bcm2835_cprman.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820
  1. /*
  2. * BCM2835 CPRMAN clock manager
  3. *
  4. * Copyright (c) 2020 Luc Michel <luc@lmichel.fr>
  5. *
  6. * SPDX-License-Identifier: GPL-2.0-or-later
  7. */
  8. /*
  9. * This peripheral is roughly divided into 3 main parts:
  10. * - the PLLs
  11. * - the PLL channels
  12. * - the clock muxes
  13. *
  14. * A main oscillator (xosc) feeds all the PLLs. Each PLLs has one or more
  15. * channels. Those channel are then connected to the clock muxes. Each mux has
  16. * multiples sources (usually the xosc, some of the PLL channels and some "test
  17. * debug" clocks). A mux is configured to select a given source through its
  18. * control register. Each mux has one output clock that also goes out of the
  19. * CPRMAN. This output clock usually connects to another peripheral in the SoC
  20. * (so a given mux is dedicated to a peripheral).
  21. *
  22. * At each level (PLL, channel and mux), the clock can be altered through
  23. * dividers (and multipliers in case of the PLLs), and can be disabled (in this
  24. * case, the next levels see no clock).
  25. *
  26. * This can be sum-up as follows (this is an example and not the actual BCM2835
  27. * clock tree):
  28. *
  29. * /-->[PLL]-|->[PLL channel]--... [mux]--> to peripherals
  30. * | |->[PLL channel] muxes takes [mux]
  31. * | \->[PLL channel] inputs from [mux]
  32. * | some channels [mux]
  33. * [xosc]---|-->[PLL]-|->[PLL channel] and other srcs [mux]
  34. * | \->[PLL channel] ...-->[mux]
  35. * | [mux]
  36. * \-->[PLL]--->[PLL channel] [mux]
  37. *
  38. * The page at https://elinux.org/The_Undocumented_Pi gives the actual clock
  39. * tree configuration.
  40. *
  41. * The CPRMAN exposes clock outputs with the name of the clock mux suffixed
  42. * with "-out" (e.g. "uart-out", "h264-out", ...).
  43. */
  44. #include "qemu/osdep.h"
  45. #include "qemu/log.h"
  46. #include "migration/vmstate.h"
  47. #include "hw/qdev-properties.h"
  48. #include "hw/misc/bcm2835_cprman.h"
  49. #include "hw/misc/bcm2835_cprman_internals.h"
  50. #include "trace.h"
  51. /* PLL */
  52. static void pll_reset(DeviceState *dev)
  53. {
  54. CprmanPllState *s = CPRMAN_PLL(dev);
  55. const PLLResetInfo *info = &PLL_RESET_INFO[s->id];
  56. *s->reg_cm = info->cm;
  57. *s->reg_a2w_ctrl = info->a2w_ctrl;
  58. memcpy(s->reg_a2w_ana, info->a2w_ana, sizeof(info->a2w_ana));
  59. *s->reg_a2w_frac = info->a2w_frac;
  60. }
  61. static bool pll_is_locked(const CprmanPllState *pll)
  62. {
  63. return !FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PWRDN)
  64. && !FIELD_EX32(*pll->reg_cm, CM_PLLx, ANARST);
  65. }
  66. static void pll_update(CprmanPllState *pll)
  67. {
  68. uint64_t freq, ndiv, fdiv, pdiv;
  69. if (!pll_is_locked(pll)) {
  70. clock_update(pll->out, 0);
  71. return;
  72. }
  73. pdiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PDIV);
  74. if (!pdiv) {
  75. clock_update(pll->out, 0);
  76. return;
  77. }
  78. ndiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, NDIV);
  79. fdiv = FIELD_EX32(*pll->reg_a2w_frac, A2W_PLLx_FRAC, FRAC);
  80. if (pll->reg_a2w_ana[1] & pll->prediv_mask) {
  81. /* The prescaler doubles the parent frequency */
  82. ndiv *= 2;
  83. fdiv *= 2;
  84. }
  85. /*
  86. * We have a multiplier with an integer part (ndiv) and a fractional part
  87. * (fdiv), and a divider (pdiv).
