slavio_intctl.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. /*
  2. * QEMU Sparc SLAVIO interrupt controller emulation
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "migration/vmstate.h"
  26. #include "qemu/module.h"
  27. #include "hw/sysbus.h"
  28. #include "hw/intc/intc.h"
  29. #include "hw/irq.h"
  30. #include "trace.h"
  31. #include "qom/object.h"
  32. //#define DEBUG_IRQ_COUNT
  33. /*
  34. * Registers of interrupt controller in sun4m.
  35. *
  36. * This is the interrupt controller part of chip STP2001 (Slave I/O), also
  37. * produced as NCR89C105. See
  38. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
  39. *
  40. * There is a system master controller and one for each cpu.
  41. *
  42. */
  43. #define MAX_CPUS 16
  44. #define MAX_PILS 16
  45. struct SLAVIO_INTCTLState;
  46. typedef struct SLAVIO_CPUINTCTLState {
  47. MemoryRegion iomem;
  48. struct SLAVIO_INTCTLState *master;
  49. uint32_t intreg_pending;
  50. uint32_t cpu;
  51. uint32_t irl_out;
  52. } SLAVIO_CPUINTCTLState;
  53. #define TYPE_SLAVIO_INTCTL "slavio_intctl"
  54. OBJECT_DECLARE_SIMPLE_TYPE(SLAVIO_INTCTLState, SLAVIO_INTCTL)
  55. struct SLAVIO_INTCTLState {
  56. SysBusDevice parent_obj;
  57. MemoryRegion iomem;
  58. #ifdef DEBUG_IRQ_COUNT
  59. uint64_t irq_count[32];
  60. #endif
  61. qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS];
  62. SLAVIO_CPUINTCTLState slaves[MAX_CPUS];
  63. uint32_t intregm_pending;
  64. uint32_t intregm_disabled;
  65. uint32_t target_cpu;
  66. };
  67. #define INTCTL_MAXADDR 0xf
  68. #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
  69. #define INTCTLM_SIZE 0x14
  70. #define MASTER_IRQ_MASK ~0x0fa2007f
  71. #define MASTER_DISABLE 0x80000000
  72. #define CPU_SOFTIRQ_MASK 0xfffe0000
  73. #define CPU_IRQ_INT15_IN (1 << 15)
  74. #define CPU_IRQ_TIMER_IN (1 << 14)
  75. static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs);
  76. // per-cpu interrupt controller
  77. static uint64_t slavio_intctl_mem_readl(void *opaque, hwaddr addr,
  78. unsigned size)
  79. {
  80. SLAVIO_CPUINTCTLState *s = opaque;
  81. uint32_t saddr, ret;
  82. saddr = addr >> 2;
  83. switch (saddr) {
  84. case 0:
  85. ret = s->intreg_pending;
  86. break;
  87. default:
  88. ret = 0;
  89. break;
  90. }
  91. trace_slavio_intctl_mem_readl(s->cpu, addr, ret);
  92. return ret;
  93. }
  94. static void slavio_intctl_mem_writel(void *opaque, hwaddr addr,
  95. uint64_t val, unsigned size)
  96. {
  97. SLAVIO_CPUINTCTLState *s = opaque;
  98. uint32_t saddr;
  99. saddr = addr >> 2;
  100. trace_slavio_intctl_mem_writel(s->cpu, addr, val);
  101. switch (saddr) {
  102. case 1: // clear pending softints
  103. val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN;
  104. s->intreg_pending &= ~val;
  105. slavio_check_interrupts(s->master, 1);
  106. trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending);
  107. break;
  108. case 2: // set softint
  109. val &= CPU_SOFTIRQ_MASK;
  110. s->intreg_pending |= val;
  111. slavio_check_interrupts(s->master, 1);
  112. trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending);
  113. break;
  114. default:
  115. break;
  116. }
  117. }
  118. static const MemoryRegionOps slavio_intctl_mem_ops = {
  119. .read = slavio_intctl_mem_readl,
  120. .write = slavio_intctl_mem_writel,
  121. .endianness = DEVICE_NATIVE_ENDIAN,
  122. .valid = {
  123. .min_access_size = 4,
  124. .max_access_size = 4,
  125. },
  126. };
  127. // master system interrupt controller
  128. static uint64_t slavio_intctlm_mem_readl(void *opaque, hwaddr addr,
  129. unsigned size)
  130. {
