2
0

omap_dma.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678
  1. /*
  2. * TI OMAP DMA gigacell.
  3. *
  4. * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
  5. * Copyright (C) 2007-2008 Lauro Ramos Venancio <lauro.venancio@indt.org.br>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License as
  9. * published by the Free Software Foundation; either version 2 of
  10. * the License, or (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include "qemu/osdep.h"
  21. #include "qemu/log.h"
  22. #include "qemu/timer.h"
  23. #include "hw/arm/omap.h"
  24. #include "hw/irq.h"
  25. #include "hw/arm/soc_dma.h"
  26. struct omap_dma_channel_s {
  27. /* transfer data */
  28. int burst[2];
  29. int pack[2];
  30. int endian[2];
  31. int endian_lock[2];
  32. int translate[2];
  33. enum omap_dma_port port[2];
  34. hwaddr addr[2];
  35. omap_dma_addressing_t mode[2];
  36. uint32_t elements;
  37. uint16_t frames;
  38. int32_t frame_index[2];
  39. int16_t element_index[2];
  40. int data_type;
  41. /* transfer type */
  42. int transparent_copy;
  43. int constant_fill;
  44. uint32_t color;
  45. int prefetch;
  46. /* auto init and linked channel data */
  47. int end_prog;
  48. int repeat;
  49. int auto_init;
  50. int link_enabled;
  51. int link_next_ch;
  52. /* interruption data */
  53. int interrupts;
  54. int status;
  55. int cstatus;
  56. /* state data */
  57. int active;
  58. int enable;
  59. int sync;
  60. int src_sync;
  61. int pending_request;
  62. int waiting_end_prog;
  63. uint16_t cpc;
  64. int set_update;
  65. /* sync type */
  66. int fs;
  67. int bs;
  68. /* compatibility */
  69. int omap_3_1_compatible_disable;
  70. qemu_irq irq;
  71. struct omap_dma_channel_s *sibling;
  72. struct omap_dma_reg_set_s {
  73. hwaddr src, dest;
  74. int frame;
  75. int element;
  76. int pck_element;
  77. int frame_delta[2];
  78. int elem_delta[2];
  79. int frames;
  80. int elements;
  81. int pck_elements;
  82. } active_set;
  83. struct soc_dma_ch_s *dma;
  84. /* unused parameters */
  85. int write_mode;
  86. int priority;
  87. int interleave_disabled;
  88. int type;
  89. int suspend;
  90. int buf_disable;
  91. };
  92. struct omap_dma_s {
  93. struct soc_dma_s *dma;
  94. MemoryRegion iomem;
  95. struct omap_mpu_state_s *mpu;
  96. omap_clk clk;
  97. qemu_irq irq[4];
  98. void (*intr_update)(struct omap_dma_s *s);
  99. enum omap_dma_model model;
  100. int omap_3_1_mapping_disabled;
  101. uint32_t gcr;
  102. uint32_t ocp;
  103. uint32_t caps[5];
  104. uint32_t irqen[4];
  105. uint32_t irqstat[4];
  106. int chans;
  107. struct omap_dma_channel_s ch[32];
  108. struct omap_dma_lcd_channel_s lcd_ch;
  109. };
  110. /* Interrupts */
  111. #define TIMEOUT_INTR (1 << 0)
  112. #define EVENT_DROP_INTR (1 << 1)
  113. #define HALF_FRAME_INTR (1 << 2)
  114. #define END_FRAME_INTR (1 << 3)
  115. #define LAST_FRAME_INTR (1 << 4)
  116. #define END_BLOCK_INTR (1 << 5)
  117. #define SYNC (1 << 6)
  118. #define END_PKT_INTR (1 << 7)
  119. #define TRANS_ERR_INTR (1 << 8)
  120. #define MISALIGN_INTR (1 << 11)
  121. static inline void omap_dma_interrupts_update(struct omap_dma_s *s)
  122. {
  123. s->intr_update(s);
  124. }
  125. static void omap_dma_channel_load(struct omap_dma_channel_s *ch)
  126. {
  127. struct omap_dma_reg_set_s *a = &ch->active_set;
  128. int i, normal;
  129. int omap_3_1 = !ch->omap_3_1_compatible_disable;
  130. /*
  131. * TODO: verify address ranges and alignment
  132. * TODO: port endianness
  133. */
  134. a->src = ch->addr[0];
  135. a->dest = ch->addr[1];
  136. a->frames = ch->frames;
  137. a->elements = ch->elements;
  138. a->pck_elements = ch->frame_index[!ch->src_sync];
  139. a->frame = 0;
  140. a->element = 0;
  141. a->pck_element = 0;
  142. if (unlikely(!ch->elements || !ch->frames)) {
  143. printf("%s: bad DMA request\n", __func__);
  144. return;
  145. }
  146. for (i = 0; i < 2; i ++)
  147. switch (ch->mode[i]) {
  148. case constant:
  149. a->elem_delta[i] = 0;
  150. a->frame_delta[i] = 0;
  151. break;
  152. case post_incremented:
  153. a->elem_delta[i] = ch->data_type;
  154. a->frame_delta[i] = 0;
  155. break;
  156. case single_index:
  157. a->elem_delta[i] = ch->data_type +
  158. ch->element_index[omap_3_1 ? 0 : i] - 1;
  159. a->frame_delta[i] = 0;
  160. break;
  161. case double_index:
  162. a->elem_delta[i] = ch->data_type +
  163. ch->element_index[omap_3_1 ? 0 : i] - 1;
  164. a->frame_delta[i] = ch->frame_index[omap_3_1 ? 0 : i] -
  165. ch->element_index[omap_3_1 ? 0 : i];
  166. break;
  167. default:
  168. break;
  169. }
  170. normal = !ch->transparent_copy && !ch->constant_fill &&
  171. /* FIFO is big-endian so either (ch->endian[n] == 1) OR
  172. * (ch->endian_lock[n] == 1) mean no endianism conversion. */
  173. (ch->endian[0] | ch->endian_lock[0]) ==
  174. (ch->endian[1] | ch->endian_lock[1]);
  175. for (i = 0; i < 2; i ++) {
  176. /* TODO: for a->frame_delta[i] > 0 still use the fast path, just
  177. * limit min_elems in omap_dma_transfer_setup to the nearest frame
  178. * end. */
  179. if (!a->elem_delta[i] && normal &&
  180. (a->frames == 1 || !a->frame_delta[i]))
  181. ch->dma->type[i] = soc_dma_access_const;
  182. else if (a->elem_delta[i] == ch->data_type && normal &&
  183. (a->frames == 1 || !a->frame_delta[i]))
  184. ch->dma->type[i] = soc_dma_access_linear;
  185. else
  186. ch->dma->type[i] = soc_dma_access_other;
  187. ch->dma->vaddr[i] = ch->addr[i];
  188. }
  189. soc_dma_ch_update(ch->dma);
  190. }
  191. static void omap_dma_activate_channel(struct omap_dma_s *s,
  192. struct omap_dma_channel_s *ch)
  193. {
  194. if (!ch->active) {
  195. if (ch->set_update) {
  196. /* It's not clear when the active set is supposed to be
  197. * loaded from registers. We're already loading it when the
  198. * channel is enabled, and for some guests this is not enough
  199. * but that may be also because of a race condition (no
