2
0

mcf5206.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. /*
  2. * Motorola ColdFire MCF5206 SoC embedded peripheral emulation.
  3. *
  4. * Copyright (c) 2007 CodeSourcery.
  5. *
  6. * This code is licensed under the GPL
  7. */
  8. #include "qemu/osdep.h"
  9. #include "qemu/error-report.h"
  10. #include "qemu/log.h"
  11. #include "cpu.h"
  12. #include "hw/qdev-properties.h"
  13. #include "hw/boards.h"
  14. #include "hw/irq.h"
  15. #include "hw/m68k/mcf.h"
  16. #include "qemu/timer.h"
  17. #include "hw/ptimer.h"
  18. #include "system/system.h"
  19. #include "hw/sysbus.h"
  20. /* General purpose timer module. */
  21. typedef struct {
  22. uint16_t tmr;
  23. uint16_t trr;
  24. uint16_t tcr;
  25. uint16_t ter;
  26. ptimer_state *timer;
  27. qemu_irq irq;
  28. int irq_state;
  29. } m5206_timer_state;
  30. #define TMR_RST 0x01
  31. #define TMR_CLK 0x06
  32. #define TMR_FRR 0x08
  33. #define TMR_ORI 0x10
  34. #define TMR_OM 0x20
  35. #define TMR_CE 0xc0
  36. #define TER_CAP 0x01
  37. #define TER_REF 0x02
  38. static void m5206_timer_update(m5206_timer_state *s)
  39. {
  40. if ((s->tmr & TMR_ORI) != 0 && (s->ter & TER_REF))
  41. qemu_irq_raise(s->irq);
  42. else
  43. qemu_irq_lower(s->irq);
  44. }
  45. static void m5206_timer_reset(m5206_timer_state *s)
  46. {
  47. s->tmr = 0;
  48. s->trr = 0;
  49. }
  50. static void m5206_timer_recalibrate(m5206_timer_state *s)
  51. {
  52. int prescale;
  53. int mode;
  54. ptimer_transaction_begin(s->timer);
  55. ptimer_stop(s->timer);
  56. if ((s->tmr & TMR_RST) == 0) {
  57. goto exit;
  58. }
  59. prescale = (s->tmr >> 8) + 1;
  60. mode = (s->tmr >> 1) & 3;
  61. if (mode == 2)
  62. prescale *= 16;
  63. if (mode == 3 || mode == 0) {
  64. qemu_log_mask(LOG_UNIMP, "m5206_timer: mode %d not implemented\n",
  65. mode);
  66. goto exit;
  67. }
  68. if ((s->tmr & TMR_FRR) == 0) {
  69. qemu_log_mask(LOG_UNIMP,
  70. "m5206_timer: free running mode not implemented\n");
  71. goto exit;
  72. }
  73. /* Assume 66MHz system clock. */
  74. ptimer_set_freq(s->timer, 66000000 / prescale);
  75. ptimer_set_limit(s->timer, s->trr, 0);
  76. ptimer_run(s->timer, 0);
  77. exit:
  78. ptimer_transaction_commit(s->timer);
  79. }
  80. static void m5206_timer_trigger(void *opaque)
  81. {
  82. m5206_timer_state *s = (m5206_timer_state *)opaque;
  83. s->ter |= TER_REF;
  84. m5206_timer_update(s);
  85. }
  86. static uint32_t m5206_timer_read(m5206_timer_state *s, uint32_t addr)
  87. {
  88. switch (addr) {
  89. case 0:
  90. return s->tmr;
  91. case 4:
  92. return s->trr;
  93. case 8:
  94. return s->tcr;
  95. case 0xc:
  96. return s->trr - ptimer_get_count(s->timer);
  97. case 0x11:
  98. return s->ter;
  99. default:
  100. return 0;
  101. }
  102. }
  103. static void m5206_timer_write(m5206_timer_state *s, uint32_t addr, uint32_t val)
  104. {
  105. switch (addr) {
  106. case 0:
  107. if ((s->tmr & TMR_RST) != 0 && (val & TMR_RST) == 0) {
  108. m5206_timer_reset(s);
  109. }
  110. s->tmr = val;
  111. m5206_timer_recalibrate(s);
  112. break;
  113. case 4:
  114. s->trr = val;
  115. m5206_timer_recalibrate(s);
  116. break;
  117. case 8:
  118. s->tcr = val;
  119. break;
