xlnx-versal-cfu.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. /*
  2. * QEMU model of the CFU Configuration Unit.
  3. *
  4. * Copyright (C) 2023, Advanced Micro Devices, Inc.
  5. *
  6. * Written by Edgar E. Iglesias <edgar.iglesias@gmail.com>,
  7. * Sai Pavan Boddu <sai.pavan.boddu@amd.com>,
  8. * Francisco Iglesias <francisco.iglesias@amd.com>
  9. *
  10. * SPDX-License-Identifier: GPL-2.0-or-later
  11. */
  12. #include "qemu/osdep.h"
  13. #include "hw/sysbus.h"
  14. #include "hw/register.h"
  15. #include "hw/irq.h"
  16. #include "qemu/bitops.h"
  17. #include "qemu/log.h"
  18. #include "qemu/units.h"
  19. #include "migration/vmstate.h"
  20. #include "hw/qdev-properties.h"
  21. #include "hw/qdev-properties-system.h"
  22. #include "hw/misc/xlnx-versal-cfu.h"
  23. #ifndef XLNX_VERSAL_CFU_APB_ERR_DEBUG
  24. #define XLNX_VERSAL_CFU_APB_ERR_DEBUG 0
  25. #endif
  26. #define KEYHOLE_STREAM_4K (4 * KiB)
  27. #define KEYHOLE_STREAM_256K (256 * KiB)
  28. #define CFRAME_BROADCAST_ROW 0x1F
  29. bool update_wfifo(hwaddr addr, uint64_t value,
  30. uint32_t *wfifo, uint32_t *wfifo_ret)
  31. {
  32. unsigned int idx = extract32(addr, 2, 2);
  33. wfifo[idx] = value;
  34. if (idx == 3) {
  35. memcpy(wfifo_ret, wfifo, WFIFO_SZ * sizeof(uint32_t));
  36. memset(wfifo, 0, WFIFO_SZ * sizeof(uint32_t));
  37. return true;
  38. }
  39. return false;
  40. }
  41. static void cfu_imr_update_irq(XlnxVersalCFUAPB *s)
  42. {
  43. bool pending = s->regs[R_CFU_ISR] & ~s->regs[R_CFU_IMR];
  44. qemu_set_irq(s->irq_cfu_imr, pending);
  45. }
  46. static void cfu_isr_postw(RegisterInfo *reg, uint64_t val64)
  47. {
  48. XlnxVersalCFUAPB *s = XLNX_VERSAL_CFU_APB(reg->opaque);
  49. cfu_imr_update_irq(s);
  50. }
  51. static uint64_t cfu_ier_prew(RegisterInfo *reg, uint64_t val64)
  52. {
  53. XlnxVersalCFUAPB *s = XLNX_VERSAL_CFU_APB(reg->opaque);
  54. uint32_t val = val64;
  55. s->regs[R_CFU_IMR] &= ~val;
  56. cfu_imr_update_irq(s);
  57. return 0;
  58. }
  59. static uint64_t cfu_idr_prew(RegisterInfo *reg, uint64_t val64)
  60. {
  61. XlnxVersalCFUAPB *s = XLNX_VERSAL_CFU_APB(reg->opaque);
  62. uint32_t val = val64;
  63. s->regs[R_CFU_IMR] |= val;
  64. cfu_imr_update_irq(s);
  65. return 0;
  66. }
  67. static uint64_t cfu_itr_prew(RegisterInfo *reg, uint64_t val64)
  68. {
  69. XlnxVersalCFUAPB *s = XLNX_VERSAL_CFU_APB(reg->opaque);
  70. uint32_t val = val64;
  71. s->regs[R_CFU_ISR] |= val;
  72. cfu_imr_update_irq(s);
  73. return 0;
  74. }
  75. static void cfu_fgcr_postw(RegisterInfo *reg, uint64_t val64)
  76. {
  77. XlnxVersalCFUAPB *s = XLNX_VERSAL_CFU_APB(reg->opaque);
  78. uint32_t val = (uint32_t)val64;
  79. /* Do a scan. It always looks good. */
  80. if (FIELD_EX32(val, CFU_FGCR, SC_HBC_TRIGGER)) {
  81. ARRAY_FIELD_DP32(s->regs, CFU_STATUS, SCAN_CLEAR_PASS, 1);
  82. ARRAY_FIELD_DP32(s->regs, CFU_STATUS, SCAN_CLEAR_DONE, 1);
  83. }
  84. }
  85. static const RegisterAccessInfo cfu_apb_regs_info[] = {
  86. { .name = "CFU_ISR", .addr = A_CFU_ISR,
  87. .rsvd = 0xfffffc00,
  88. .w1c = 0x3ff,