  88. */
  89. freq = clock_get_hz(pll->xosc_in) *
  90. ((ndiv << R_A2W_PLLx_FRAC_FRAC_LENGTH) + fdiv);
  91. freq /= pdiv;
  92. freq >>= R_A2W_PLLx_FRAC_FRAC_LENGTH;
  93. clock_update_hz(pll->out, freq);
  94. }
  95. static void pll_xosc_update(void *opaque, ClockEvent event)
  96. {
  97. pll_update(CPRMAN_PLL(opaque));
  98. }
  99. static void pll_init(Object *obj)
  100. {
  101. CprmanPllState *s = CPRMAN_PLL(obj);
  102. s->xosc_in = qdev_init_clock_in(DEVICE(s), "xosc-in", pll_xosc_update,
  103. s, ClockUpdate);
  104. s->out = qdev_init_clock_out(DEVICE(s), "out");
  105. }
  106. static const VMStateDescription pll_vmstate = {
  107. .name = TYPE_CPRMAN_PLL,
  108. .version_id = 1,
  109. .minimum_version_id = 1,
  110. .fields = (const VMStateField[]) {
  111. VMSTATE_CLOCK(xosc_in, CprmanPllState),
  112. VMSTATE_END_OF_LIST()
  113. }
  114. };
  115. static void pll_class_init(ObjectClass *klass, void *data)
  116. {
  117. DeviceClass *dc = DEVICE_CLASS(klass);
  118. device_class_set_legacy_reset(dc, pll_reset);
  119. dc->vmsd = &pll_vmstate;
  120. /* Reason: Part of BCM2835CprmanState component */
  121. dc->user_creatable = false;
  122. }
  123. static const TypeInfo cprman_pll_info = {
  124. .name = TYPE_CPRMAN_PLL,
  125. .parent = TYPE_DEVICE,
  126. .instance_size = sizeof(CprmanPllState),
  127. .class_init = pll_class_init,
  128. .instance_init = pll_init,
  129. };
  130. /* PLL channel */
  131. static void pll_channel_reset(DeviceState *dev)
  132. {
  133. CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(dev);
  134. const PLLChannelResetInfo *info = &PLL_CHANNEL_RESET_INFO[s->id];
  135. *s->reg_a2w_ctrl = info->a2w_ctrl;
  136. }
  137. static bool pll_channel_is_enabled(CprmanPllChannelState *channel)
  138. {
  139. /*
  140. * XXX I'm not sure of the purpose of the LOAD field. The Linux driver does
  141. * not set it when enabling the channel, but does clear it when disabling
  142. * it.
  143. */
  144. return !FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DISABLE)
  145. && !(*channel->reg_cm & channel->hold_mask);
  146. }
  147. static void pll_channel_update(CprmanPllChannelState *channel)
  148. {
  149. uint64_t freq, div;
  150. if (!pll_channel_is_enabled(channel)) {
  151. clock_update(channel->out, 0);
  152. return;
  153. }
  154. div = FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DIV);
  155. if (!div) {
  156. /*
  157. * It seems that when the divider value is 0, it is considered as
  158. * being maximum by the hardware (see the Linux driver).