  120. case 0xc:
  121. ptimer_transaction_begin(s->timer);
  122. ptimer_set_count(s->timer, val);
  123. ptimer_transaction_commit(s->timer);
  124. break;
  125. case 0x11:
  126. s->ter &= ~val;
  127. break;
  128. default:
  129. break;
  130. }
  131. m5206_timer_update(s);
  132. }
  133. static void m5206_timer_init(m5206_timer_state *s, qemu_irq irq)
  134. {
  135. s->timer = ptimer_init(m5206_timer_trigger, s, PTIMER_POLICY_LEGACY);
  136. s->irq = irq;
  137. m5206_timer_reset(s);
  138. }
  139. /* System Integration Module. */
  140. typedef struct {
  141. SysBusDevice parent_obj;
  142. M68kCPU *cpu;
  143. MemoryRegion iomem;
  144. qemu_irq *pic;
  145. m5206_timer_state timer[2];
  146. DeviceState *uart[2];
  147. uint8_t scr;
  148. uint8_t icr[14];
  149. uint16_t imr; /* 1 == interrupt is masked. */
  150. uint16_t ipr;
  151. uint8_t rsr;
  152. uint8_t swivr;
  153. uint8_t par;
  154. /* Include the UART vector registers here. */
  155. uint8_t uivr[2];
  156. } m5206_mbar_state;
  157. #define MCF5206_MBAR(obj) OBJECT_CHECK(m5206_mbar_state, (obj), TYPE_MCF5206_MBAR)
  158. /* Interrupt controller. */
  159. static int m5206_find_pending_irq(m5206_mbar_state *s)
  160. {
  161. int level;
  162. int vector;
  163. uint16_t active;
  164. int i;
  165. level = 0;
  166. vector = 0;
  167. active = s->ipr & ~s->imr;
  168. if (!active)
  169. return 0;
  170. for (i = 1; i < 14; i++) {
  171. if (active & (1 << i)) {
  172. if ((s->icr[i] & 0x1f) > level) {
  173. level = s->icr[i] & 0x1f;
  174. vector = i;
  175. }
  176. }
  177. }
  178. if (level < 4)
  179. vector = 0;
  180. return vector;
  181. }
  182. static void m5206_mbar_update(m5206_mbar_state *s)
  183. {
  184. int irq;
  185. int vector;
  186. int level;
  187. irq = m5206_find_pending_irq(s);
  188. if (irq) {
  189. int tmp;
  190. tmp = s->icr[irq];
  191. level = (tmp >> 2) & 7;
  192. if (tmp & 0x80) {
  193. /* Autovector. */
  194. vector = 24 + level;
  195. } else {
  196. switch (irq) {
  197. case 8: /* SWT */
  198. vector = s->swivr;
  199. break;
  200. case 12: /* UART1 */
  201. vector = s->uivr[0];
  202. break;
  203. case 13: /* UART2 */
  204. vector = s->uivr[1];
  205. break;
  206. default:
  207. /* Unknown vector. */
  208. qemu_log_mask(LOG_UNIMP, "%s: Unhandled vector for IRQ %d\n",
  209. __func__, irq);
  210. vector = 0xf;
  211. break;
  212. }
  213. }
  214. } else {
  215. level = 0;
  216. vector = 0;
  217. }
  218. m68k_set_irq_level(s->cpu, level, vector);
  219. }
  220. static void m5206_mbar_set_irq(void *opaque, int irq, int level)
  221. {
  222. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  223. if (level) {
  224. s->ipr |= 1 << irq;
  225. } else {
  226. s->ipr &= ~(1 << irq);
  227. }
  228. m5206_mbar_update(s);
  229. }
  230. /* System Integration Module. */
  231. static void m5206_mbar_reset(DeviceState *dev)
  232. {
  233. m5206_mbar_state *s = MCF5206_MBAR(dev);
  234. s->scr = 0xc0;
  235. s->icr[1] = 0x04;
  236. s->icr[2] = 0x08;
  237. s->icr[3] = 0x0c;
  238. s->icr[4] = 0x10;
  239. s->icr[5] = 0x14;
  240. s->icr[6] = 0x18;
  241. s->icr[7] = 0x1c;
  242. s->icr[8] = 0x1c;
  243. s->icr[9] = 0x80;
  244. s->icr[10] = 0x80;