  200. * delays in qemu) in the guest code, which we're just
  201. * working around here. */
  202. omap_dma_channel_load(ch);
  203. ch->set_update = 0;
  204. }
  205. ch->active = 1;
  206. soc_dma_set_request(ch->dma, 1);
  207. if (ch->sync)
  208. ch->status |= SYNC;
  209. }
  210. }
  211. static void omap_dma_deactivate_channel(struct omap_dma_s *s,
  212. struct omap_dma_channel_s *ch)
  213. {
  214. /* Update cpc */
  215. ch->cpc = ch->active_set.dest & 0xffff;
  216. if (ch->pending_request && !ch->waiting_end_prog && ch->enable) {
  217. /* Don't deactivate the channel */
  218. ch->pending_request = 0;
  219. return;
  220. }
  221. /* Don't deactivate the channel if it is synchronized and the DMA request is
  222. active */
  223. if (ch->sync && ch->enable && (s->dma->drqbmp & (1ULL << ch->sync)))
  224. return;
  225. if (ch->active) {
  226. ch->active = 0;
  227. ch->status &= ~SYNC;
  228. soc_dma_set_request(ch->dma, 0);
  229. }
  230. }
  231. static void omap_dma_enable_channel(struct omap_dma_s *s,
  232. struct omap_dma_channel_s *ch)
  233. {
  234. if (!ch->enable) {
  235. ch->enable = 1;
  236. ch->waiting_end_prog = 0;
  237. omap_dma_channel_load(ch);
  238. /* TODO: theoretically if ch->sync && ch->prefetch &&
  239. * !s->dma->drqbmp[ch->sync], we should also activate and fetch
  240. * from source and then stall until signalled. */
  241. if ((!ch->sync) || (s->dma->drqbmp & (1ULL << ch->sync))) {
  242. omap_dma_activate_channel(s, ch);
  243. }
  244. }
  245. }
  246. static void omap_dma_disable_channel(struct omap_dma_s *s,
  247. struct omap_dma_channel_s *ch)
  248. {
  249. if (ch->enable) {
  250. ch->enable = 0;
  251. /* Discard any pending request */
  252. ch->pending_request = 0;
  253. omap_dma_deactivate_channel(s, ch);
  254. }
  255. }
  256. static void omap_dma_channel_end_prog(struct omap_dma_s *s,
  257. struct omap_dma_channel_s *ch)
  258. {
  259. if (ch->waiting_end_prog) {
  260. ch->waiting_end_prog = 0;
  261. if (!ch->sync || ch->pending_request) {
  262. ch->pending_request = 0;
  263. omap_dma_activate_channel(s, ch);
  264. }
  265. }
  266. }
  267. static void omap_dma_interrupts_3_1_update(struct omap_dma_s *s)
  268. {
  269. struct omap_dma_channel_s *ch = s->ch;
  270. /* First three interrupts are shared between two channels each. */
  271. if (ch[0].status | ch[6].status)
  272. qemu_irq_raise(ch[0].irq);
  273. if (ch[1].status | ch[7].status)
  274. qemu_irq_raise(ch[1].irq);
  275. if (ch[2].status | ch[8].status)
  276. qemu_irq_raise(ch[2].irq);
  277. if (ch[3].status)
  278. qemu_irq_raise(ch[3].irq);
  279. if (ch[4].status)
  280. qemu_irq_raise(ch[4].irq);
  281. if (ch[5].status)
  282. qemu_irq_raise(ch[5].irq);
  283. }
  284. static void omap_dma_interrupts_3_2_update(struct omap_dma_s *s)
  285. {
  286. struct omap_dma_channel_s *ch = s->ch;
  287. int i;
  288. for (i = s->chans; i; ch ++, i --)
  289. if (ch->status)
  290. qemu_irq_raise(ch->irq);
  291. }
  292. static void omap_dma_enable_3_1_mapping(struct omap_dma_s *s)
  293. {
  294. s->omap_3_1_mapping_disabled = 0;
  295. s->chans = 9;
  296. s->intr_update = omap_dma_interrupts_3_1_update;
  297. }
  298. static void omap_dma_disable_3_1_mapping(struct omap_dma_s *s)
  299. {
  300. s->omap_3_1_mapping_disabled = 1;
  301. s->chans = 16;
  302. s->intr_update = omap_dma_interrupts_3_2_update;
  303. }
  304. static void omap_dma_process_request(struct omap_dma_s *s, int request)
  305. {
  306. int channel;
  307. int drop_event = 0;
  308. struct omap_dma_channel_s *ch = s->ch;
  309. for (channel = 0; channel < s->chans; channel ++, ch ++) {
  310. if (ch->enable && ch->sync == request) {
  311. if (!ch->active)
  312. omap_dma_activate_channel(s, ch);
  313. else if (!ch->pending_request)
  314. ch->pending_request = 1;
  315. else {
  316. /* Request collision */
  317. /* Second request received while processing other request */
  318. ch->status |= EVENT_DROP_INTR;
  319. drop_event = 1;
  320. }
  321. }
  322. }
  323. if (drop_event)
  324. omap_dma_interrupts_update(s);
  325. }
  326. static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma)
  327. {
  328. uint8_t value[4];
  329. struct omap_dma_channel_s *ch = dma->opaque;
  330. struct omap_dma_reg_set_s *a = &ch->active_set;
  331. int bytes = dma->bytes;
  332. #ifdef MULTI_REQ
  333. uint16_t status = ch->status;
  334. #endif
  335. do {
  336. /* Transfer a single element */
  337. /* FIXME: check the endianness */
  338. if (!ch->constant_fill)
  339. cpu_physical_memory_read(a->src, value, ch->data_type);
  340. else
  341. *(uint32_t *) value = ch->color;
  342. if (!ch->transparent_copy || *(uint32_t *) value != ch->color)
  343. cpu_physical_memory_write(a->dest, value, ch->data_type);
  344. a->src += a->elem_delta[0];
  345. a->dest += a->elem_delta[1];
  346. a->element ++;
  347. #ifndef MULTI_REQ
  348. if (a->element == a->elements) {
  349. /* End of Frame */
  350. a->element = 0;
  351. a->src += a->frame_delta[0];
  352. a->dest += a->frame_delta[1];
  353. a->frame ++;
  354. /* If the channel is async, update cpc */
  355. if (!ch->sync)
  356. ch->cpc = a->dest & 0xffff;
  357. }
  358. } while ((bytes -= ch->data_type));
  359. #else
  360. /* If the channel is element synchronized, deactivate it */
  361. if (ch->sync && !ch->fs && !ch->bs)
  362. omap_dma_deactivate_channel(s, ch);
  363. /* If it is the last frame, set the LAST_FRAME interrupt */
  364. if (a->element == 1 && a->frame == a->frames - 1)
  365. if (ch->interrupts & LAST_FRAME_INTR)
  366. ch->status |= LAST_FRAME_INTR;
  367. /* If the half of the frame was reached, set the HALF_FRAME
  368. interrupt */
  369. if (a->element == (a->elements >> 1))
  370. if (ch->interrupts & HALF_FRAME_INTR)
  371. ch->status |= HALF_FRAME_INTR;
  372. if (ch->fs && ch->bs) {
  373. a->pck_element ++;
  374. /* Check if a full packet has been transferred. */
  375. if (a->pck_element == a->pck_elements) {
  376. a->pck_element = 0;