  159. */
  160. div = R_A2W_PLLx_CHANNELy_DIV_MASK;
  161. }
  162. /* Some channels have an additional fixed divider */
  163. freq = clock_get_hz(channel->pll_in) / (div * channel->fixed_divider);
  164. clock_update_hz(channel->out, freq);
  165. }
  166. /* Update a PLL and all its channels */
  167. static void pll_update_all_channels(BCM2835CprmanState *s,
  168. CprmanPllState *pll)
  169. {
  170. size_t i;
  171. pll_update(pll);
  172. for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
  173. CprmanPllChannelState *channel = &s->channels[i];
  174. if (channel->parent == pll->id) {
  175. pll_channel_update(channel);
  176. }
  177. }
  178. }
  179. static void pll_channel_pll_in_update(void *opaque, ClockEvent event)
  180. {
  181. pll_channel_update(CPRMAN_PLL_CHANNEL(opaque));
  182. }
  183. static void pll_channel_init(Object *obj)
  184. {
  185. CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(obj);
  186. s->pll_in = qdev_init_clock_in(DEVICE(s), "pll-in",
  187. pll_channel_pll_in_update, s,
  188. ClockUpdate);
  189. s->out = qdev_init_clock_out(DEVICE(s), "out");
  190. }
  191. static const VMStateDescription pll_channel_vmstate = {
  192. .name = TYPE_CPRMAN_PLL_CHANNEL,
  193. .version_id = 1,
  194. .minimum_version_id = 1,
  195. .fields = (const VMStateField[]) {
  196. VMSTATE_CLOCK(pll_in, CprmanPllChannelState),
  197. VMSTATE_END_OF_LIST()
  198. }
  199. };
  200. static void pll_channel_class_init(ObjectClass *klass, void *data)
  201. {
  202. DeviceClass *dc = DEVICE_CLASS(klass);
  203. device_class_set_legacy_reset(dc, pll_channel_reset);
  204. dc->vmsd = &pll_channel_vmstate;
  205. /* Reason: Part of BCM2835CprmanState component */
  206. dc->user_creatable = false;
  207. }
  208. static const TypeInfo cprman_pll_channel_info = {
  209. .name = TYPE_CPRMAN_PLL_CHANNEL,
  210. .parent = TYPE_DEVICE,
  211. .instance_size = sizeof(CprmanPllChannelState),
  212. .class_init = pll_channel_class_init,
  213. .instance_init = pll_channel_init,
  214. };
  215. /* clock mux */
  216. static bool clock_mux_is_enabled(CprmanClockMuxState *mux)
  217. {
  218. return FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, ENABLE);
  219. }
  220. static void clock_mux_update(CprmanClockMuxState *mux)
  221. {
  222. uint64_t freq;
  223. uint32_t div, src = FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, SRC);
  224. bool enabled = clock_mux_is_enabled(mux);
  225. *mux->reg_ctl = FIELD_DP32(*mux->reg_ctl, CM_CLOCKx_CTL, BUSY, enabled);
  226. if (!enabled) {
  227. clock_update(mux->out, 0);
  228. return;
  229. }
  230. freq = clock_get_hz(mux->srcs[src]);
  231. if (mux->int_bits == 0 && mux->frac_bits == 0) {
  232. clock_update_hz(mux->out, freq);
  233. return;
  234. }
  235. /*
  236. * The divider has an integer and a fractional part. The size of each part
  237. * varies with the muxes (int_bits and frac_bits). Both parts are
  238. * concatenated, with the integer part always starting at bit 12.