  245. s->icr[11] = 0x80;
  246. s->icr[12] = 0x00;
  247. s->icr[13] = 0x00;
  248. s->imr = 0x3ffe;
  249. s->rsr = 0x80;
  250. s->swivr = 0x0f;
  251. s->par = 0;
  252. }
  253. static uint64_t m5206_mbar_read(m5206_mbar_state *s,
  254. uint16_t offset, unsigned size)
  255. {
  256. if (offset >= 0x100 && offset < 0x120) {
  257. return m5206_timer_read(&s->timer[0], offset - 0x100);
  258. } else if (offset >= 0x120 && offset < 0x140) {
  259. return m5206_timer_read(&s->timer[1], offset - 0x120);
  260. } else if (offset >= 0x140 && offset < 0x160) {
  261. return mcf_uart_read(s->uart[0], offset - 0x140, size);
  262. } else if (offset >= 0x180 && offset < 0x1a0) {
  263. return mcf_uart_read(s->uart[1], offset - 0x180, size);
  264. }
  265. switch (offset) {
  266. case 0x03: return s->scr;
  267. case 0x14 ... 0x20: return s->icr[offset - 0x13];
  268. case 0x36: return s->imr;
  269. case 0x3a: return s->ipr;
  270. case 0x40: return s->rsr;
  271. case 0x41: return 0;
  272. case 0x42: return s->swivr;
  273. case 0x50:
  274. /* DRAM mask register. */
  275. /* FIXME: currently hardcoded to 128Mb. */
  276. {
  277. uint32_t mask = ~0;
  278. while (mask > current_machine->ram_size) {
  279. mask >>= 1;
  280. }
  281. return mask & 0x0ffe0000;
  282. }
  283. case 0x5c: return 1; /* DRAM bank 1 empty. */
  284. case 0xcb: return s->par;
  285. case 0x170: return s->uivr[0];
  286. case 0x1b0: return s->uivr[1];
  287. }
  288. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad MBAR offset 0x%"PRIx16"\n",
  289. __func__, offset);
  290. return 0;
  291. }
  292. static void m5206_mbar_write(m5206_mbar_state *s, uint16_t offset,
  293. uint64_t value, unsigned size)
  294. {
  295. if (offset >= 0x100 && offset < 0x120) {
  296. m5206_timer_write(&s->timer[0], offset - 0x100, value);
  297. return;
  298. } else if (offset >= 0x120 && offset < 0x140) {
  299. m5206_timer_write(&s->timer[1], offset - 0x120, value);
  300. return;
  301. } else if (offset >= 0x140 && offset < 0x160) {
  302. mcf_uart_write(s->uart[0], offset - 0x140, value, size);
  303. return;
  304. } else if (offset >= 0x180 && offset < 0x1a0) {
  305. mcf_uart_write(s->uart[1], offset - 0x180, value, size);
  306. return;
  307. }
  308. switch (offset) {
  309. case 0x03:
  310. s->scr = value;
  311. break;
  312. case 0x14 ... 0x20:
  313. s->icr[offset - 0x13] = value;
  314. m5206_mbar_update(s);
  315. break;
  316. case 0x36:
  317. s->imr = value;
  318. m5206_mbar_update(s);
  319. break;
  320. case 0x40:
  321. s->rsr &= ~value;
  322. break;
  323. case 0x41:
  324. /* TODO: implement watchdog. */
  325. break;
  326. case 0x42:
  327. s->swivr = value;
  328. break;
  329. case 0xcb:
  330. s->par = value;
  331. break;
  332. case 0x170:
  333. s->uivr[0] = value;
  334. break;
  335. case 0x178: case 0x17c: case 0x1c8: case 0x1bc:
  336. /* Not implemented: UART Output port bits. */
  337. break;
  338. case 0x1b0:
  339. s->uivr[1] = value;
  340. break;
  341. default:
  342. qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad MBAR offset 0x%"PRIx16"\n",
  343. __func__, offset);
  344. break;
  345. }
  346. }
  347. /* Internal peripherals use a variety of register widths.