  131. SLAVIO_INTCTLState *s = opaque;
  132. uint32_t saddr, ret;
  133. saddr = addr >> 2;
  134. switch (saddr) {
  135. case 0:
  136. ret = s->intregm_pending & ~MASTER_DISABLE;
  137. break;
  138. case 1:
  139. ret = s->intregm_disabled & MASTER_IRQ_MASK;
  140. break;
  141. case 4:
  142. ret = s->target_cpu;
  143. break;
  144. default:
  145. ret = 0;
  146. break;
  147. }
  148. trace_slavio_intctlm_mem_readl(addr, ret);
  149. return ret;
  150. }
  151. static void slavio_intctlm_mem_writel(void *opaque, hwaddr addr,
  152. uint64_t val, unsigned size)
  153. {
  154. SLAVIO_INTCTLState *s = opaque;
  155. uint32_t saddr;
  156. saddr = addr >> 2;
  157. trace_slavio_intctlm_mem_writel(addr, val);
  158. switch (saddr) {
  159. case 2: // clear (enable)
  160. // Force clear unused bits
  161. val &= MASTER_IRQ_MASK;
  162. s->intregm_disabled &= ~val;
  163. trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled);
  164. slavio_check_interrupts(s, 1);
  165. break;
  166. case 3: // set (disable; doesn't affect pending)
  167. // Force clear unused bits
  168. val &= MASTER_IRQ_MASK;
  169. s->intregm_disabled |= val;
  170. slavio_check_interrupts(s, 1);
  171. trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled);
  172. break;
  173. case 4:
  174. s->target_cpu = val & (MAX_CPUS - 1);
  175. slavio_check_interrupts(s, 1);
  176. trace_slavio_intctlm_mem_writel_target(s->target_cpu);
  177. break;
  178. default:
  179. break;
  180. }
  181. }
  182. static const MemoryRegionOps slavio_intctlm_mem_ops = {
  183. .read = slavio_intctlm_mem_readl,
  184. .write = slavio_intctlm_mem_writel,
  185. .endianness = DEVICE_NATIVE_ENDIAN,
  186. .valid = {
  187. .min_access_size = 4,
  188. .max_access_size = 4,
  189. },
  190. };
  191. static const uint32_t intbit_to_level[] = {
  192. 2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12,
  193. 6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0,
  194. };
  195. static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs)
  196. {
  197. uint32_t pending = s->intregm_pending, pil_pending;
  198. unsigned int i, j;
  199. pending &= ~s->intregm_disabled;
  200. trace_slavio_check_interrupts(pending, s->intregm_disabled);
  201. for (i = 0; i < MAX_CPUS; i++) {
  202. pil_pending = 0;
  203. /* If we are the current interrupt target, get hard interrupts */
  204. if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
  205. (i == s->target_cpu)) {
  206. for (j = 0; j < 32; j++) {
  207. if ((pending & (1 << j)) && intbit_to_level[j]) {
  208. pil_pending |= 1 << intbit_to_level[j];
  209. }
  210. }
  211. }
  212. /* Calculate current pending hard interrupts for display */
  213. s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN |
  214. CPU_IRQ_TIMER_IN;
  215. if (i == s->target_cpu) {
  216. for (j = 0; j < 32; j++) {
  217. if ((s->intregm_pending & (1U << j)) && intbit_to_level[j]) {
  218. s->slaves[i].intreg_pending |= 1 << intbit_to_level[j];
  219. }
  220. }
  221. }
  222. /* Level 15 and CPU timer interrupts are only masked when
  223. the MASTER_DISABLE bit is set */
  224. if (!(s->intregm_disabled & MASTER_DISABLE)) {
  225. pil_pending |= s->slaves[i].intreg_pending &
  226. (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN);
  227. }
  228. /* Add soft interrupts */
  229. pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
  230. if (set_irqs) {
  231. /* Since there is not really an interrupt 0 (and pil_pending
  232. * and irl_out bit zero are thus always zero) there is no need
  233. * to do anything with cpu_irqs[i][0] and it is OK not to do
  234. * the j=0 iteration of this loop.