  239. *
  240. * 31 12 11 0
  241. * ------------------------------
  242. * CM_DIV | | int | frac | |
  243. * ------------------------------
  244. * <-----> <------>
  245. * int_bits frac_bits
  246. */
  247. div = extract32(*mux->reg_div,
  248. R_CM_CLOCKx_DIV_FRAC_LENGTH - mux->frac_bits,
  249. mux->int_bits + mux->frac_bits);
  250. if (!div) {
  251. clock_update(mux->out, 0);
  252. return;
  253. }
  254. freq = muldiv64(freq, 1 << mux->frac_bits, div);
  255. clock_update_hz(mux->out, freq);
  256. }
  257. static void clock_mux_src_update(void *opaque, ClockEvent event)
  258. {
  259. CprmanClockMuxState **backref = opaque;
  260. CprmanClockMuxState *s = *backref;
  261. CprmanClockMuxSource src = backref - s->backref;
  262. if (FIELD_EX32(*s->reg_ctl, CM_CLOCKx_CTL, SRC) != src) {
  263. return;
  264. }
  265. clock_mux_update(s);
  266. }
  267. static void clock_mux_reset(DeviceState *dev)
  268. {
  269. CprmanClockMuxState *clock = CPRMAN_CLOCK_MUX(dev);
  270. const ClockMuxResetInfo *info = &CLOCK_MUX_RESET_INFO[clock->id];
  271. *clock->reg_ctl = info->cm_ctl;
  272. *clock->reg_div = info->cm_div;
  273. }
  274. static void clock_mux_init(Object *obj)
  275. {
  276. CprmanClockMuxState *s = CPRMAN_CLOCK_MUX(obj);
  277. size_t i;
  278. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
  279. char *name = g_strdup_printf("srcs[%zu]", i);
  280. s->backref[i] = s;
  281. s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
  282. clock_mux_src_update,
  283. &s->backref[i],
  284. ClockUpdate);
  285. g_free(name);
  286. }
  287. s->out = qdev_init_clock_out(DEVICE(s), "out");
  288. }
  289. static const VMStateDescription clock_mux_vmstate = {
  290. .name = TYPE_CPRMAN_CLOCK_MUX,
  291. .version_id = 1,
  292. .minimum_version_id = 1,
  293. .fields = (const VMStateField[]) {
  294. VMSTATE_ARRAY_CLOCK(srcs, CprmanClockMuxState,
  295. CPRMAN_NUM_CLOCK_MUX_SRC),
  296. VMSTATE_END_OF_LIST()
  297. }
  298. };
  299. static void clock_mux_class_init(ObjectClass *klass, void *data)
  300. {
  301. DeviceClass *dc = DEVICE_CLASS(klass);
  302. device_class_set_legacy_reset(dc, clock_mux_reset);
  303. dc->vmsd = &clock_mux_vmstate;
  304. /* Reason: Part of BCM2835CprmanState component */
  305. dc->user_creatable = false;
  306. }
  307. static const TypeInfo cprman_clock_mux_info = {
  308. .name = TYPE_CPRMAN_CLOCK_MUX,
  309. .parent = TYPE_DEVICE,
  310. .instance_size = sizeof(CprmanClockMuxState),
  311. .class_init = clock_mux_class_init,
  312. .instance_init = clock_mux_init,
  313. };
  314. /* DSI0HSCK mux */
  315. static void dsi0hsck_mux_update(CprmanDsi0HsckMuxState *s)
  316. {
  317. bool src_is_plld = FIELD_EX32(*s->reg_cm, CM_DSI0HSCK, SELPLLD);
  318. Clock *src = src_is_plld ? s->plld_in : s->plla_in;
  319. clock_update(s->out, clock_get(src));
  320. }
  321. static void dsi0hsck_mux_in_update(void *opaque, ClockEvent event)
  322. {
  323. dsi0hsck_mux_update(CPRMAN_DSI0HSCK_MUX(opaque));
  324. }
  325. static void dsi0hsck_mux_init(Object *obj)
  326. {