  377. /* Set the END_PKT interrupt */
  378. if ((ch->interrupts & END_PKT_INTR) && !ch->src_sync)
  379. ch->status |= END_PKT_INTR;
  380. /* If the channel is packet-synchronized, deactivate it */
  381. if (ch->sync)
  382. omap_dma_deactivate_channel(s, ch);
  383. }
  384. }
  385. if (a->element == a->elements) {
  386. /* End of Frame */
  387. a->element = 0;
  388. a->src += a->frame_delta[0];
  389. a->dest += a->frame_delta[1];
  390. a->frame ++;
  391. /* If the channel is frame synchronized, deactivate it */
  392. if (ch->sync && ch->fs && !ch->bs)
  393. omap_dma_deactivate_channel(s, ch);
  394. /* If the channel is async, update cpc */
  395. if (!ch->sync)
  396. ch->cpc = a->dest & 0xffff;
  397. /* Set the END_FRAME interrupt */
  398. if (ch->interrupts & END_FRAME_INTR)
  399. ch->status |= END_FRAME_INTR;
  400. if (a->frame == a->frames) {
  401. /* End of Block */
  402. /* Disable the channel */
  403. if (ch->omap_3_1_compatible_disable) {
  404. omap_dma_disable_channel(s, ch);
  405. if (ch->link_enabled)
  406. omap_dma_enable_channel(s,
  407. &s->ch[ch->link_next_ch]);
  408. } else {
  409. if (!ch->auto_init)
  410. omap_dma_disable_channel(s, ch);
  411. else if (ch->repeat || ch->end_prog)
  412. omap_dma_channel_load(ch);
  413. else {
  414. ch->waiting_end_prog = 1;
  415. omap_dma_deactivate_channel(s, ch);
  416. }
  417. }
  418. if (ch->interrupts & END_BLOCK_INTR)
  419. ch->status |= END_BLOCK_INTR;
  420. }
  421. }
  422. } while (status == ch->status && ch->active);
  423. omap_dma_interrupts_update(s);
  424. #endif
  425. }
  426. enum {
  427. omap_dma_intr_element_sync,
  428. omap_dma_intr_last_frame,
  429. omap_dma_intr_half_frame,
  430. omap_dma_intr_frame,
  431. omap_dma_intr_frame_sync,
  432. omap_dma_intr_packet,
  433. omap_dma_intr_packet_sync,
  434. omap_dma_intr_block,
  435. __omap_dma_intr_last,
  436. };
  437. static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma)
  438. {
  439. struct omap_dma_port_if_s *src_p, *dest_p;
  440. struct omap_dma_reg_set_s *a;
  441. struct omap_dma_channel_s *ch = dma->opaque;
  442. struct omap_dma_s *s = dma->dma->opaque;
  443. int frames, min_elems, elements[__omap_dma_intr_last];
  444. a = &ch->active_set;
  445. src_p = &s->mpu->port[ch->port[0]];
  446. dest_p = &s->mpu->port[ch->port[1]];
  447. if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) ||
  448. (!dest_p->addr_valid(s->mpu, a->dest))) {
  449. #if 0
  450. /* Bus time-out */
  451. if (ch->interrupts & TIMEOUT_INTR)
  452. ch->status |= TIMEOUT_INTR;
  453. omap_dma_deactivate_channel(s, ch);
  454. continue;
  455. #endif
  456. printf("%s: Bus time-out in DMA%i operation\n",
  457. __func__, dma->num);
  458. }
  459. min_elems = INT_MAX;
  460. /* Check all the conditions that terminate the transfer starting
  461. * with those that can occur the soonest. */
  462. #define INTR_CHECK(cond, id, nelements) \
  463. if (cond) { \
  464. elements[id] = nelements; \
  465. if (elements[id] < min_elems) \
  466. min_elems = elements[id]; \
  467. } else \
  468. elements[id] = INT_MAX;
  469. /* Elements */
  470. INTR_CHECK(
  471. ch->sync && !ch->fs && !ch->bs,
  472. omap_dma_intr_element_sync,
  473. 1)
  474. /* Frames */
  475. /* TODO: for transfers where entire frames can be read and written
  476. * using memcpy() but a->frame_delta is non-zero, try to still do
  477. * transfers using soc_dma but limit min_elems to a->elements - ...
  478. * See also the TODO in omap_dma_channel_load. */
  479. INTR_CHECK(
  480. (ch->interrupts & LAST_FRAME_INTR) &&
  481. ((a->frame < a->frames - 1) || !a->element),
  482. omap_dma_intr_last_frame,
  483. (a->frames - a->frame - 2) * a->elements +
  484. (a->elements - a->element + 1))
  485. INTR_CHECK(
  486. ch->interrupts & HALF_FRAME_INTR,
  487. omap_dma_intr_half_frame,
  488. (a->elements >> 1) +
  489. (a->element >= (a->elements >> 1) ? a->elements : 0) -
  490. a->element)
  491. INTR_CHECK(
  492. ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR),
  493. omap_dma_intr_frame,
  494. a->elements - a->element)
  495. INTR_CHECK(
  496. ch->sync && ch->fs && !ch->bs,
  497. omap_dma_intr_frame_sync,
  498. a->elements - a->element)
  499. /* Packets */
  500. INTR_CHECK(
  501. ch->fs && ch->bs &&
  502. (ch->interrupts & END_PKT_INTR) && !ch->src_sync,
  503. omap_dma_intr_packet,
  504. a->pck_elements - a->pck_element)
  505. INTR_CHECK(
  506. ch->fs && ch->bs && ch->sync,
  507. omap_dma_intr_packet_sync,
  508. a->pck_elements - a->pck_element)
  509. /* Blocks */
  510. INTR_CHECK(
  511. 1,
  512. omap_dma_intr_block,
  513. (a->frames - a->frame - 1) * a->elements +
  514. (a->elements - a->element))
  515. dma->bytes = min_elems * ch->data_type;
  516. /* Set appropriate interrupts and/or deactivate channels */
  517. #ifdef MULTI_REQ
  518. /* TODO: should all of this only be done if dma->update, and otherwise
  519. * inside omap_dma_transfer_generic below - check what's faster. */
  520. if (dma->update) {
  521. #endif
  522. /* If the channel is element synchronized, deactivate it */
  523. if (min_elems == elements[omap_dma_intr_element_sync])
  524. omap_dma_deactivate_channel(s, ch);
  525. /* If it is the last frame, set the LAST_FRAME interrupt */
  526. if (min_elems == elements[omap_dma_intr_last_frame])
  527. ch->status |= LAST_FRAME_INTR;
  528. /* If exactly half of the frame was reached, set the HALF_FRAME
  529. interrupt */
  530. if (min_elems == elements[omap_dma_intr_half_frame])
  531. ch->status |= HALF_FRAME_INTR;
  532. /* If a full packet has been transferred, set the END_PKT interrupt */
  533. if (min_elems == elements[omap_dma_intr_packet])
  534. ch->status |= END_PKT_INTR;
  535. /* If the channel is packet-synchronized, deactivate it */
  536. if (min_elems == elements[omap_dma_intr_packet_sync])
  537. omap_dma_deactivate_channel(s, ch);
  538. /* If the channel is frame synchronized, deactivate it */
  539. if (min_elems == elements[omap_dma_intr_frame_sync])