  89. .post_write = cfu_isr_postw,
  90. },{ .name = "CFU_IMR", .addr = A_CFU_IMR,
  91. .reset = 0x3ff,
  92. .rsvd = 0xfffffc00,
  93. .ro = 0x3ff,
  94. },{ .name = "CFU_IER", .addr = A_CFU_IER,
  95. .rsvd = 0xfffffc00,
  96. .pre_write = cfu_ier_prew,
  97. },{ .name = "CFU_IDR", .addr = A_CFU_IDR,
  98. .rsvd = 0xfffffc00,
  99. .pre_write = cfu_idr_prew,
  100. },{ .name = "CFU_ITR", .addr = A_CFU_ITR,
  101. .rsvd = 0xfffffc00,
  102. .pre_write = cfu_itr_prew,
  103. },{ .name = "CFU_PROTECT", .addr = A_CFU_PROTECT,
  104. .reset = 0x1,
  105. },{ .name = "CFU_FGCR", .addr = A_CFU_FGCR,
  106. .rsvd = 0xffff8000,
  107. .post_write = cfu_fgcr_postw,
  108. },{ .name = "CFU_CTL", .addr = A_CFU_CTL,
  109. .rsvd = 0xffff0000,
  110. },{ .name = "CFU_CRAM_RW", .addr = A_CFU_CRAM_RW,
  111. .reset = 0x401f7d9,
  112. .rsvd = 0xf8000000,
  113. },{ .name = "CFU_MASK", .addr = A_CFU_MASK,
  114. },{ .name = "CFU_CRC_EXPECT", .addr = A_CFU_CRC_EXPECT,
  115. },{ .name = "CFU_CFRAME_LEFT_T0", .addr = A_CFU_CFRAME_LEFT_T0,
  116. .rsvd = 0xfff00000,
  117. },{ .name = "CFU_CFRAME_LEFT_T1", .addr = A_CFU_CFRAME_LEFT_T1,
  118. .rsvd = 0xfff00000,
  119. },{ .name = "CFU_CFRAME_LEFT_T2", .addr = A_CFU_CFRAME_LEFT_T2,
  120. .rsvd = 0xfff00000,
  121. },{ .name = "CFU_ROW_RANGE", .addr = A_CFU_ROW_RANGE,
  122. .rsvd = 0xffffffc0,
  123. .ro = 0x3f,
  124. },{ .name = "CFU_STATUS", .addr = A_CFU_STATUS,
  125. .rsvd = 0x80000000,
  126. .ro = 0x7fffffff,
  127. },{ .name = "CFU_INTERNAL_STATUS", .addr = A_CFU_INTERNAL_STATUS,
  128. .rsvd = 0xff800000,
  129. .ro = 0x7fffff,
  130. },{ .name = "CFU_QWORD_CNT", .addr = A_CFU_QWORD_CNT,
  131. .ro = 0xffffffff,
  132. },{ .name = "CFU_CRC_LIVE", .addr = A_CFU_CRC_LIVE,
  133. .ro = 0xffffffff,
  134. },{ .name = "CFU_PENDING_READ_CNT", .addr = A_CFU_PENDING_READ_CNT,
  135. .rsvd = 0xfe000000,
  136. .ro = 0x1ffffff,
  137. },{ .name = "CFU_FDRI_CNT", .addr = A_CFU_FDRI_CNT,
  138. .ro = 0xffffffff,
  139. },{ .name = "CFU_ECO1", .addr = A_CFU_ECO1,
  140. },{ .name = "CFU_ECO2", .addr = A_CFU_ECO2,
  141. }
  142. };
  143. static void cfu_apb_reset(DeviceState *dev)
  144. {
  145. XlnxVersalCFUAPB *s = XLNX_VERSAL_CFU_APB(dev);
  146. unsigned int i;
  147. for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) {
  148. register_reset(&s->regs_info[i]);
  149. }
  150. memset(s->wfifo, 0, WFIFO_SZ * sizeof(uint32_t));
  151. s->regs[R_CFU_STATUS] |= R_CFU_STATUS_HC_COMPLETE_MASK;
  152. cfu_imr_update_irq(s);
  153. }
  154. static const MemoryRegionOps cfu_apb_ops = {
  155. .read = register_read_memory,
  156. .write = register_write_memory,
  157. .endianness = DEVICE_LITTLE_ENDIAN,
  158. .valid = {
  159. .min_access_size = 4,
  160. .max_access_size = 4,
  161. },
  162. };
  163. static void cfu_transfer_cfi_packet(XlnxVersalCFUAPB *s, uint8_t row_addr,
  164. XlnxCfiPacket *pkt)
  165. {
  166. if (row_addr == CFRAME_BROADCAST_ROW) {
  167. for (int i = 0; i < ARRAY_SIZE(s->cfg.cframe); i++) {
  168. if (s->cfg.cframe[i]) {
  169. xlnx_cfi_transfer_packet(s->cfg.cframe[i], pkt);
  170. }
  171. }