  235. */
  236. for (j = MAX_PILS-1; j > 0; j--) {
  237. if (pil_pending & (1 << j)) {
  238. if (!(s->slaves[i].irl_out & (1 << j))) {
  239. qemu_irq_raise(s->cpu_irqs[i][j]);
  240. }
  241. } else {
  242. if (s->slaves[i].irl_out & (1 << j)) {
  243. qemu_irq_lower(s->cpu_irqs[i][j]);
  244. }
  245. }
  246. }
  247. }
  248. s->slaves[i].irl_out = pil_pending;
  249. }
  250. }
  251. /*
  252. * "irq" here is the bit number in the system interrupt register to
  253. * separate serial and keyboard interrupts sharing a level.
  254. */
  255. static void slavio_set_irq(void *opaque, int irq, int level)
  256. {
  257. SLAVIO_INTCTLState *s = opaque;
  258. uint32_t mask = 1 << irq;
  259. uint32_t pil = intbit_to_level[irq];
  260. unsigned int i;
  261. trace_slavio_set_irq(s->target_cpu, irq, pil, level);
  262. if (pil > 0) {
  263. if (level) {
  264. #ifdef DEBUG_IRQ_COUNT
  265. s->irq_count[pil]++;
  266. #endif
  267. s->intregm_pending |= mask;
  268. if (pil == 15) {
  269. for (i = 0; i < MAX_CPUS; i++) {
  270. s->slaves[i].intreg_pending |= 1 << pil;
  271. }
  272. }
  273. } else {
  274. s->intregm_pending &= ~mask;
  275. if (pil == 15) {
  276. for (i = 0; i < MAX_CPUS; i++) {
  277. s->slaves[i].intreg_pending &= ~(1 << pil);
  278. }
  279. }
  280. }
  281. slavio_check_interrupts(s, 1);
  282. }
  283. }
  284. static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
  285. {
  286. SLAVIO_INTCTLState *s = opaque;
  287. trace_slavio_set_timer_irq_cpu(cpu, level);
  288. if (level) {
  289. s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN;
  290. } else {
  291. s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN;
  292. }
  293. slavio_check_interrupts(s, 1);
  294. }
  295. static void slavio_set_irq_all(void *opaque, int irq, int level)
  296. {
  297. if (irq < 32) {
  298. slavio_set_irq(opaque, irq, level);
  299. } else {
  300. slavio_set_timer_irq_cpu(opaque, irq - 32, level);
  301. }
  302. }
  303. static int vmstate_intctl_post_load(void *opaque, int version_id)
  304. {
  305. SLAVIO_INTCTLState *s = opaque;
  306. slavio_check_interrupts(s, 0);
  307. return 0;
  308. }
  309. static const VMStateDescription vmstate_intctl_cpu = {
  310. .name ="slavio_intctl_cpu",
  311. .version_id = 1,
  312. .minimum_version_id = 1,
  313. .fields = (const VMStateField[]) {
  314. VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState),
  315. VMSTATE_END_OF_LIST()
  316. }
  317. };
  318. static const VMStateDescription vmstate_intctl = {
  319. .name ="slavio_intctl",
  320. .version_id = 1,
  321. .minimum_version_id = 1,
  322. .post_load = vmstate_intctl_post_load,
  323. .fields = (const VMStateField[]) {
  324. VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1,
  325. vmstate_intctl_cpu, SLAVIO_CPUINTCTLState),
  326. VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState),
  327. VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState),
  328. VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState),
  329. VMSTATE_END_OF_LIST()
  330. }
  331. };
  332. static void slavio_intctl_reset(DeviceState *d)
  333. {