  540. omap_dma_deactivate_channel(s, ch);
  541. /* Set the END_FRAME interrupt */
  542. if (min_elems == elements[omap_dma_intr_frame])
  543. ch->status |= END_FRAME_INTR;
  544. if (min_elems == elements[omap_dma_intr_block]) {
  545. /* End of Block */
  546. /* Disable the channel */
  547. if (ch->omap_3_1_compatible_disable) {
  548. omap_dma_disable_channel(s, ch);
  549. if (ch->link_enabled)
  550. omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]);
  551. } else {
  552. if (!ch->auto_init)
  553. omap_dma_disable_channel(s, ch);
  554. else if (ch->repeat || ch->end_prog)
  555. omap_dma_channel_load(ch);
  556. else {
  557. ch->waiting_end_prog = 1;
  558. omap_dma_deactivate_channel(s, ch);
  559. }
  560. }
  561. if (ch->interrupts & END_BLOCK_INTR)
  562. ch->status |= END_BLOCK_INTR;
  563. }
  564. /* Update packet number */
  565. if (ch->fs && ch->bs) {
  566. a->pck_element += min_elems;
  567. a->pck_element %= a->pck_elements;
  568. }
  569. /* TODO: check if we really need to update anything here or perhaps we
  570. * can skip part of this. */
  571. #ifndef MULTI_REQ
  572. if (dma->update) {
  573. #endif
  574. a->element += min_elems;
  575. frames = a->element / a->elements;
  576. a->element = a->element % a->elements;
  577. a->frame += frames;
  578. a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0];
  579. a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1];
  580. /* If the channel is async, update cpc */
  581. if (!ch->sync && frames)
  582. ch->cpc = a->dest & 0xffff;
  583. /* TODO: if the destination port is IMIF or EMIFF, set the dirty
  584. * bits on it. */
  585. #ifndef MULTI_REQ
  586. }
  587. #else
  588. }
  589. #endif
  590. omap_dma_interrupts_update(s);
  591. }
  592. void omap_dma_reset(struct soc_dma_s *dma)
  593. {
  594. int i;
  595. struct omap_dma_s *s = dma->opaque;
  596. soc_dma_reset(s->dma);
  597. s->gcr = 0x0004;
  598. s->ocp = 0x00000000;
  599. memset(&s->irqstat, 0, sizeof(s->irqstat));
  600. memset(&s->irqen, 0, sizeof(s->irqen));
  601. s->lcd_ch.src = emiff;
  602. s->lcd_ch.condition = 0;
  603. s->lcd_ch.interrupts = 0;
  604. s->lcd_ch.dual = 0;
  605. omap_dma_enable_3_1_mapping(s);
  606. for (i = 0; i < s->chans; i ++) {
  607. s->ch[i].suspend = 0;
  608. s->ch[i].prefetch = 0;
  609. s->ch[i].buf_disable = 0;
  610. s->ch[i].src_sync = 0;
  611. memset(&s->ch[i].burst, 0, sizeof(s->ch[i].burst));
  612. memset(&s->ch[i].port, 0, sizeof(s->ch[i].port));
  613. memset(&s->ch[i].mode, 0, sizeof(s->ch[i].mode));
  614. memset(&s->ch[i].frame_index, 0, sizeof(s->ch[i].frame_index));
  615. memset(&s->ch[i].element_index, 0, sizeof(s->ch[i].element_index));
  616. memset(&s->ch[i].endian, 0, sizeof(s->ch[i].endian));
  617. memset(&s->ch[i].endian_lock, 0, sizeof(s->ch[i].endian_lock));
  618. memset(&s->ch[i].translate, 0, sizeof(s->ch[i].translate));
  619. s->ch[i].write_mode = 0;
  620. s->ch[i].data_type = 0;
  621. s->ch[i].transparent_copy = 0;
  622. s->ch[i].constant_fill = 0;
  623. s->ch[i].color = 0x00000000;
  624. s->ch[i].end_prog = 0;
  625. s->ch[i].repeat = 0;
  626. s->ch[i].auto_init = 0;
  627. s->ch[i].link_enabled = 0;
  628. s->ch[i].interrupts = 0x0003;
  629. s->ch[i].status = 0;
  630. s->ch[i].cstatus = 0;
  631. s->ch[i].active = 0;
  632. s->ch[i].enable = 0;
  633. s->ch[i].sync = 0;
  634. s->ch[i].pending_request = 0;
  635. s->ch[i].waiting_end_prog = 0;
  636. s->ch[i].cpc = 0x0000;
  637. s->ch[i].fs = 0;
  638. s->ch[i].bs = 0;
  639. s->ch[i].omap_3_1_compatible_disable = 0;
  640. memset(&s->ch[i].active_set, 0, sizeof(s->ch[i].active_set));
  641. s->ch[i].priority = 0;
  642. s->ch[i].interleave_disabled = 0;
  643. s->ch[i].type = 0;
  644. }
  645. }
  646. static int omap_dma_ch_reg_read(struct omap_dma_s *s,
  647. struct omap_dma_channel_s *ch, int reg, uint16_t *value)
  648. {
  649. switch (reg) {
  650. case 0x00: /* SYS_DMA_CSDP_CH0 */
  651. *value = (ch->burst[1] << 14) |
  652. (ch->pack[1] << 13) |
  653. (ch->port[1] << 9) |
  654. (ch->burst[0] << 7) |
  655. (ch->pack[0] << 6) |
  656. (ch->port[0] << 2) |
  657. (ch->data_type >> 1);
  658. break;
  659. case 0x02: /* SYS_DMA_CCR_CH0 */
  660. if (s->model <= omap_dma_3_1)
  661. *value = 0 << 10; /* FIFO_FLUSH reads as 0 */
  662. else
  663. *value = ch->omap_3_1_compatible_disable << 10;
  664. *value |= (ch->mode[1] << 14) |
  665. (ch->mode[0] << 12) |
  666. (ch->end_prog << 11) |
  667. (ch->repeat << 9) |
  668. (ch->auto_init << 8) |
  669. (ch->enable << 7) |
  670. (ch->priority << 6) |
  671. (ch->fs << 5) | ch->sync;
  672. break;
  673. case 0x04: /* SYS_DMA_CICR_CH0 */
  674. *value = ch->interrupts;
  675. break;
  676. case 0x06: /* SYS_DMA_CSR_CH0 */
  677. *value = ch->status;
  678. ch->status &= SYNC;
  679. if (!ch->omap_3_1_compatible_disable && ch->sibling) {
  680. *value |= (ch->sibling->status & 0x3f) << 6;
  681. ch->sibling->status &= SYNC;
  682. }
  683. qemu_irq_lower(ch->irq);
  684. break;
  685. case 0x08: /* SYS_DMA_CSSA_L_CH0 */
  686. *value = ch->addr[0] & 0x0000ffff;
  687. break;
  688. case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
  689. *value = ch->addr[0] >> 16;
  690. break;
  691. case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
  692. *value = ch->addr[1] & 0x0000ffff;
  693. break;
  694. case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
  695. *value = ch->addr[1] >> 16;
  696. break;
  697. case 0x10: /* SYS_DMA_CEN_CH0 */
  698. *value = ch->elements;
  699. break;
  700. case 0x12: /* SYS_DMA_CFN_CH0 */
  701. *value = ch->frames;
  702. break;
  703. case 0x14: /* SYS_DMA_CFI_CH0 */
  704. *value = ch->frame_index[0];
  705. break;
  706. case 0x16: /* SYS_DMA_CEI_CH0 */
  707. *value = ch->element_index[0];
  708. break;
  709. case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
  710. if (ch->omap_3_1_compatible_disable)
  711. *value = ch->active_set.src & 0xffff; /* CSAC */
  712. else
  713. *value = ch->cpc;
