sparc32_dma.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. /*
  2. * QEMU Sparc32 DMA controller emulation
  3. *
  4. * Copyright (c) 2006 Fabrice Bellard
  5. *
  6. * Modifications:
  7. * 2010-Feb-14 Artyom Tarasenko : reworked irq generation
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. */
  27. #include "qemu/osdep.h"
  28. #include "hw/irq.h"
  29. #include "hw/qdev-properties.h"
  30. #include "hw/sparc/sparc32_dma.h"
  31. #include "hw/sparc/sun4m_iommu.h"
  32. #include "hw/sysbus.h"
  33. #include "migration/vmstate.h"
  34. #include "system/dma.h"
  35. #include "qapi/error.h"
  36. #include "qemu/module.h"
  37. #include "trace.h"
  38. /*
  39. * This is the DMA controller part of chip STP2000 (Master I/O), also
  40. * produced as NCR89C100. See
  41. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
  42. * and
  43. * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
  44. */
  45. #define DMA_SIZE (4 * sizeof(uint32_t))
  46. /* We need the mask, because one instance of the device is not page
  47. aligned (ledma, start address 0x0010) */
  48. #define DMA_MASK (DMA_SIZE - 1)
  49. /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
  50. #define DMA_ETH_SIZE (8 * sizeof(uint32_t))
  51. #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
  52. #define DMA_VER 0xa0000000
  53. #define DMA_INTR 1
  54. #define DMA_INTREN 0x10
  55. #define DMA_WRITE_MEM 0x100
  56. #define DMA_EN 0x200
  57. #define DMA_LOADED 0x04000000
  58. #define DMA_DRAIN_FIFO 0x40
  59. #define DMA_RESET 0x80
  60. /* XXX SCSI and ethernet should have different read-only bit masks */
  61. #define DMA_CSR_RO_MASK 0xfe000007
  62. enum {
  63. GPIO_RESET = 0,
  64. GPIO_DMA,
  65. };
  66. /* Note: on sparc, the lance 16 bit bus is swapped */
  67. void ledma_memory_read(void *opaque, hwaddr addr,
  68. uint8_t *buf, int len, int do_bswap)
  69. {
  70. DMADeviceState *s = opaque;
  71. IOMMUState *is = (IOMMUState *)s->iommu;
  72. int i;
  73. addr |= s->dmaregs[3];
  74. trace_ledma_memory_read(addr, len);
  75. if (do_bswap) {
  76. dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED);
  77. } else {
  78. addr &= ~1;
  79. len &= ~1;
  80. dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED);
  81. for(i = 0; i < len; i += 2) {
  82. bswap16s((uint16_t *)(buf + i));
  83. }
  84. }
  85. }
  86. void ledma_memory_write(void *opaque, hwaddr addr,
  87. uint8_t *buf, int len, int do_bswap)
  88. {
  89. DMADeviceState *s = opaque;
  90. IOMMUState *is = (IOMMUState *)s->iommu;
  91. int l, i;
  92. uint16_t tmp_buf[32];
  93. addr |= s->dmaregs[3];
  94. trace_ledma_memory_write(addr, len);
  95. if (do_bswap) {
  96. dma_memory_write(&is->iommu_as, addr, buf, len,
  97. MEMTXATTRS_UNSPECIFIED);
  98. } else {
  99. addr &= ~1;
  100. len &= ~1;
  101. while (len > 0) {
  102. l = len;
  103. if (l > sizeof(tmp_buf))
  104. l = sizeof(tmp_buf);
  105. for(i = 0; i < l; i += 2) {
  106. tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
  107. }
  108. dma_memory_write(&is->iommu_as, addr, tmp_buf, l,
  109. MEMTXATTRS_UNSPECIFIED);
  110. len -= l;
  111. buf += l;
  112. addr += l;
  113. }
  114. }
  115. }
  116. static void dma_set_irq(void *opaque, int irq, int level)
  117. {
  118. DMADeviceState *s = opaque;
  119. if (level) {
  120. s->dmaregs[0] |= DMA_INTR;
  121. if (s->dmaregs[0] & DMA_INTREN) {
  122. trace_sparc32_dma_set_irq_raise();