  172. } else {
  173. assert(row_addr < ARRAY_SIZE(s->cfg.cframe));
  174. if (s->cfg.cframe[row_addr]) {
  175. xlnx_cfi_transfer_packet(s->cfg.cframe[row_addr], pkt);
  176. }
  177. }
  178. }
  179. static uint64_t cfu_stream_read(void *opaque, hwaddr addr, unsigned size)
  180. {
  181. qemu_log_mask(LOG_GUEST_ERROR, "%s: Unsupported read from addr=%"
  182. HWADDR_PRIx "\n", __func__, addr);
  183. return 0;
  184. }
  185. static void cfu_stream_write(void *opaque, hwaddr addr, uint64_t value,
  186. unsigned size)
  187. {
  188. XlnxVersalCFUAPB *s = XLNX_VERSAL_CFU_APB(opaque);
  189. uint32_t wfifo[WFIFO_SZ];
  190. if (update_wfifo(addr, value, s->wfifo, wfifo)) {
  191. uint8_t packet_type, row_addr, reg_addr;
  192. packet_type = extract32(wfifo[0], 24, 8);
  193. row_addr = extract32(wfifo[0], 16, 5);
  194. reg_addr = extract32(wfifo[0], 8, 6);
  195. /* Compressed bitstreams are not supported yet. */
  196. if (ARRAY_FIELD_EX32(s->regs, CFU_CTL, DECOMPRESS) == 0) {
  197. if (s->regs[R_CFU_FDRI_CNT]) {
  198. XlnxCfiPacket pkt = {
  199. .reg_addr = CFRAME_FDRI,
  200. .data[0] = wfifo[0],
  201. .data[1] = wfifo[1],
  202. .data[2] = wfifo[2],
  203. .data[3] = wfifo[3]
  204. };
  205. cfu_transfer_cfi_packet(s, s->fdri_row_addr, &pkt);
  206. s->regs[R_CFU_FDRI_CNT]--;
  207. } else if (packet_type == PACKET_TYPE_CFU &&
  208. reg_addr == CFRAME_FDRI) {
  209. /* Load R_CFU_FDRI_CNT, must be multiple of 25 */
  210. s->regs[R_CFU_FDRI_CNT] = wfifo[1];
  211. /* Store target row_addr */
  212. s->fdri_row_addr = row_addr;
  213. if (wfifo[1] % 25 != 0) {
  214. qemu_log_mask(LOG_GUEST_ERROR,
  215. "CFU FDRI_CNT is not loaded with "
  216. "a multiple of 25 value\n");
  217. }
  218. } else if (packet_type == PACKET_TYPE_CFRAME) {
  219. XlnxCfiPacket pkt = {
  220. .reg_addr = reg_addr,
  221. .data[0] = wfifo[1],
  222. .data[1] = wfifo[2],
  223. .data[2] = wfifo[3],
  224. };
  225. cfu_transfer_cfi_packet(s, row_addr, &pkt);
  226. }
  227. }
  228. }
  229. }
  230. static uint64_t cfu_sfr_read(void *opaque, hwaddr addr, unsigned size)
  231. {
  232. qemu_log_mask(LOG_GUEST_ERROR, "%s: Unsupported read from addr=%"
  233. HWADDR_PRIx "\n", __func__, addr);
  234. return 0;
  235. }
  236. static void cfu_sfr_write(void *opaque, hwaddr addr, uint64_t value,
  237. unsigned size)
  238. {
  239. XlnxVersalCFUSFR *s = XLNX_VERSAL_CFU_SFR(opaque);
  240. uint32_t wfifo[WFIFO_SZ];
  241. if (update_wfifo(addr, value, s->wfifo, wfifo)) {
  242. uint8_t row_addr = extract32(wfifo[0], 23, 5);
  243. uint32_t frame_addr = extract32(wfifo[0], 0, 23);
  244. XlnxCfiPacket pkt = { .reg_addr = CFRAME_SFR,
  245. .data[0] = frame_addr };
  246. if (s->cfg.cfu) {
  247. cfu_transfer_cfi_packet(s->cfg.cfu, row_addr, &pkt);
  248. }
  249. }
  250. }
  251. static uint64_t cfu_fdro_read(void *opaque, hwaddr addr, unsigned size)
  252. {
  253. XlnxVersalCFUFDRO *s = XLNX_VERSAL_CFU_FDRO(opaque);
  254. uint64_t ret = 0;
  255. if (!fifo32_is_empty(&s->fdro_data)) {
  256. ret = fifo32_pop(&s->fdro_data);
  257. }
  258. return ret;