  334. SLAVIO_INTCTLState *s = SLAVIO_INTCTL(d);
  335. int i;
  336. for (i = 0; i < MAX_CPUS; i++) {
  337. s->slaves[i].intreg_pending = 0;
  338. s->slaves[i].irl_out = 0;
  339. }
  340. s->intregm_disabled = ~MASTER_IRQ_MASK;
  341. s->intregm_pending = 0;
  342. s->target_cpu = 0;
  343. slavio_check_interrupts(s, 0);
  344. }
  345. #ifdef DEBUG_IRQ_COUNT
  346. static bool slavio_intctl_get_statistics(InterruptStatsProvider *obj,
  347. uint64_t **irq_counts,
  348. unsigned int *nb_irqs)
  349. {
  350. SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
  351. *irq_counts = s->irq_count;
  352. *nb_irqs = ARRAY_SIZE(s->irq_count);
  353. return true;
  354. }
  355. #endif
  356. static void slavio_intctl_print_info(InterruptStatsProvider *obj, GString *buf)
  357. {
  358. SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
  359. int i;
  360. for (i = 0; i < MAX_CPUS; i++) {
  361. g_string_append_printf(buf, "per-cpu %d: pending 0x%08x\n", i,
  362. s->slaves[i].intreg_pending);
  363. }
  364. g_string_append_printf(buf, "master: pending 0x%08x, disabled 0x%08x\n",
  365. s->intregm_pending, s->intregm_disabled);
  366. }
  367. static void slavio_intctl_init(Object *obj)
  368. {
  369. DeviceState *dev = DEVICE(obj);
  370. SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
  371. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  372. unsigned int i, j;
  373. char slave_name[45];
  374. qdev_init_gpio_in(dev, slavio_set_irq_all, 32 + MAX_CPUS);
  375. memory_region_init_io(&s->iomem, obj, &slavio_intctlm_mem_ops, s,
  376. "master-interrupt-controller", INTCTLM_SIZE);
  377. sysbus_init_mmio(sbd, &s->iomem);
  378. for (i = 0; i < MAX_CPUS; i++) {
  379. snprintf(slave_name, sizeof(slave_name),
  380. "slave-interrupt-controller-%i", i);
  381. for (j = 0; j < MAX_PILS; j++) {
  382. sysbus_init_irq(sbd, &s->cpu_irqs[i][j]);
  383. }
  384. memory_region_init_io(&s->slaves[i].iomem, OBJECT(s),
  385. &slavio_intctl_mem_ops,
  386. &s->slaves[i], slave_name, INTCTL_SIZE);
  387. sysbus_init_mmio(sbd, &s->slaves[i].iomem);
  388. s->slaves[i].cpu = i;
  389. s->slaves[i].master = s;
  390. }
  391. }
  392. static void slavio_intctl_class_init(ObjectClass *klass, void *data)
  393. {
  394. DeviceClass *dc = DEVICE_CLASS(klass);
  395. InterruptStatsProviderClass *ic = INTERRUPT_STATS_PROVIDER_CLASS(klass);
  396. device_class_set_legacy_reset(dc, slavio_intctl_reset);
  397. dc->vmsd = &vmstate_intctl;
  398. #ifdef DEBUG_IRQ_COUNT
  399. ic->get_statistics = slavio_intctl_get_statistics;
  400. #endif
  401. ic->print_info = slavio_intctl_print_info;
  402. }
  403. static const TypeInfo slavio_intctl_info = {
  404. .name = TYPE_SLAVIO_INTCTL,
  405. .parent = TYPE_SYS_BUS_DEVICE,
  406. .instance_size = sizeof(SLAVIO_INTCTLState),
  407. .instance_init = slavio_intctl_init,
  408. .class_init = slavio_intctl_class_init,
  409. .interfaces = (InterfaceInfo[]) {
  410. { TYPE_INTERRUPT_STATS_PROVIDER },
  411. { }
  412. },
  413. };
  414. static void slavio_intctl_register_types(void)
  415. {
  416. type_register_static(&slavio_intctl_info);
  417. }
  418. type_init(slavio_intctl_register_types)