  123. qemu_irq_raise(s->irq);
  124. }
  125. } else {
  126. if (s->dmaregs[0] & DMA_INTR) {
  127. s->dmaregs[0] &= ~DMA_INTR;
  128. if (s->dmaregs[0] & DMA_INTREN) {
  129. trace_sparc32_dma_set_irq_lower();
  130. qemu_irq_lower(s->irq);
  131. }
  132. }
  133. }
  134. }
  135. void espdma_memory_read(void *opaque, uint8_t *buf, int len)
  136. {
  137. DMADeviceState *s = opaque;
  138. IOMMUState *is = (IOMMUState *)s->iommu;
  139. trace_espdma_memory_read(s->dmaregs[1], len);
  140. dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len,
  141. MEMTXATTRS_UNSPECIFIED);
  142. s->dmaregs[1] += len;
  143. }
  144. void espdma_memory_write(void *opaque, uint8_t *buf, int len)
  145. {
  146. DMADeviceState *s = opaque;
  147. IOMMUState *is = (IOMMUState *)s->iommu;
  148. trace_espdma_memory_write(s->dmaregs[1], len);
  149. dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len,
  150. MEMTXATTRS_UNSPECIFIED);
  151. s->dmaregs[1] += len;
  152. }
  153. static uint64_t dma_mem_read(void *opaque, hwaddr addr,
  154. unsigned size)
  155. {
  156. DMADeviceState *s = opaque;
  157. uint32_t saddr;
  158. saddr = (addr & DMA_MASK) >> 2;
  159. trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
  160. return s->dmaregs[saddr];
  161. }
  162. static void dma_mem_write(void *opaque, hwaddr addr,
  163. uint64_t val, unsigned size)
  164. {
  165. DMADeviceState *s = opaque;
  166. uint32_t saddr;
  167. saddr = (addr & DMA_MASK) >> 2;
  168. trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
  169. switch (saddr) {
  170. case 0:
  171. if (val & DMA_INTREN) {
  172. if (s->dmaregs[0] & DMA_INTR) {
  173. trace_sparc32_dma_set_irq_raise();
  174. qemu_irq_raise(s->irq);
  175. }
  176. } else {
  177. if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
  178. trace_sparc32_dma_set_irq_lower();
  179. qemu_irq_lower(s->irq);
  180. }
  181. }
  182. if (val & DMA_RESET) {
  183. qemu_irq_raise(s->gpio[GPIO_RESET]);
  184. qemu_irq_lower(s->gpio[GPIO_RESET]);
  185. } else if (val & DMA_DRAIN_FIFO) {
  186. val &= ~DMA_DRAIN_FIFO;
  187. } else if (val == 0)
  188. val = DMA_DRAIN_FIFO;
  189. if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
  190. trace_sparc32_dma_enable_raise();
  191. qemu_irq_raise(s->gpio[GPIO_DMA]);
  192. } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
  193. trace_sparc32_dma_enable_lower();
  194. qemu_irq_lower(s->gpio[GPIO_DMA]);
  195. }
  196. val &= ~DMA_CSR_RO_MASK;
  197. val |= DMA_VER;
  198. s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
  199. break;
  200. case 1:
  201. s->dmaregs[0] |= DMA_LOADED;
  202. /* fall through */
  203. default:
  204. s->dmaregs[saddr] = val;
  205. break;
  206. }
  207. }
  208. static const MemoryRegionOps dma_mem_ops = {
  209. .read = dma_mem_read,
  210. .write = dma_mem_write,
  211. .endianness = DEVICE_NATIVE_ENDIAN,
  212. .valid = {
  213. .min_access_size = 4,
  214. .max_access_size = 4,
  215. },
  216. };
  217. static void sparc32_dma_device_reset(DeviceState *d)
  218. {
  219. DMADeviceState *s = SPARC32_DMA_DEVICE(d);
  220. memset(s->dmaregs, 0, DMA_SIZE);
  221. s->dmaregs[0] = DMA_VER;
  222. }
  223. static const VMStateDescription vmstate_sparc32_dma_device = {
  224. .name ="sparc32_dma",
  225. .version_id = 2,
  226. .minimum_version_id = 2,
  227. .fields = (const VMStateField[]) {
  228. VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS),