  348. This lookup table allows a single routine to handle all of them. */
  349. static const uint8_t m5206_mbar_width[] =
  350. {
  351. /* 000-040 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
  352. /* 040-080 */ 1, 2, 2, 2, 4, 1, 2, 4, 1, 2, 4, 2, 2, 4, 2, 2,
  353. /* 080-0c0 */ 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4,
  354. /* 0c0-100 */ 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  355. /* 100-140 */ 2, 2, 2, 2, 1, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0,
  356. /* 140-180 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  357. /* 180-1c0 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  358. /* 1c0-200 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  359. };
  360. static uint32_t m5206_mbar_readw(void *opaque, hwaddr offset);
  361. static uint32_t m5206_mbar_readl(void *opaque, hwaddr offset);
  362. static uint32_t m5206_mbar_readb(void *opaque, hwaddr offset)
  363. {
  364. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  365. offset &= 0x3ff;
  366. if (offset >= 0x200) {
  367. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR read offset 0x%" HWADDR_PRIX,
  368. offset);
  369. return 0;
  370. }
  371. if (m5206_mbar_width[offset >> 2] > 1) {
  372. uint16_t val;
  373. val = m5206_mbar_readw(opaque, offset & ~1);
  374. if ((offset & 1) == 0) {
  375. val >>= 8;
  376. }
  377. return val & 0xff;
  378. }
  379. return m5206_mbar_read(s, offset, 1);
  380. }
  381. static uint32_t m5206_mbar_readw(void *opaque, hwaddr offset)
  382. {
  383. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  384. int width;
  385. offset &= 0x3ff;
  386. if (offset >= 0x200) {
  387. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR read offset 0x%" HWADDR_PRIX,
  388. offset);
  389. return 0;
  390. }
  391. width = m5206_mbar_width[offset >> 2];
  392. if (width > 2) {
  393. uint32_t val;
  394. val = m5206_mbar_readl(opaque, offset & ~3);
  395. if ((offset & 3) == 0)
  396. val >>= 16;
  397. return val & 0xffff;
  398. } else if (width < 2) {
  399. uint16_t val;
  400. val = m5206_mbar_readb(opaque, offset) << 8;
  401. val |= m5206_mbar_readb(opaque, offset + 1);
  402. return val;
  403. }
  404. return m5206_mbar_read(s, offset, 2);
  405. }
  406. static uint32_t m5206_mbar_readl(void *opaque, hwaddr offset)
  407. {
  408. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  409. int width;
  410. offset &= 0x3ff;
  411. if (offset >= 0x200) {
  412. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR read offset 0x%" HWADDR_PRIX,
  413. offset);
  414. return 0;
  415. }
  416. width = m5206_mbar_width[offset >> 2];
  417. if (width < 4) {
  418. uint32_t val;
  419. val = m5206_mbar_readw(opaque, offset) << 16;
  420. val |= m5206_mbar_readw(opaque, offset + 2);
  421. return val;
  422. }
  423. return m5206_mbar_read(s, offset, 4);
  424. }
  425. static void m5206_mbar_writew(void *opaque, hwaddr offset,
  426. uint32_t value);
  427. static void m5206_mbar_writel(void *opaque, hwaddr offset,
  428. uint32_t value);
  429. static void m5206_mbar_writeb(void *opaque, hwaddr offset,
  430. uint32_t value)
  431. {
  432. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  433. int width;
  434. offset &= 0x3ff;
  435. if (offset >= 0x200) {
  436. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR write offset 0x%" HWADDR_PRIX,
  437. offset);
  438. return;
  439. }
  440. width = m5206_mbar_width[offset >> 2];
  441. if (width > 1) {
  442. uint32_t tmp;
  443. tmp = m5206_mbar_readw(opaque, offset & ~1);
  444. if (offset & 1) {
  445. tmp = (tmp & 0xff00) | value;
  446. } else {
  447. tmp = (tmp & 0x00ff) | (value << 8);
  448. }
  449. m5206_mbar_writew(opaque, offset & ~1, tmp);
  450. return;
  451. }
  452. m5206_mbar_write(s, offset, value, 1);
  453. }
  454. static void m5206_mbar_writew(void *opaque, hwaddr offset,
  455. uint32_t value)
  456. {
  457. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  458. int width;