  259. }
  260. static void cfu_fdro_write(void *opaque, hwaddr addr, uint64_t value,
  261. unsigned size)
  262. {
  263. qemu_log_mask(LOG_GUEST_ERROR, "%s: Unsupported write from addr=%"
  264. HWADDR_PRIx "\n", __func__, addr);
  265. }
  266. static const MemoryRegionOps cfu_stream_ops = {
  267. .read = cfu_stream_read,
  268. .write = cfu_stream_write,
  269. .endianness = DEVICE_LITTLE_ENDIAN,
  270. .valid = {
  271. .min_access_size = 4,
  272. .max_access_size = 8,
  273. },
  274. };
  275. static const MemoryRegionOps cfu_sfr_ops = {
  276. .read = cfu_sfr_read,
  277. .write = cfu_sfr_write,
  278. .endianness = DEVICE_LITTLE_ENDIAN,
  279. .valid = {
  280. .min_access_size = 4,
  281. .max_access_size = 4,
  282. },
  283. };
  284. static const MemoryRegionOps cfu_fdro_ops = {
  285. .read = cfu_fdro_read,
  286. .write = cfu_fdro_write,
  287. .endianness = DEVICE_LITTLE_ENDIAN,
  288. .valid = {
  289. .min_access_size = 4,
  290. .max_access_size = 4,
  291. },
  292. };
  293. static void cfu_apb_init(Object *obj)
  294. {
  295. XlnxVersalCFUAPB *s = XLNX_VERSAL_CFU_APB(obj);
  296. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  297. RegisterInfoArray *reg_array;
  298. unsigned int i;
  299. char *name;
  300. memory_region_init(&s->iomem, obj, TYPE_XLNX_VERSAL_CFU_APB, R_MAX * 4);
  301. reg_array =
  302. register_init_block32(DEVICE(obj), cfu_apb_regs_info,
  303. ARRAY_SIZE(cfu_apb_regs_info),
  304. s->regs_info, s->regs,
  305. &cfu_apb_ops,
  306. XLNX_VERSAL_CFU_APB_ERR_DEBUG,
  307. R_MAX * 4);
  308. memory_region_add_subregion(&s->iomem,
  309. 0x0,
  310. &reg_array->mem);
  311. sysbus_init_mmio(sbd, &s->iomem);
  312. for (i = 0; i < NUM_STREAM; i++) {
  313. name = g_strdup_printf(TYPE_XLNX_VERSAL_CFU_APB "-stream%d", i);
  314. memory_region_init_io(&s->iomem_stream[i], obj, &cfu_stream_ops, s,
  315. name, i == 0 ? KEYHOLE_STREAM_4K :
  316. KEYHOLE_STREAM_256K);
  317. sysbus_init_mmio(sbd, &s->iomem_stream[i]);
  318. g_free(name);
  319. }
  320. sysbus_init_irq(sbd, &s->irq_cfu_imr);
  321. }
  322. static void cfu_sfr_init(Object *obj)
  323. {
  324. XlnxVersalCFUSFR *s = XLNX_VERSAL_CFU_SFR(obj);
  325. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  326. memory_region_init_io(&s->iomem_sfr, obj, &cfu_sfr_ops, s,
  327. TYPE_XLNX_VERSAL_CFU_SFR, KEYHOLE_STREAM_4K);
  328. sysbus_init_mmio(sbd, &s->iomem_sfr);
  329. }
  330. static void cfu_sfr_reset_enter(Object *obj, ResetType type)
  331. {
  332. XlnxVersalCFUSFR *s = XLNX_VERSAL_CFU_SFR(obj);
  333. memset(s->wfifo, 0, WFIFO_SZ * sizeof(uint32_t));
  334. }
  335. static void cfu_fdro_init(Object *obj)
  336. {
  337. XlnxVersalCFUFDRO *s = XLNX_VERSAL_CFU_FDRO(obj);
  338. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  339. memory_region_init_io(&s->iomem_fdro, obj, &cfu_fdro_ops, s,
  340. TYPE_XLNX_VERSAL_CFU_FDRO, KEYHOLE_STREAM_4K);
  341. sysbus_init_mmio(sbd, &s->iomem_fdro);
  342. fifo32_create(&s->fdro_data, 8 * KiB / sizeof(uint32_t));
  343. }
  344. static void cfu_fdro_finalize(Object *obj)
  345. {