  714. break;
  715. case 0x1a: /* DMA_CDAC */
  716. *value = ch->active_set.dest & 0xffff; /* CDAC */
  717. break;
  718. case 0x1c: /* DMA_CDEI */
  719. *value = ch->element_index[1];
  720. break;
  721. case 0x1e: /* DMA_CDFI */
  722. *value = ch->frame_index[1];
  723. break;
  724. case 0x20: /* DMA_COLOR_L */
  725. *value = ch->color & 0xffff;
  726. break;
  727. case 0x22: /* DMA_COLOR_U */
  728. *value = ch->color >> 16;
  729. break;
  730. case 0x24: /* DMA_CCR2 */
  731. *value = (ch->bs << 2) |
  732. (ch->transparent_copy << 1) |
  733. ch->constant_fill;
  734. break;
  735. case 0x28: /* DMA_CLNK_CTRL */
  736. *value = (ch->link_enabled << 15) |
  737. (ch->link_next_ch & 0xf);
  738. break;
  739. case 0x2a: /* DMA_LCH_CTRL */
  740. *value = (ch->interleave_disabled << 15) |
  741. ch->type;
  742. break;
  743. default:
  744. return 1;
  745. }
  746. return 0;
  747. }
  748. static int omap_dma_ch_reg_write(struct omap_dma_s *s,
  749. struct omap_dma_channel_s *ch, int reg, uint16_t value)
  750. {
  751. switch (reg) {
  752. case 0x00: /* SYS_DMA_CSDP_CH0 */
  753. ch->burst[1] = (value & 0xc000) >> 14;
  754. ch->pack[1] = (value & 0x2000) >> 13;
  755. ch->port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
  756. ch->burst[0] = (value & 0x0180) >> 7;
  757. ch->pack[0] = (value & 0x0040) >> 6;
  758. ch->port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
  759. if (ch->port[0] >= __omap_dma_port_last) {
  760. qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid DMA port %i\n",
  761. __func__, ch->port[0]);
  762. }
  763. if (ch->port[1] >= __omap_dma_port_last) {
  764. qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid DMA port %i\n",
  765. __func__, ch->port[1]);
  766. }
  767. ch->data_type = 1 << (value & 3);
  768. if ((value & 3) == 3) {
  769. qemu_log_mask(LOG_GUEST_ERROR,
  770. "%s: bad data_type for DMA channel\n", __func__);
  771. ch->data_type >>= 1;
  772. }
  773. break;
  774. case 0x02: /* SYS_DMA_CCR_CH0 */
  775. ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
  776. ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
  777. ch->end_prog = (value & 0x0800) >> 11;
  778. if (s->model >= omap_dma_3_2)
  779. ch->omap_3_1_compatible_disable = (value >> 10) & 0x1;
  780. ch->repeat = (value & 0x0200) >> 9;
  781. ch->auto_init = (value & 0x0100) >> 8;
  782. ch->priority = (value & 0x0040) >> 6;
  783. ch->fs = (value & 0x0020) >> 5;
  784. ch->sync = value & 0x001f;
  785. if (value & 0x0080)
  786. omap_dma_enable_channel(s, ch);
  787. else
  788. omap_dma_disable_channel(s, ch);
  789. if (ch->end_prog)
  790. omap_dma_channel_end_prog(s, ch);
  791. break;
  792. case 0x04: /* SYS_DMA_CICR_CH0 */
  793. ch->interrupts = value & 0x3f;
  794. break;
  795. case 0x06: /* SYS_DMA_CSR_CH0 */
  796. OMAP_RO_REG((hwaddr) reg);
  797. break;
  798. case 0x08: /* SYS_DMA_CSSA_L_CH0 */
  799. ch->addr[0] &= 0xffff0000;
  800. ch->addr[0] |= value;
  801. break;
  802. case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
  803. ch->addr[0] &= 0x0000ffff;
  804. ch->addr[0] |= (uint32_t) value << 16;
  805. break;
  806. case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
  807. ch->addr[1] &= 0xffff0000;
  808. ch->addr[1] |= value;
  809. break;
  810. case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
  811. ch->addr[1] &= 0x0000ffff;
  812. ch->addr[1] |= (uint32_t) value << 16;
  813. break;
  814. case 0x10: /* SYS_DMA_CEN_CH0 */
  815. ch->elements = value;
  816. break;
  817. case 0x12: /* SYS_DMA_CFN_CH0 */
  818. ch->frames = value;
  819. break;
  820. case 0x14: /* SYS_DMA_CFI_CH0 */
  821. ch->frame_index[0] = (int16_t) value;
  822. break;
  823. case 0x16: /* SYS_DMA_CEI_CH0 */
  824. ch->element_index[0] = (int16_t) value;
  825. break;
  826. case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
  827. OMAP_RO_REG((hwaddr) reg);
  828. break;
  829. case 0x1c: /* DMA_CDEI */
  830. ch->element_index[1] = (int16_t) value;
  831. break;
  832. case 0x1e: /* DMA_CDFI */
  833. ch->frame_index[1] = (int16_t) value;
  834. break;
  835. case 0x20: /* DMA_COLOR_L */
  836. ch->color &= 0xffff0000;
  837. ch->color |= value;
  838. break;
  839. case 0x22: /* DMA_COLOR_U */
  840. ch->color &= 0xffff;
  841. ch->color |= (uint32_t)value << 16;
  842. break;
  843. case 0x24: /* DMA_CCR2 */
  844. ch->bs = (value >> 2) & 0x1;
  845. ch->transparent_copy = (value >> 1) & 0x1;
  846. ch->constant_fill = value & 0x1;
  847. break;
  848. case 0x28: /* DMA_CLNK_CTRL */
  849. ch->link_enabled = (value >> 15) & 0x1;
  850. if (value & (1 << 14)) { /* Stop_Lnk */
  851. ch->link_enabled = 0;
  852. omap_dma_disable_channel(s, ch);
  853. }
  854. ch->link_next_ch = value & 0x1f;
  855. break;
  856. case 0x2a: /* DMA_LCH_CTRL */
  857. ch->interleave_disabled = (value >> 15) & 0x1;
  858. ch->type = value & 0xf;
  859. break;
  860. default:
  861. return 1;
  862. }
  863. return 0;
  864. }
  865. static int omap_dma_3_2_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
  866. uint16_t value)
  867. {
  868. switch (offset) {
  869. case 0xbc0: /* DMA_LCD_CSDP */
  870. s->brust_f2 = (value >> 14) & 0x3;
  871. s->pack_f2 = (value >> 13) & 0x1;
  872. s->data_type_f2 = (1 << ((value >> 11) & 0x3));
  873. s->brust_f1 = (value >> 7) & 0x3;
  874. s->pack_f1 = (value >> 6) & 0x1;
  875. s->data_type_f1 = (1 << ((value >> 0) & 0x3));
  876. break;
  877. case 0xbc2: /* DMA_LCD_CCR */
  878. s->mode_f2 = (value >> 14) & 0x3;
  879. s->mode_f1 = (value >> 12) & 0x3;
  880. s->end_prog = (value >> 11) & 0x1;
  881. s->omap_3_1_compatible_disable = (value >> 10) & 0x1;
  882. s->repeat = (value >> 9) & 0x1;
  883. s->auto_init = (value >> 8) & 0x1;
  884. s->running = (value >> 7) & 0x1;
  885. s->priority = (value >> 6) & 0x1;
  886. s->bs = (value >> 4) & 0x1;
  887. break;
  888. case 0xbc4: /* DMA_LCD_CTRL */
  889. s->dst = (value >> 8) & 0x1;
  890. s->src = ((value >> 6) & 0x3) << 1;
  891. s->condition = 0;