  229. VMSTATE_END_OF_LIST()
  230. }
  231. };
  232. static void sparc32_dma_device_init(Object *obj)
  233. {
  234. DeviceState *dev = DEVICE(obj);
  235. DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
  236. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  237. sysbus_init_irq(sbd, &s->irq);
  238. sysbus_init_mmio(sbd, &s->iomem);
  239. object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU,
  240. (Object **) &s->iommu,
  241. qdev_prop_allow_set_link_before_realize,
  242. 0);
  243. qdev_init_gpio_in(dev, dma_set_irq, 1);
  244. qdev_init_gpio_out(dev, s->gpio, 2);
  245. }
  246. static void sparc32_dma_device_class_init(ObjectClass *klass, void *data)
  247. {
  248. DeviceClass *dc = DEVICE_CLASS(klass);
  249. device_class_set_legacy_reset(dc, sparc32_dma_device_reset);
  250. dc->vmsd = &vmstate_sparc32_dma_device;
  251. }
  252. static const TypeInfo sparc32_dma_device_info = {
  253. .name = TYPE_SPARC32_DMA_DEVICE,
  254. .parent = TYPE_SYS_BUS_DEVICE,
  255. .abstract = true,
  256. .instance_size = sizeof(DMADeviceState),
  257. .instance_init = sparc32_dma_device_init,
  258. .class_init = sparc32_dma_device_class_init,
  259. };
  260. static void sparc32_espdma_device_init(Object *obj)
  261. {
  262. DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
  263. ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(obj);
  264. memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
  265. "espdma-mmio", DMA_SIZE);
  266. object_initialize_child(obj, "esp", &es->esp, TYPE_SYSBUS_ESP);
  267. }
  268. static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp)
  269. {
  270. ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(dev);
  271. SysBusESPState *sysbus = SYSBUS_ESP(&es->esp);
  272. ESPState *esp = &sysbus->esp;
  273. esp->dma_memory_read = espdma_memory_read;
  274. esp->dma_memory_write = espdma_memory_write;
  275. esp->dma_opaque = SPARC32_DMA_DEVICE(dev);
  276. sysbus->it_shift = 2;
  277. esp->dma_enabled = 1;
  278. sysbus_realize(SYS_BUS_DEVICE(sysbus), &error_fatal);
  279. }
  280. static void sparc32_espdma_device_class_init(ObjectClass *klass, void *data)
  281. {
  282. DeviceClass *dc = DEVICE_CLASS(klass);
  283. dc->realize = sparc32_espdma_device_realize;
  284. }
  285. static const TypeInfo sparc32_espdma_device_info = {
  286. .name = TYPE_SPARC32_ESPDMA_DEVICE,
  287. .parent = TYPE_SPARC32_DMA_DEVICE,
  288. .instance_size = sizeof(ESPDMADeviceState),
  289. .instance_init = sparc32_espdma_device_init,
  290. .class_init = sparc32_espdma_device_class_init,
  291. };
  292. static void sparc32_ledma_device_init(Object *obj)
  293. {
  294. DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
  295. LEDMADeviceState *ls = SPARC32_LEDMA_DEVICE(obj);
  296. memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
  297. "ledma-mmio", DMA_SIZE);
  298. object_initialize_child(obj, "lance", &ls->lance, TYPE_LANCE);
  299. }
  300. static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp)
  301. {
  302. LEDMADeviceState *s = SPARC32_LEDMA_DEVICE(dev);
  303. SysBusPCNetState *lance = SYSBUS_PCNET(&s->lance);
  304. object_property_set_link(OBJECT(lance), "dma", OBJECT(dev), &error_abort);
  305. sysbus_realize(SYS_BUS_DEVICE(lance), &error_fatal);
  306. }
  307. static void sparc32_ledma_device_class_init(ObjectClass *klass, void *data)
  308. {
  309. DeviceClass *dc = DEVICE_CLASS(klass);