  346. XlnxVersalCFUFDRO *s = XLNX_VERSAL_CFU_FDRO(obj);
  347. fifo32_destroy(&s->fdro_data);
  348. }
  349. static void cfu_fdro_reset_enter(Object *obj, ResetType type)
  350. {
  351. XlnxVersalCFUFDRO *s = XLNX_VERSAL_CFU_FDRO(obj);
  352. fifo32_reset(&s->fdro_data);
  353. }
  354. static void cfu_fdro_cfi_transfer_packet(XlnxCfiIf *cfi_if, XlnxCfiPacket *pkt)
  355. {
  356. XlnxVersalCFUFDRO *s = XLNX_VERSAL_CFU_FDRO(cfi_if);
  357. if (fifo32_num_free(&s->fdro_data) >= ARRAY_SIZE(pkt->data)) {
  358. for (int i = 0; i < ARRAY_SIZE(pkt->data); i++) {
  359. fifo32_push(&s->fdro_data, pkt->data[i]);
  360. }
  361. } else {
  362. /* It is a programming error to fill the fifo. */
  363. qemu_log_mask(LOG_GUEST_ERROR,
  364. "CFU_FDRO: CFI data dropped due to full read fifo\n");
  365. }
  366. }
  367. static const Property cfu_props[] = {
  368. DEFINE_PROP_LINK("cframe0", XlnxVersalCFUAPB, cfg.cframe[0],
  369. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  370. DEFINE_PROP_LINK("cframe1", XlnxVersalCFUAPB, cfg.cframe[1],
  371. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  372. DEFINE_PROP_LINK("cframe2", XlnxVersalCFUAPB, cfg.cframe[2],
  373. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  374. DEFINE_PROP_LINK("cframe3", XlnxVersalCFUAPB, cfg.cframe[3],
  375. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  376. DEFINE_PROP_LINK("cframe4", XlnxVersalCFUAPB, cfg.cframe[4],
  377. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  378. DEFINE_PROP_LINK("cframe5", XlnxVersalCFUAPB, cfg.cframe[5],
  379. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  380. DEFINE_PROP_LINK("cframe6", XlnxVersalCFUAPB, cfg.cframe[6],
  381. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  382. DEFINE_PROP_LINK("cframe7", XlnxVersalCFUAPB, cfg.cframe[7],
  383. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  384. DEFINE_PROP_LINK("cframe8", XlnxVersalCFUAPB, cfg.cframe[8],
  385. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  386. DEFINE_PROP_LINK("cframe9", XlnxVersalCFUAPB, cfg.cframe[9],
  387. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  388. DEFINE_PROP_LINK("cframe10", XlnxVersalCFUAPB, cfg.cframe[10],
  389. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  390. DEFINE_PROP_LINK("cframe11", XlnxVersalCFUAPB, cfg.cframe[11],
  391. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  392. DEFINE_PROP_LINK("cframe12", XlnxVersalCFUAPB, cfg.cframe[12],
  393. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  394. DEFINE_PROP_LINK("cframe13", XlnxVersalCFUAPB, cfg.cframe[13],
  395. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  396. DEFINE_PROP_LINK("cframe14", XlnxVersalCFUAPB, cfg.cframe[14],
  397. TYPE_XLNX_CFI_IF, XlnxCfiIf *),
  398. };
  399. static const Property cfu_sfr_props[] = {
  400. DEFINE_PROP_LINK("cfu", XlnxVersalCFUSFR, cfg.cfu,
  401. TYPE_XLNX_VERSAL_CFU_APB, XlnxVersalCFUAPB *),
  402. };
  403. static const VMStateDescription vmstate_cfu_apb = {
  404. .name = TYPE_XLNX_VERSAL_CFU_APB,
  405. .version_id = 1,
  406. .minimum_version_id = 1,