  327. CprmanDsi0HsckMuxState *s = CPRMAN_DSI0HSCK_MUX(obj);
  328. DeviceState *dev = DEVICE(obj);
  329. s->plla_in = qdev_init_clock_in(dev, "plla-in", dsi0hsck_mux_in_update,
  330. s, ClockUpdate);
  331. s->plld_in = qdev_init_clock_in(dev, "plld-in", dsi0hsck_mux_in_update,
  332. s, ClockUpdate);
  333. s->out = qdev_init_clock_out(DEVICE(s), "out");
  334. }
  335. static const VMStateDescription dsi0hsck_mux_vmstate = {
  336. .name = TYPE_CPRMAN_DSI0HSCK_MUX,
  337. .version_id = 1,
  338. .minimum_version_id = 1,
  339. .fields = (const VMStateField[]) {
  340. VMSTATE_CLOCK(plla_in, CprmanDsi0HsckMuxState),
  341. VMSTATE_CLOCK(plld_in, CprmanDsi0HsckMuxState),
  342. VMSTATE_END_OF_LIST()
  343. }
  344. };
  345. static void dsi0hsck_mux_class_init(ObjectClass *klass, void *data)
  346. {
  347. DeviceClass *dc = DEVICE_CLASS(klass);
  348. dc->vmsd = &dsi0hsck_mux_vmstate;
  349. /* Reason: Part of BCM2835CprmanState component */
  350. dc->user_creatable = false;
  351. }
  352. static const TypeInfo cprman_dsi0hsck_mux_info = {
  353. .name = TYPE_CPRMAN_DSI0HSCK_MUX,
  354. .parent = TYPE_DEVICE,
  355. .instance_size = sizeof(CprmanDsi0HsckMuxState),
  356. .class_init = dsi0hsck_mux_class_init,
  357. .instance_init = dsi0hsck_mux_init,
  358. };
  359. /* CPRMAN "top level" model */
  360. static uint32_t get_cm_lock(const BCM2835CprmanState *s)
  361. {
  362. static const int CM_LOCK_MAPPING[CPRMAN_NUM_PLL] = {
  363. [CPRMAN_PLLA] = R_CM_LOCK_FLOCKA_SHIFT,
  364. [CPRMAN_PLLC] = R_CM_LOCK_FLOCKC_SHIFT,
  365. [CPRMAN_PLLD] = R_CM_LOCK_FLOCKD_SHIFT,
  366. [CPRMAN_PLLH] = R_CM_LOCK_FLOCKH_SHIFT,
  367. [CPRMAN_PLLB] = R_CM_LOCK_FLOCKB_SHIFT,
  368. };
  369. uint32_t r = 0;
  370. size_t i;
  371. for (i = 0; i < CPRMAN_NUM_PLL; i++) {
  372. r |= pll_is_locked(&s->plls[i]) << CM_LOCK_MAPPING[i];
  373. }
  374. return r;
  375. }
  376. static uint64_t cprman_read(void *opaque, hwaddr offset,
  377. unsigned size)
  378. {
  379. BCM2835CprmanState *s = CPRMAN(opaque);
  380. uint64_t r = 0;
  381. size_t idx = offset / sizeof(uint32_t);
  382. switch (idx) {
  383. case R_CM_LOCK:
  384. r = get_cm_lock(s);
  385. break;
  386. default:
  387. r = s->regs[idx];
  388. }
  389. trace_bcm2835_cprman_read(offset, r);
  390. return r;
  391. }
  392. static inline void update_pll_and_channels_from_cm(BCM2835CprmanState *s,
  393. size_t idx)
  394. {
  395. size_t i;
  396. for (i = 0; i < CPRMAN_NUM_PLL; i++) {
  397. if (PLL_INIT_INFO[i].cm_offset == idx) {
  398. pll_update_all_channels(s, &s->plls[i]);
  399. return;
  400. }
  401. }
  402. }
  403. static inline void update_channel_from_a2w(BCM2835CprmanState *s, size_t idx)
  404. {
  405. size_t i;
  406. for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
  407. if (PLL_CHANNEL_INIT_INFO[i].a2w_ctrl_offset == idx) {
  408. pll_channel_update(&s->channels[i]);
  409. return;
  410. }
  411. }
  412. }
  413. static inline void update_mux_from_cm(BCM2835CprmanState *s, size_t idx)
  414. {
  415. size_t i;
  416. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