  459. offset &= 0x3ff;
  460. if (offset >= 0x200) {
  461. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR write offset 0x%" HWADDR_PRIX,
  462. offset);
  463. return;
  464. }
  465. width = m5206_mbar_width[offset >> 2];
  466. if (width > 2) {
  467. uint32_t tmp;
  468. tmp = m5206_mbar_readl(opaque, offset & ~3);
  469. if (offset & 3) {
  470. tmp = (tmp & 0xffff0000) | value;
  471. } else {
  472. tmp = (tmp & 0x0000ffff) | (value << 16);
  473. }
  474. m5206_mbar_writel(opaque, offset & ~3, tmp);
  475. return;
  476. } else if (width < 2) {
  477. m5206_mbar_writeb(opaque, offset, value >> 8);
  478. m5206_mbar_writeb(opaque, offset + 1, value & 0xff);
  479. return;
  480. }
  481. m5206_mbar_write(s, offset, value, 2);
  482. }
  483. static void m5206_mbar_writel(void *opaque, hwaddr offset,
  484. uint32_t value)
  485. {
  486. m5206_mbar_state *s = (m5206_mbar_state *)opaque;
  487. int width;
  488. offset &= 0x3ff;
  489. if (offset >= 0x200) {
  490. qemu_log_mask(LOG_GUEST_ERROR, "Bad MBAR write offset 0x%" HWADDR_PRIX,
  491. offset);
  492. return;
  493. }
  494. width = m5206_mbar_width[offset >> 2];
  495. if (width < 4) {
  496. m5206_mbar_writew(opaque, offset, value >> 16);
  497. m5206_mbar_writew(opaque, offset + 2, value & 0xffff);
  498. return;
  499. }
  500. m5206_mbar_write(s, offset, value, 4);
  501. }
  502. static uint64_t m5206_mbar_readfn(void *opaque, hwaddr addr, unsigned size)
  503. {
  504. switch (size) {
  505. case 1:
  506. return m5206_mbar_readb(opaque, addr);
  507. case 2:
  508. return m5206_mbar_readw(opaque, addr);
  509. case 4:
  510. return m5206_mbar_readl(opaque, addr);
  511. default:
  512. g_assert_not_reached();
  513. }
  514. }
  515. static void m5206_mbar_writefn(void *opaque, hwaddr addr,
  516. uint64_t value, unsigned size)
  517. {
  518. switch (size) {
  519. case 1:
  520. m5206_mbar_writeb(opaque, addr, value);
  521. break;
  522. case 2:
  523. m5206_mbar_writew(opaque, addr, value);
  524. break;
  525. case 4:
  526. m5206_mbar_writel(opaque, addr, value);
  527. break;
  528. default:
  529. g_assert_not_reached();
  530. }
  531. }
  532. static const MemoryRegionOps m5206_mbar_ops = {
  533. .read = m5206_mbar_readfn,
  534. .write = m5206_mbar_writefn,
  535. .valid.min_access_size = 1,
  536. .valid.max_access_size = 4,
  537. .endianness = DEVICE_BIG_ENDIAN,
  538. };
  539. static void mcf5206_mbar_realize(DeviceState *dev, Error **errp)
  540. {
  541. m5206_mbar_state *s = MCF5206_MBAR(dev);
  542. memory_region_init_io(&s->iomem, NULL, &m5206_mbar_ops, s,
  543. "mbar", 0x00001000);
  544. sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
  545. s->pic = qemu_allocate_irqs(m5206_mbar_set_irq, s, 14);
  546. m5206_timer_init(&s->timer[0], s->pic[9]);
  547. m5206_timer_init(&s->timer[1], s->pic[10]);
  548. s->uart[0] = mcf_uart_create(s->pic[12], serial_hd(0));
  549. s->uart[1] = mcf_uart_create(s->pic[13], serial_hd(1));
  550. }
  551. static const Property mcf5206_mbar_properties[] = {
  552. DEFINE_PROP_LINK("m68k-cpu", m5206_mbar_state, cpu,
  553. TYPE_M68K_CPU, M68kCPU *),
  554. };
  555. static void mcf5206_mbar_class_init(ObjectClass *oc, void *data)
  556. {
  557. DeviceClass *dc = DEVICE_CLASS(oc);
  558. device_class_set_props(dc, mcf5206_mbar_properties);
  559. set_bit(DEVICE_CATEGORY_MISC, dc->categories);
  560. dc->desc = "MCF5206 system integration module";
  561. dc->realize = mcf5206_mbar_realize;
  562. device_class_set_legacy_reset(dc, m5206_mbar_reset);
  563. }
  564. static const TypeInfo mcf5206_mbar_info = {
  565. .name = TYPE_MCF5206_MBAR,
  566. .parent = TYPE_SYS_BUS_DEVICE,
  567. .instance_size = sizeof(m5206_mbar_state),
  568. .class_init = mcf5206_mbar_class_init,
  569. };
  570. static void mcf5206_mbar_register_types(void)
  571. {
  572. type_register_static(&mcf5206_mbar_info);
  573. }
  574. type_init(mcf5206_mbar_register_types)