  407. .fields = (const VMStateField[]) {
  408. VMSTATE_UINT32_ARRAY(wfifo, XlnxVersalCFUAPB, 4),
  409. VMSTATE_UINT32_ARRAY(regs, XlnxVersalCFUAPB, R_MAX),
  410. VMSTATE_UINT8(fdri_row_addr, XlnxVersalCFUAPB),
  411. VMSTATE_END_OF_LIST(),
  412. }
  413. };
  414. static const VMStateDescription vmstate_cfu_fdro = {
  415. .name = TYPE_XLNX_VERSAL_CFU_FDRO,
  416. .version_id = 1,
  417. .minimum_version_id = 1,
  418. .fields = (const VMStateField[]) {
  419. VMSTATE_FIFO32(fdro_data, XlnxVersalCFUFDRO),
  420. VMSTATE_END_OF_LIST(),
  421. }
  422. };
  423. static const VMStateDescription vmstate_cfu_sfr = {
  424. .name = TYPE_XLNX_VERSAL_CFU_SFR,
  425. .version_id = 1,
  426. .minimum_version_id = 1,
  427. .fields = (const VMStateField[]) {
  428. VMSTATE_UINT32_ARRAY(wfifo, XlnxVersalCFUSFR, 4),
  429. VMSTATE_END_OF_LIST(),
  430. }
  431. };
  432. static void cfu_apb_class_init(ObjectClass *klass, void *data)
  433. {
  434. DeviceClass *dc = DEVICE_CLASS(klass);
  435. device_class_set_legacy_reset(dc, cfu_apb_reset);
  436. dc->vmsd = &vmstate_cfu_apb;
  437. device_class_set_props(dc, cfu_props);
  438. }
  439. static void cfu_fdro_class_init(ObjectClass *klass, void *data)
  440. {
  441. DeviceClass *dc = DEVICE_CLASS(klass);
  442. ResettableClass *rc = RESETTABLE_CLASS(klass);
  443. XlnxCfiIfClass *xcic = XLNX_CFI_IF_CLASS(klass);
  444. dc->vmsd = &vmstate_cfu_fdro;
  445. xcic->cfi_transfer_packet = cfu_fdro_cfi_transfer_packet;
  446. rc->phases.enter = cfu_fdro_reset_enter;
  447. }
  448. static void cfu_sfr_class_init(ObjectClass *klass, void *data)
  449. {
  450. DeviceClass *dc = DEVICE_CLASS(klass);
  451. ResettableClass *rc = RESETTABLE_CLASS(klass);
  452. device_class_set_props(dc, cfu_sfr_props);
  453. dc->vmsd = &vmstate_cfu_sfr;
  454. rc->phases.enter = cfu_sfr_reset_enter;
  455. }
  456. static const TypeInfo cfu_apb_info = {
  457. .name = TYPE_XLNX_VERSAL_CFU_APB,
  458. .parent = TYPE_SYS_BUS_DEVICE,
  459. .instance_size = sizeof(XlnxVersalCFUAPB),
  460. .class_init = cfu_apb_class_init,
  461. .instance_init = cfu_apb_init,
  462. .interfaces = (InterfaceInfo[]) {
  463. { TYPE_XLNX_CFI_IF },
  464. { }
  465. }
  466. };
  467. static const TypeInfo cfu_fdro_info = {
  468. .name = TYPE_XLNX_VERSAL_CFU_FDRO,
  469. .parent = TYPE_SYS_BUS_DEVICE,
  470. .instance_size = sizeof(XlnxVersalCFUFDRO),
  471. .class_init = cfu_fdro_class_init,
  472. .instance_init = cfu_fdro_init,
  473. .instance_finalize = cfu_fdro_finalize,
  474. .interfaces = (InterfaceInfo[]) {
  475. { TYPE_XLNX_CFI_IF },
  476. { }
  477. }
  478. };
  479. static const TypeInfo cfu_sfr_info = {
  480. .name = TYPE_XLNX_VERSAL_CFU_SFR,
  481. .parent = TYPE_SYS_BUS_DEVICE,
  482. .instance_size = sizeof(XlnxVersalCFUSFR),
  483. .class_init = cfu_sfr_class_init,
  484. .instance_init = cfu_sfr_init,
  485. };
  486. static void cfu_apb_register_types(void)
  487. {
  488. type_register_static(&cfu_apb_info);
  489. type_register_static(&cfu_fdro_info);
  490. type_register_static(&cfu_sfr_info);
  491. }
  492. type_init(cfu_apb_register_types)