  310. dc->realize = sparc32_ledma_device_realize;
  311. }
  312. static const TypeInfo sparc32_ledma_device_info = {
  313. .name = TYPE_SPARC32_LEDMA_DEVICE,
  314. .parent = TYPE_SPARC32_DMA_DEVICE,
  315. .instance_size = sizeof(LEDMADeviceState),
  316. .instance_init = sparc32_ledma_device_init,
  317. .class_init = sparc32_ledma_device_class_init,
  318. };
  319. static void sparc32_dma_realize(DeviceState *dev, Error **errp)
  320. {
  321. SPARC32DMAState *s = SPARC32_DMA(dev);
  322. DeviceState *espdma, *esp, *ledma, *lance;
  323. SysBusDevice *sbd;
  324. Object *iommu;
  325. iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL);
  326. if (!iommu) {
  327. error_setg(errp, "unable to locate sun4m IOMMU device");
  328. return;
  329. }
  330. espdma = DEVICE(&s->espdma);
  331. object_property_set_link(OBJECT(espdma), "iommu", iommu, &error_abort);
  332. sysbus_realize(SYS_BUS_DEVICE(espdma), &error_fatal);
  333. esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp"));
  334. sbd = SYS_BUS_DEVICE(esp);
  335. sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0));
  336. qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0));
  337. qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1));
  338. sbd = SYS_BUS_DEVICE(espdma);
  339. memory_region_add_subregion(&s->dmamem, 0x0,
  340. sysbus_mmio_get_region(sbd, 0));
  341. ledma = DEVICE(&s->ledma);
  342. object_property_set_link(OBJECT(ledma), "iommu", iommu, &error_abort);
  343. sysbus_realize(SYS_BUS_DEVICE(ledma), &error_fatal);
  344. lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance"));
  345. sbd = SYS_BUS_DEVICE(lance);
  346. sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0));
  347. qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0));
  348. sbd = SYS_BUS_DEVICE(ledma);
  349. memory_region_add_subregion(&s->dmamem, 0x10,
  350. sysbus_mmio_get_region(sbd, 0));
  351. /* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */
  352. memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias",
  353. sysbus_mmio_get_region(sbd, 0), 0x4, 0x4);
  354. memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias);
  355. }
  356. static void sparc32_dma_init(Object *obj)
  357. {
  358. SPARC32DMAState *s = SPARC32_DMA(obj);
  359. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  360. memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE);
  361. sysbus_init_mmio(sbd, &s->dmamem);
  362. object_initialize_child(obj, "espdma", &s->espdma,
  363. TYPE_SPARC32_ESPDMA_DEVICE);
  364. object_initialize_child(obj, "ledma", &s->ledma,
  365. TYPE_SPARC32_LEDMA_DEVICE);
  366. }
  367. static void sparc32_dma_class_init(ObjectClass *klass, void *data)
  368. {
  369. DeviceClass *dc = DEVICE_CLASS(klass);
  370. dc->realize = sparc32_dma_realize;
  371. }
  372. static const TypeInfo sparc32_dma_info = {
  373. .name = TYPE_SPARC32_DMA,
  374. .parent = TYPE_SYS_BUS_DEVICE,
  375. .instance_size = sizeof(SPARC32DMAState),
  376. .instance_init = sparc32_dma_init,
  377. .class_init = sparc32_dma_class_init,
  378. };
  379. static void sparc32_dma_register_types(void)
  380. {
  381. type_register_static(&sparc32_dma_device_info);
  382. type_register_static(&sparc32_espdma_device_info);
  383. type_register_static(&sparc32_ledma_device_info);
  384. type_register_static(&sparc32_dma_info);
  385. }
  386. type_init(sparc32_dma_register_types)