  892. /* Assume no bus errors and thus no BUS_ERROR irq bits. */
  893. s->interrupts = (value >> 1) & 1;
  894. s->dual = value & 1;
  895. break;
  896. case 0xbc8: /* TOP_B1_L */
  897. s->src_f1_top &= 0xffff0000;
  898. s->src_f1_top |= 0x0000ffff & value;
  899. break;
  900. case 0xbca: /* TOP_B1_U */
  901. s->src_f1_top &= 0x0000ffff;
  902. s->src_f1_top |= (uint32_t)value << 16;
  903. break;
  904. case 0xbcc: /* BOT_B1_L */
  905. s->src_f1_bottom &= 0xffff0000;
  906. s->src_f1_bottom |= 0x0000ffff & value;
  907. break;
  908. case 0xbce: /* BOT_B1_U */
  909. s->src_f1_bottom &= 0x0000ffff;
  910. s->src_f1_bottom |= (uint32_t) value << 16;
  911. break;
  912. case 0xbd0: /* TOP_B2_L */
  913. s->src_f2_top &= 0xffff0000;
  914. s->src_f2_top |= 0x0000ffff & value;
  915. break;
  916. case 0xbd2: /* TOP_B2_U */
  917. s->src_f2_top &= 0x0000ffff;
  918. s->src_f2_top |= (uint32_t) value << 16;
  919. break;
  920. case 0xbd4: /* BOT_B2_L */
  921. s->src_f2_bottom &= 0xffff0000;
  922. s->src_f2_bottom |= 0x0000ffff & value;
  923. break;
  924. case 0xbd6: /* BOT_B2_U */
  925. s->src_f2_bottom &= 0x0000ffff;
  926. s->src_f2_bottom |= (uint32_t) value << 16;
  927. break;
  928. case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
  929. s->element_index_f1 = value;
  930. break;
  931. case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
  932. s->frame_index_f1 &= 0xffff0000;
  933. s->frame_index_f1 |= 0x0000ffff & value;
  934. break;
  935. case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
  936. s->frame_index_f1 &= 0x0000ffff;
  937. s->frame_index_f1 |= (uint32_t) value << 16;
  938. break;
  939. case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
  940. s->element_index_f2 = value;
  941. break;
  942. case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
  943. s->frame_index_f2 &= 0xffff0000;
  944. s->frame_index_f2 |= 0x0000ffff & value;
  945. break;
  946. case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
  947. s->frame_index_f2 &= 0x0000ffff;
  948. s->frame_index_f2 |= (uint32_t) value << 16;
  949. break;
  950. case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
  951. s->elements_f1 = value;
  952. break;
  953. case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
  954. s->frames_f1 = value;
  955. break;
  956. case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
  957. s->elements_f2 = value;
  958. break;
  959. case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
  960. s->frames_f2 = value;
  961. break;
  962. case 0xbea: /* DMA_LCD_LCH_CTRL */
  963. s->lch_type = value & 0xf;
  964. break;
  965. default:
  966. return 1;
  967. }
  968. return 0;
  969. }
  970. static int omap_dma_3_2_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
  971. uint16_t *ret)
  972. {
  973. switch (offset) {
  974. case 0xbc0: /* DMA_LCD_CSDP */
  975. *ret = (s->brust_f2 << 14) |
  976. (s->pack_f2 << 13) |
  977. ((s->data_type_f2 >> 1) << 11) |
  978. (s->brust_f1 << 7) |
  979. (s->pack_f1 << 6) |
  980. ((s->data_type_f1 >> 1) << 0);
  981. break;
  982. case 0xbc2: /* DMA_LCD_CCR */
  983. *ret = (s->mode_f2 << 14) |
  984. (s->mode_f1 << 12) |
  985. (s->end_prog << 11) |
  986. (s->omap_3_1_compatible_disable << 10) |
  987. (s->repeat << 9) |
  988. (s->auto_init << 8) |
  989. (s->running << 7) |
  990. (s->priority << 6) |
  991. (s->bs << 4);
  992. break;
  993. case 0xbc4: /* DMA_LCD_CTRL */
  994. qemu_irq_lower(s->irq);
  995. *ret = (s->dst << 8) |
  996. ((s->src & 0x6) << 5) |
  997. (s->condition << 3) |
  998. (s->interrupts << 1) |
  999. s->dual;
  1000. break;
  1001. case 0xbc8: /* TOP_B1_L */
  1002. *ret = s->src_f1_top & 0xffff;
  1003. break;
  1004. case 0xbca: /* TOP_B1_U */
  1005. *ret = s->src_f1_top >> 16;
  1006. break;
  1007. case 0xbcc: /* BOT_B1_L */
  1008. *ret = s->src_f1_bottom & 0xffff;
  1009. break;
  1010. case 0xbce: /* BOT_B1_U */
  1011. *ret = s->src_f1_bottom >> 16;
  1012. break;
  1013. case 0xbd0: /* TOP_B2_L */
  1014. *ret = s->src_f2_top & 0xffff;
  1015. break;
  1016. case 0xbd2: /* TOP_B2_U */
  1017. *ret = s->src_f2_top >> 16;
  1018. break;
  1019. case 0xbd4: /* BOT_B2_L */
  1020. *ret = s->src_f2_bottom & 0xffff;
  1021. break;
  1022. case 0xbd6: /* BOT_B2_U */
  1023. *ret = s->src_f2_bottom >> 16;
  1024. break;
  1025. case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
  1026. *ret = s->element_index_f1;
  1027. break;
  1028. case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
  1029. *ret = s->frame_index_f1 & 0xffff;
  1030. break;
  1031. case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
  1032. *ret = s->frame_index_f1 >> 16;
  1033. break;
  1034. case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
  1035. *ret = s->element_index_f2;
  1036. break;
  1037. case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
  1038. *ret = s->frame_index_f2 & 0xffff;
  1039. break;
  1040. case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
  1041. *ret = s->frame_index_f2 >> 16;
  1042. break;
  1043. case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
  1044. *ret = s->elements_f1;
  1045. break;
  1046. case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
  1047. *ret = s->frames_f1;
  1048. break;
  1049. case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
  1050. *ret = s->elements_f2;
  1051. break;
  1052. case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
  1053. *ret = s->frames_f2;
  1054. break;
  1055. case 0xbea: /* DMA_LCD_LCH_CTRL */
  1056. *ret = s->lch_type;
  1057. break;
  1058. default:
  1059. return 1;
  1060. }
  1061. return 0;
  1062. }
  1063. static int omap_dma_3_1_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
  1064. uint16_t value)
  1065. {
  1066. switch (offset) {
  1067. case 0x300: /* SYS_DMA_LCD_CTRL */
  1068. s->src = (value & 0x40) ? imif : emiff;
  1069. s->condition = 0;
  1070. /* Assume no bus errors and thus no BUS_ERROR irq bits. */
  1071. s->interrupts = (value >> 1) & 1;