  417. if ((CLOCK_MUX_INIT_INFO[i].cm_offset == idx) ||
  418. (CLOCK_MUX_INIT_INFO[i].cm_offset + 4 == idx)) {
  419. /* matches CM_CTL or CM_DIV mux register */
  420. clock_mux_update(&s->clock_muxes[i]);
  421. return;
  422. }
  423. }
  424. }
  425. #define CASE_PLL_A2W_REGS(pll_) \
  426. case R_A2W_ ## pll_ ## _CTRL: \
  427. case R_A2W_ ## pll_ ## _ANA0: \
  428. case R_A2W_ ## pll_ ## _ANA1: \
  429. case R_A2W_ ## pll_ ## _ANA2: \
  430. case R_A2W_ ## pll_ ## _ANA3: \
  431. case R_A2W_ ## pll_ ## _FRAC
  432. static void cprman_write(void *opaque, hwaddr offset,
  433. uint64_t value, unsigned size)
  434. {
  435. BCM2835CprmanState *s = CPRMAN(opaque);
  436. size_t idx = offset / sizeof(uint32_t);
  437. if (FIELD_EX32(value, CPRMAN, PASSWORD) != CPRMAN_PASSWORD) {
  438. trace_bcm2835_cprman_write_invalid_magic(offset, value);
  439. return;
  440. }
  441. value &= ~R_CPRMAN_PASSWORD_MASK;
  442. trace_bcm2835_cprman_write(offset, value);
  443. s->regs[idx] = value;
  444. switch (idx) {
  445. case R_CM_PLLA ... R_CM_PLLH:
  446. case R_CM_PLLB:
  447. /*
  448. * A given CM_PLLx register is shared by both the PLL and the channels
  449. * of this PLL.
  450. */
  451. update_pll_and_channels_from_cm(s, idx);
  452. break;
  453. CASE_PLL_A2W_REGS(PLLA) :
  454. pll_update(&s->plls[CPRMAN_PLLA]);
  455. break;
  456. CASE_PLL_A2W_REGS(PLLC) :
  457. pll_update(&s->plls[CPRMAN_PLLC]);
  458. break;
  459. CASE_PLL_A2W_REGS(PLLD) :
  460. pll_update(&s->plls[CPRMAN_PLLD]);
  461. break;
  462. CASE_PLL_A2W_REGS(PLLH) :
  463. pll_update(&s->plls[CPRMAN_PLLH]);
  464. break;
  465. CASE_PLL_A2W_REGS(PLLB) :
  466. pll_update(&s->plls[CPRMAN_PLLB]);
  467. break;
  468. case R_A2W_PLLA_DSI0:
  469. case R_A2W_PLLA_CORE:
  470. case R_A2W_PLLA_PER:
  471. case R_A2W_PLLA_CCP2:
  472. case R_A2W_PLLC_CORE2:
  473. case R_A2W_PLLC_CORE1:
  474. case R_A2W_PLLC_PER:
  475. case R_A2W_PLLC_CORE0:
  476. case R_A2W_PLLD_DSI0:
  477. case R_A2W_PLLD_CORE:
  478. case R_A2W_PLLD_PER:
  479. case R_A2W_PLLD_DSI1:
  480. case R_A2W_PLLH_AUX:
  481. case R_A2W_PLLH_RCAL:
  482. case R_A2W_PLLH_PIX:
  483. case R_A2W_PLLB_ARM:
  484. update_channel_from_a2w(s, idx);
  485. break;
  486. case R_CM_GNRICCTL ... R_CM_SMIDIV:
  487. case R_CM_TCNTCNT ... R_CM_VECDIV:
  488. case R_CM_PULSECTL ... R_CM_PULSEDIV:
  489. case R_CM_SDCCTL ... R_CM_ARMCTL:
  490. case R_CM_AVEOCTL ... R_CM_EMMCDIV:
  491. case R_CM_EMMC2CTL ... R_CM_EMMC2DIV:
  492. update_mux_from_cm(s, idx);
  493. break;
  494. case R_CM_DSI0HSCK:
  495. dsi0hsck_mux_update(&s->dsi0hsck_mux);
  496. break;
  497. }
  498. }
  499. #undef CASE_PLL_A2W_REGS
  500. static const MemoryRegionOps cprman_ops = {
  501. .read = cprman_read,
  502. .write = cprman_write,
  503. .endianness = DEVICE_LITTLE_ENDIAN,
  504. .valid = {
  505. /*
  506. * Although this hasn't been checked against real hardware, nor the
  507. * information can be found in a datasheet, it seems reasonable because
  508. * of the "PASSWORD" magic value found in every registers.
