ~0x3)) {
  1126. /* New offset, reset word counter */
  1127. s->read_word_n = 0;
  1128. s->read_word_prev_offset = offset & ~0x3;
  1129. }
  1130. s->read_word_n++;
  1131. if (s->read_word_n == 1) {
  1132. s->read_long = lan9118_readl(s, offset & ~3, 4);
  1133. } else {
  1134. s->read_word_n = 0;
  1135. }
  1136. if (offset & 2) {
  1137. val = s->read_long >> 16;
  1138. } else {
  1139. val = s->read_long & 0xFFFF;
  1140. }
  1141. //DPRINTF("Readw reg 0x%02x, val 0x%x\n", (int)offset, val);
  1142. return val;
  1143. }
  1144. static uint64_t lan9118_16bit_mode_read(void *opaque, hwaddr offset,
  1145. unsigned size)
  1146. {
  1147. switch (size) {
  1148. case 2:
  1149. return lan9118_readw(opaque, offset);
  1150. case 4:
  1151. return lan9118_readl(opaque, offset, size);
  1152. }
  1153. qemu_log_mask(LOG_GUEST_ERROR,
  1154. "lan9118_16bit_mode_read: Bad size 0x%x\n", size);
  1155. return 0;
  1156. }
  1157. static const MemoryRegionOps lan9118_mem_ops = {
  1158. .read = lan9118_readl,
  1159. .write = lan9118_writel,
  1160. .endianness = DEVICE_NATIVE_ENDIAN,
  1161. };
  1162. static const MemoryRegionOps lan9118_16bit_mem_ops = {
  1163. .read = lan9118_16bit_mode_read,
  1164. .write = lan9118_16bit_mode_write,
  1165. .endianness = DEVICE_NATIVE_ENDIAN,
  1166. };
  1167. static NetClientInfo net_lan9118_info = {
  1168. .type = NET_CLIENT_DRIVER_NIC,
  1169. .size = sizeof(NICState),
  1170. .receive = lan9118_receive,
  1171. .link_status_changed = lan9118_set_link,
  1172. };
  1173. static void lan9118_realize(DeviceState *dev, Error **errp)
  1174. {
  1175. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  1176. lan9118_state *s = LAN9118(dev);
  1177. int i;
  1178. const MemoryRegionOps *mem_ops =
  1179. s->mode_16bit ? &lan9118_16bit_mem_ops : &lan9118_mem_ops;
  1180. qemu_init_irq(&s->mii_irq, lan9118_update_irq, s, 0);
  1181. object_initialize_child(OBJECT(s), "mii", &s->mii, TYPE_LAN9118_PHY);
  1182. if (!sysbus_realize_and_unref(SYS_BUS_DEVICE(&s->mii), errp)) {
  1183. return;
  1184. }
  1185. qdev_connect_gpio_out(DEVICE(&s->mii), 0, &s->mii_irq);
  1186. memory_region_init_io(&s->mmio, OBJECT(dev), mem_ops, s,
  1187. "lan9118-mmio", 0x100);
  1188. sysbus_init_mmio(sbd, &s->mmio);
  1189. sysbus_init_irq(sbd, &s->irq);
  1190. qemu_macaddr_default_if_unset(&s->conf.macaddr);
  1191. s->nic = qemu_new_nic(&net_lan9118_info, &s->conf,
  1192. object_get_typename(OBJECT(dev)), dev->id,
  1193. &dev->mem_reentrancy_guard, s);
  1194. qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
  1195. s->eeprom[0] = 0xa5;
  1196. for (i = 0; i < 6; i++) {
  1197. s->eeprom[i + 1] = s->conf.macaddr.a[i];
  1198. }
  1199. s->pmt_ctrl = 1;
  1200. s->txp = &s->tx_packet;
  1201. s->timer = ptimer_init(lan9118_tick, s, PTIMER_POLICY_LEGACY);
  1202. ptimer_transaction_begin(s->timer);
  1203. ptimer_set_freq(s->timer, 10000);
  1204. ptimer_set_limit(s->timer, 0xffff, 1);
  1205. ptimer_transaction_commit(s->timer);
  1206. }
  1207. static const Property lan9118_properties[] = {
  1208. DEFINE_NIC_PROPERTIES(lan9118_state, conf),
  1209. DEFINE_PROP_UINT32("mode_16bit", lan9118_state, mode_16bit, 0),
  1210. };
  1211. static void lan9118_class_init(ObjectClass *klass, void *data)
  1212. {
  1213. DeviceClass *dc = DEVICE_CLASS(klass);
  1214. device_class_set_legacy_reset(dc, lan9118_reset);
  1215. device_class_set_props(dc, lan9118_properties);
  1216. dc->vmsd = &vmstate_lan9118;
  1217. dc->realize = lan9118_realize;
  1218. }
  1219. static const TypeInfo lan9118_info = {
  1220. .name = TYPE_LAN9118,
  1221. .parent = TYPE_SYS_BUS_DEVICE,
  1222. .instance_size = sizeof(lan9118_state),
  1223. .class_init = lan9118_class_init,
  1224. };
  1225. static void lan9118_register_types(void)
  1226. {
  1227. type_register_static(&lan9118_info);
  1228. }
  1229. /* Legacy helper function. Should go away when machine config files are
  1230. implemented. */
  1231. void lan9118_init(uint32_t base, qemu_irq irq)
  1232. {
  1233. DeviceState *dev;
  1234. SysBusDevice *s;
  1235. dev = qdev_new(TYPE_LAN9118);
  1236. qemu_configure_nic_device(dev, true, NULL);
  1237. s = SYS_BUS_DEVICE(dev);
  1238. sysbus_realize_and_unref(s, &error_fatal);
  1239. sysbus_mmio_map(s, 0, base);
  1240. sysbus_connect_irq(s, 0, irq);
  1241. }
  1242. type_init(lan9118_register_types)