  1072. s->dual = value & 1;
  1073. break;
  1074. case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
  1075. s->src_f1_top &= 0xffff0000;
  1076. s->src_f1_top |= 0x0000ffff & value;
  1077. break;
  1078. case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
  1079. s->src_f1_top &= 0x0000ffff;
  1080. s->src_f1_top |= (uint32_t)value << 16;
  1081. break;
  1082. case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
  1083. s->src_f1_bottom &= 0xffff0000;
  1084. s->src_f1_bottom |= 0x0000ffff & value;
  1085. break;
  1086. case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
  1087. s->src_f1_bottom &= 0x0000ffff;
  1088. s->src_f1_bottom |= (uint32_t)value << 16;
  1089. break;
  1090. case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
  1091. s->src_f2_top &= 0xffff0000;
  1092. s->src_f2_top |= 0x0000ffff & value;
  1093. break;
  1094. case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
  1095. s->src_f2_top &= 0x0000ffff;
  1096. s->src_f2_top |= (uint32_t)value << 16;
  1097. break;
  1098. case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
  1099. s->src_f2_bottom &= 0xffff0000;
  1100. s->src_f2_bottom |= 0x0000ffff & value;
  1101. break;
  1102. case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
  1103. s->src_f2_bottom &= 0x0000ffff;
  1104. s->src_f2_bottom |= (uint32_t)value << 16;
  1105. break;
  1106. default:
  1107. return 1;
  1108. }
  1109. return 0;
  1110. }
  1111. static int omap_dma_3_1_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
  1112. uint16_t *ret)
  1113. {
  1114. int i;
  1115. switch (offset) {
  1116. case 0x300: /* SYS_DMA_LCD_CTRL */
  1117. i = s->condition;
  1118. s->condition = 0;
  1119. qemu_irq_lower(s->irq);
  1120. *ret = ((s->src == imif) << 6) | (i << 3) |
  1121. (s->interrupts << 1) | s->dual;
  1122. break;
  1123. case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
  1124. *ret = s->src_f1_top & 0xffff;
  1125. break;
  1126. case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
  1127. *ret = s->src_f1_top >> 16;
  1128. break;
  1129. case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
  1130. *ret = s->src_f1_bottom & 0xffff;
  1131. break;
  1132. case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
  1133. *ret = s->src_f1_bottom >> 16;
  1134. break;
  1135. case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
  1136. *ret = s->src_f2_top & 0xffff;
  1137. break;
  1138. case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
  1139. *ret = s->src_f2_top >> 16;
  1140. break;
  1141. case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
  1142. *ret = s->src_f2_bottom & 0xffff;
  1143. break;
  1144. case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
  1145. *ret = s->src_f2_bottom >> 16;
  1146. break;
  1147. default:
  1148. return 1;
  1149. }
  1150. return 0;
  1151. }
  1152. static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value)
  1153. {
  1154. switch (offset) {
  1155. case 0x400: /* SYS_DMA_GCR */
  1156. s->gcr = value;
  1157. break;
  1158. case 0x404: /* DMA_GSCR */
  1159. if (value & 0x8)
  1160. omap_dma_disable_3_1_mapping(s);
  1161. else
  1162. omap_dma_enable_3_1_mapping(s);
  1163. break;
  1164. case 0x408: /* DMA_GRST */
  1165. if (value & 0x1)
  1166. omap_dma_reset(s->dma);
  1167. break;
  1168. default:
  1169. return 1;
  1170. }
  1171. return 0;
  1172. }
  1173. static int omap_dma_sys_read(struct omap_dma_s *s, int offset,
  1174. uint16_t *ret)
  1175. {
  1176. switch (offset) {
  1177. case 0x400: /* SYS_DMA_GCR */
  1178. *ret = s->gcr;
  1179. break;
  1180. case 0x404: /* DMA_GSCR */
  1181. *ret = s->omap_3_1_mapping_disabled << 3;
  1182. break;
  1183. case 0x408: /* DMA_GRST */
  1184. *ret = 0;
  1185. break;
  1186. case 0x442: /* DMA_HW_ID */
  1187. case 0x444: /* DMA_PCh2_ID */
  1188. case 0x446: /* DMA_PCh0_ID */
  1189. case 0x448: /* DMA_PCh1_ID */
  1190. case 0x44a: /* DMA_PChG_ID */
  1191. case 0x44c: /* DMA_PChD_ID */
  1192. *ret = 1;
  1193. break;
  1194. case 0x44e: /* DMA_CAPS_0_U */
  1195. *ret = (s->caps[0] >> 16) & 0xffff;
  1196. break;
  1197. case 0x450: /* DMA_CAPS_0_L */
  1198. *ret = (s->caps[0] >> 0) & 0xffff;
  1199. break;
  1200. case 0x452: /* DMA_CAPS_1_U */
  1201. *ret = (s->caps[1] >> 16) & 0xffff;
  1202. break;
  1203. case 0x454: /* DMA_CAPS_1_L */
  1204. *ret = (s->caps[1] >> 0) & 0xffff;
  1205. break;
  1206. case 0x456: /* DMA_CAPS_2 */
  1207. *ret = s->caps[2];
  1208. break;
  1209. case 0x458: /* DMA_CAPS_3 */
  1210. *ret = s->caps[3];
  1211. break;
  1212. case 0x45a: /* DMA_CAPS_4 */
  1213. *ret = s->caps[4];
  1214. break;
  1215. case 0x460: /* DMA_PCh2_SR */
  1216. case 0x480: /* DMA_PCh0_SR */
  1217. case 0x482: /* DMA_PCh1_SR */
  1218. case 0x4c0: /* DMA_PChD_SR_0 */
  1219. qemu_log_mask(LOG_UNIMP,
  1220. "%s: Physical Channel Status Registers not implemented\n",
  1221. __func__);
  1222. *ret = 0xff;
  1223. break;
  1224. default:
  1225. return 1;
  1226. }
  1227. return 0;
  1228. }
  1229. static uint64_t omap_dma_read(void *opaque, hwaddr addr, unsigned size)
  1230. {
  1231. struct omap_dma_s *s = opaque;
  1232. int reg, ch;
  1233. uint16_t ret;
  1234. if (size != 2) {
  1235. return omap_badwidth_read16(opaque, addr);
  1236. }
  1237. switch (addr) {
  1238. case 0x300 ... 0x3fe:
  1239. if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
  1240. if (omap_dma_3_1_lcd_read(&s->lcd_ch, addr, &ret))
  1241. break;
  1242. return ret;
  1243. }
  1244. /* Fall through. */
  1245. case 0x000 ... 0x2fe:
  1246. reg = addr & 0x3f;
  1247. ch = (addr >> 6) & 0x0f;
  1248. if (omap_dma_ch_reg_read(s, &s->ch[ch], reg, &ret))
  1249. break;
  1250. return ret;
  1251. case 0x404 ... 0x4fe:
  1252. if (s->model <= omap_dma_3_1)
  1253. break;
  1254. /* Fall through. */
  1255. case 0x400:
  1256. if (omap_dma_sys_read(s, addr, &ret))
  1257. break;
  1258. return ret;
  1259. case 0xb00 ... 0xbfe:
  1260. if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
  1261. if (omap_dma_3_2_lcd_read(&s->lcd_ch, addr, &ret))
  1262. break;
  1263. return ret;
  1264. }
  1265. break;
  1266. }
  1267. OMAP_BAD_REG(addr);
  1268. return 0;
  1269. }
  1270. static void omap_dma_write(void *opaque, hwaddr addr,
  1271. uint64_t value, unsigned size)
  1272. {
  1273. struct omap_dma_s *s = opaque;
  1274. int reg, ch;
  1275. if (size != 2) {
  1276. omap_badwidth_write16(opaque, addr, value);
  1277. return;
  1278. }
  1279. switch (addr) {
  1280. case 0x300 ... 0x3fe:
  1281. if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
  1282. if (omap_dma_3_1_lcd_write(&s->lcd_ch, addr, value))
  1283. break;
  1284. return;
  1285. }
  1286. /* Fall through. */
  1287. case 0x000 ... 0x2fe:
  1288. reg = addr & 0x3f;
  1289. ch = (addr >> 6) & 0x0f;
  1290. if (omap_dma_ch_reg_write(s, &s->ch[ch], reg, value))
  1291. break;
  1292. return;
  1293. case 0x404 ... 0x4fe:
  1294. if (s->model <= omap_dma_3_1)
  1295. break;
  1296. /* fall through */
  1297. case 0x400:
  1298. if (omap_dma_sys_write(s, addr, value))
  1299. break;
  1300. return;
  1301. case 0xb00 ... 0xbfe:
  1302. if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
  1303. if (omap_dma_3_2_lcd_write(&s->lcd_ch, addr, value))
  1304. break;
  1305. return;
  1306. }
  1307. break;
  1308. }
  1309. OMAP_BAD_REG(addr);
  1310. }
  1311. static const MemoryRegionOps omap_dma_ops = {
  1312. .read = omap_dma_read,
  1313. .write = omap_dma_write,
  1314. .endianness = DEVICE_NATIVE_ENDIAN,
  1315. };
  1316. static void omap_dma_request(void *opaque, int drq, int req)
  1317. {
  1318. struct omap_dma_s *s = opaque;
  1319. /* The request pins are level triggered in QEMU. */
  1320. if (req) {
  1321. if (~s->dma->drqbmp & (1ULL << drq)) {
  1322. s->dma->drqbmp |= 1ULL << drq;
  1323. omap_dma_process_request(s, drq);
  1324. }
  1325. } else
  1326. s->dma->drqbmp &= ~(1ULL << drq);
  1327. }
  1328. /* XXX: this won't be needed once soc_dma knows about clocks. */
  1329. static void omap_dma_clk_update(void *opaque, int line, int on)
  1330. {
  1331. struct omap_dma_s *s = opaque;
  1332. int i;
  1333. s->dma->freq = omap_clk_getrate(s->clk);
  1334. for (i = 0; i < s->chans; i ++)
  1335. if (s->ch[i].active)
  1336. soc_dma_set_request(s->ch[i].dma, on);
  1337. }
  1338. static void omap_dma_setcaps(struct omap_dma_s *s)
  1339. {
  1340. switch (s->model) {
  1341. default:
  1342. case omap_dma_3_1:
  1343. break;
  1344. case omap_dma_3_2:
  1345. /* XXX Only available for sDMA */
  1346. s->caps[0] =
  1347. (1 << 19) | /* Constant Fill Capability */
  1348. (1 << 18); /* Transparent BLT Capability */
  1349. s->caps[1] =
  1350. (1 << 1); /* 1-bit palettized capability (DMA 3.2 only) */
  1351. s->caps[2] =
  1352. (1 << 8) | /* SEPARATE_SRC_AND_DST_INDEX_CPBLTY */
  1353. (1 << 7) | /* DST_DOUBLE_INDEX_ADRS_CPBLTY */
  1354. (1 << 6) | /* DST_SINGLE_INDEX_ADRS_CPBLTY */
  1355. (1 << 5) | /* DST_POST_INCRMNT_ADRS_CPBLTY */
  1356. (1 << 4) | /* DST_CONST_ADRS_CPBLTY */
  1357. (1 << 3) | /* SRC_DOUBLE_INDEX_ADRS_CPBLTY */
  1358. (1 << 2) | /* SRC_SINGLE_INDEX_ADRS_CPBLTY */
  1359. (1 << 1) | /* SRC_POST_INCRMNT_ADRS_CPBLTY */
  1360. (1 << 0); /* SRC_CONST_ADRS_CPBLTY */
  1361. s->caps[3] =
  1362. (1 << 6) | /* BLOCK_SYNCHR_CPBLTY (DMA 4 only) */
  1363. (1 << 7) | /* PKT_SYNCHR_CPBLTY (DMA 4 only) */
  1364. (1 << 5) | /* CHANNEL_CHAINING_CPBLTY */
  1365. (1 << 4) | /* LCh_INTERLEAVE_CPBLTY */
  1366. (1 << 3) | /* AUTOINIT_REPEAT_CPBLTY (DMA 3.2 only) */
  1367. (1 << 2) | /* AUTOINIT_ENDPROG_CPBLTY (DMA 3.2 only) */
  1368. (1 << 1) | /* FRAME_SYNCHR_CPBLTY */
  1369. (1 << 0); /* ELMNT_SYNCHR_CPBLTY */
  1370. s->caps[4] =
  1371. (1 << 7) | /* PKT_INTERRUPT_CPBLTY (DMA 4 only) */
  1372. (1 << 6) | /* SYNC_STATUS_CPBLTY */
  1373. (1 << 5) | /* BLOCK_INTERRUPT_CPBLTY */
  1374. (1 << 4) | /* LAST_FRAME_INTERRUPT_CPBLTY */
  1375. (1 << 3) | /* FRAME_INTERRUPT_CPBLTY */
  1376. (1 << 2) | /* HALF_FRAME_INTERRUPT_CPBLTY */
  1377. (1 << 1) | /* EVENT_DROP_INTERRUPT_CPBLTY */
  1378. (1 << 0); /* TIMEOUT_INTERRUPT_CPBLTY (DMA 3.2 only) */
  1379. break;
  1380. }
  1381. }
  1382. struct soc_dma_s *omap_dma_init(hwaddr base, qemu_irq *irqs,
  1383. MemoryRegion *sysmem,
  1384. qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk,
  1385. enum omap_dma_model model)
  1386. {
  1387. int num_irqs, memsize, i;
  1388. struct omap_dma_s *s = g_new0(struct omap_dma_s, 1);
  1389. if (model <= omap_dma_3_1) {
  1390. num_irqs = 6;
  1391. memsize = 0x800;
  1392. } else {
  1393. num_irqs = 16;
  1394. memsize = 0xc00;
  1395. }
  1396. s->model = model;
  1397. s->mpu = mpu;
  1398. s->clk = clk;
  1399. s->lcd_ch.irq = lcd_irq;
  1400. s->lcd_ch.mpu = mpu;
  1401. s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16);
  1402. s->dma->freq = omap_clk_getrate(clk);
  1403. s->dma->transfer_fn = omap_dma_transfer_generic;
  1404. s->dma->setup_fn = omap_dma_transfer_setup;
  1405. s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
  1406. s->dma->opaque = s;
  1407. while (num_irqs --)
  1408. s->ch[num_irqs].irq = irqs[num_irqs];
  1409. for (i = 0; i < 3; i ++) {
  1410. s->ch[i].sibling = &s->ch[i + 6];
  1411. s->ch[i + 6].sibling = &s->ch[i];
  1412. }
  1413. for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) {
  1414. s->ch[i].dma = &s->dma->ch[i];
  1415. s->dma->ch[i].opaque = &s->ch[i];
  1416. }
  1417. omap_dma_setcaps(s);
  1418. omap_clk_adduser(s->clk, qemu_allocate_irq(omap_dma_clk_update, s, 0));
  1419. omap_dma_reset(s->dma);
  1420. omap_dma_clk_update(s, 0, 1);
  1421. memory_region_init_io(&s->iomem, NULL, &omap_dma_ops, s, "omap.dma", memsize);
  1422. memory_region_add_subregion(sysmem, base, &s->iomem);
  1423. mpu->drq = s->dma->drq;
  1424. return s->dma;
  1425. }
  1426. struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma)
  1427. {
  1428. struct omap_dma_s *s = dma->opaque;
  1429. return &s->lcd_ch;
  1430. }