  509. */
  510. .min_access_size = 4,
  511. .max_access_size = 4,
  512. .unaligned = false,
  513. },
  514. .impl = {
  515. .max_access_size = 4,
  516. },
  517. };
  518. static void cprman_reset(DeviceState *dev)
  519. {
  520. BCM2835CprmanState *s = CPRMAN(dev);
  521. size_t i;
  522. memset(s->regs, 0, sizeof(s->regs));
  523. for (i = 0; i < CPRMAN_NUM_PLL; i++) {
  524. device_cold_reset(DEVICE(&s->plls[i]));
  525. }
  526. for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
  527. device_cold_reset(DEVICE(&s->channels[i]));
  528. }
  529. device_cold_reset(DEVICE(&s->dsi0hsck_mux));
  530. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
  531. device_cold_reset(DEVICE(&s->clock_muxes[i]));
  532. }
  533. clock_update_hz(s->xosc, s->xosc_freq);
  534. }
  535. static void cprman_init(Object *obj)
  536. {
  537. BCM2835CprmanState *s = CPRMAN(obj);
  538. size_t i;
  539. for (i = 0; i < CPRMAN_NUM_PLL; i++) {
  540. object_initialize_child(obj, PLL_INIT_INFO[i].name,
  541. &s->plls[i], TYPE_CPRMAN_PLL);
  542. set_pll_init_info(s, &s->plls[i], i);
  543. }
  544. for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
  545. object_initialize_child(obj, PLL_CHANNEL_INIT_INFO[i].name,
  546. &s->channels[i],
  547. TYPE_CPRMAN_PLL_CHANNEL);
  548. set_pll_channel_init_info(s, &s->channels[i], i);
  549. }
  550. object_initialize_child(obj, "dsi0hsck-mux",
  551. &s->dsi0hsck_mux, TYPE_CPRMAN_DSI0HSCK_MUX);
  552. s->dsi0hsck_mux.reg_cm = &s->regs[R_CM_DSI0HSCK];
  553. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
  554. char *alias;
  555. object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
  556. &s->clock_muxes[i],
  557. TYPE_CPRMAN_CLOCK_MUX);
  558. set_clock_mux_init_info(s, &s->clock_muxes[i], i);
  559. /* Expose muxes output as CPRMAN outputs */
  560. alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
  561. qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
  562. g_free(alias);
  563. }
  564. s->xosc = clock_new(obj, "xosc");
  565. s->gnd = clock_new(obj, "gnd");
  566. clock_set(s->gnd, 0);
  567. memory_region_init_io(&s->iomem, obj, &cprman_ops,
  568. s, "bcm2835-cprman", 0x2000);
  569. sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
  570. }
  571. static void connect_mux_sources(BCM2835CprmanState *s,
  572. CprmanClockMuxState *mux,
  573. const CprmanPllChannel *clk_mapping)
  574. {
  575. size_t i;
  576. Clock *td0 = s->clock_muxes[CPRMAN_CLOCK_TD0].out;
  577. Clock *td1 = s->clock_muxes[CPRMAN_CLOCK_TD1].out;
  578. /* For sources from 0 to 3. Source 4 to 9 are mux specific */
  579. Clock * const CLK_SRC_MAPPING[] = {
  580. [CPRMAN_CLOCK_SRC_GND] = s->gnd,
  581. [CPRMAN_CLOCK_SRC_XOSC] = s->xosc,
  582. [CPRMAN_CLOCK_SRC_TD0] = td0,
  583. [CPRMAN_CLOCK_SRC_TD1] = td1,
  584. };
  585. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
  586. CprmanPllChannel mapping = clk_mapping[i];
  587. Clock *src;
  588. if (mapping == CPRMAN_CLOCK_SRC_FORCE_GROUND) {
  589. src = s->gnd;
  590. } else if (mapping == CPRMAN_CLOCK_SRC_DSI0HSCK) {
  591. src = s->dsi0hsck_mux.out;
  592. } else if (i < CPRMAN_CLOCK_SRC_PLLA) {
  593. src = CLK_SRC_MAPPING[i];
  594. } else {
  595. src = s->channels[mapping].out;
  596. }
  597. clock_set_source(mux->srcs[i], src);
  598. }
  599. }
  600. static void cprman_realize(DeviceState *dev, Error **errp)
  601. {
  602. BCM2835CprmanState *s = CPRMAN(dev);
  603. size_t i;
  604. for (i = 0; i < CPRMAN_NUM_PLL; i++) {
  605. CprmanPllState *pll = &s->plls[i];
  606. clock_set_source(pll->xosc_in, s->xosc);
  607. if (!qdev_realize(DEVICE(pll), NULL, errp)) {
  608. return;
  609. }
  610. }
  611. for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
  612. CprmanPllChannelState *channel = &s->channels[i];
  613. CprmanPll parent = PLL_CHANNEL_INIT_INFO[i].parent;
  614. Clock *parent_clk = s->plls[parent].out;
  615. clock_set_source(channel->pll_in, parent_clk);
  616. if (!qdev_realize(DEVICE(channel), NULL, errp)) {
  617. return;
  618. }
  619. }
  620. clock_set_source(s->dsi0hsck_mux.plla_in,
  621. s->channels[CPRMAN_PLLA_CHANNEL_DSI0].out);
  622. clock_set_source(s->dsi0hsck_mux.plld_in,
  623. s->channels[CPRMAN_PLLD_CHANNEL_DSI0].out);
  624. if (!qdev_realize(DEVICE(&s->dsi0hsck_mux), NULL, errp)) {
  625. return;
  626. }
  627. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
  628. CprmanClockMuxState *clock_mux = &s->clock_muxes[i];
  629. connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
  630. if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
  631. return;
  632. }
  633. }
  634. }
  635. static const VMStateDescription cprman_vmstate = {
  636. .name = TYPE_BCM2835_CPRMAN,
  637. .version_id = 1,
  638. .minimum_version_id = 1,
  639. .fields = (const VMStateField[]) {
  640. VMSTATE_UINT32_ARRAY(regs, BCM2835CprmanState, CPRMAN_NUM_REGS),
  641. VMSTATE_END_OF_LIST()
  642. }
  643. };
  644. static const Property cprman_properties[] = {
  645. DEFINE_PROP_UINT32("xosc-freq-hz", BCM2835CprmanState, xosc_freq, 19200000),
  646. };
  647. static void cprman_class_init(ObjectClass *klass, void *data)
  648. {
  649. DeviceClass *dc = DEVICE_CLASS(klass);
  650. dc->realize = cprman_realize;
  651. device_class_set_legacy_reset(dc, cprman_reset);
  652. dc->vmsd = &cprman_vmstate;
  653. device_class_set_props(dc, cprman_properties);
  654. }
  655. static const TypeInfo cprman_info = {
  656. .name = TYPE_BCM2835_CPRMAN,
  657. .parent = TYPE_SYS_BUS_DEVICE,
  658. .instance_size = sizeof(BCM2835CprmanState),
  659. .class_init = cprman_class_init,
  660. .instance_init = cprman_init,
  661. };
  662. static void cprman_register_types(void)
  663. {
  664. type_register_static(&cprman_info);
  665. type_register_static(&cprman_pll_info);
  666. type_register_static(&cprman_pll_channel_info);
  667. type_register_static(&cprman_clock_mux_info);
  668. type_register_static(&cprman_dsi0hsck_mux_info);
  669. }
  670. type_init(cprman_register_types);