serial.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996
  1. /*
  2. * QEMU 16550A UART emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2008 Citrix Systems, Inc.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a copy
  8. * of this software and associated documentation files (the "Software"), to deal
  9. * in the Software without restriction, including without limitation the rights
  10. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11. * copies of the Software, and to permit persons to whom the Software is
  12. * furnished to do so, subject to the following conditions:
  13. *
  14. * The above copyright notice and this permission notice shall be included in
  15. * all copies or substantial portions of the Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23. * THE SOFTWARE.
  24. */
  25. #include "qemu/osdep.h"
  26. #include "qemu/bitops.h"
  27. #include "hw/char/serial.h"
  28. #include "hw/irq.h"
  29. #include "migration/vmstate.h"
  30. #include "chardev/char-serial.h"
  31. #include "qapi/error.h"
  32. #include "qemu/timer.h"
  33. #include "system/reset.h"
  34. #include "system/runstate.h"
  35. #include "qemu/error-report.h"
  36. #include "trace.h"
  37. #include "hw/qdev-properties.h"
  38. #include "hw/qdev-properties-system.h"
  39. #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
  40. #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
  41. #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
  42. #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
  43. #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
  44. #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
  45. #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
  46. #define UART_IIR_MSI 0x00 /* Modem status interrupt */
  47. #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
  48. #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
  49. #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
  50. #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
  51. #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functioning */
  52. #define UART_IIR_FE 0xC0 /* Fifo enabled */
  53. /*
  54. * These are the definitions for the Modem Control Register
  55. */
  56. #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
  57. #define UART_MCR_OUT2 0x08 /* Out2 complement */
  58. #define UART_MCR_OUT1 0x04 /* Out1 complement */
  59. #define UART_MCR_RTS 0x02 /* RTS complement */
  60. #define UART_MCR_DTR 0x01 /* DTR complement */
  61. /*
  62. * These are the definitions for the Modem Status Register
  63. */
  64. #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
  65. #define UART_MSR_RI 0x40 /* Ring Indicator */
  66. #define UART_MSR_DSR 0x20 /* Data Set Ready */
  67. #define UART_MSR_CTS 0x10 /* Clear to Send */
  68. #define UART_MSR_DDCD 0x08 /* Delta DCD */
  69. #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
  70. #define UART_MSR_DDSR 0x02 /* Delta DSR */
  71. #define UART_MSR_DCTS 0x01 /* Delta CTS */
  72. #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
  73. #define UART_LSR_TEMT 0x40 /* Transmitter empty */
  74. #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
  75. #define UART_LSR_BI 0x10 /* Break interrupt indicator */
  76. #define UART_LSR_FE 0x08 /* Frame error indicator */
  77. #define UART_LSR_PE 0x04 /* Parity error indicator */
  78. #define UART_LSR_OE 0x02 /* Overrun error indicator */
  79. #define UART_LSR_DR 0x01 /* Receiver data ready */
  80. #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
  81. /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
  82. #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
  83. #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
  84. #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
  85. #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
  86. #define UART_FCR_DMS 0x08 /* DMA Mode Select */
  87. #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
  88. #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
  89. #define UART_FCR_FE 0x01 /* FIFO Enable */
  90. #define MAX_XMIT_RETRY 4
  91. static void serial_receive1(void *opaque, const uint8_t *buf, int size);
  92. static void serial_xmit(SerialState *s);
  93. static inline void recv_fifo_put(SerialState *s, uint8_t chr)
  94. {
  95. /* Receive overruns do not overwrite FIFO contents. */
  96. if (!fifo8_is_full(&s->recv_fifo)) {
  97. fifo8_push(&s->recv_fifo, chr);
  98. } else {
  99. s->lsr |= UART_LSR_OE;
  100. }
  101. }
  102. static void serial_update_irq(SerialState *s)
  103. {
  104. uint8_t tmp_iir = UART_IIR_NO_INT;
  105. if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
  106. tmp_iir = UART_IIR_RLSI;
  107. } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
  108. /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
  109. * this is not in the specification but is observed on existing
  110. * hardware. */
  111. tmp_iir = UART_IIR_CTI;
  112. } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
  113. (!(s->fcr & UART_FCR_FE) ||
  114. s->recv_fifo.num >= s->recv_fifo_itl)) {
  115. tmp_iir = UART_IIR_RDI;
  116. } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
  117. tmp_iir = UART_IIR_THRI;
  118. } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
  119. tmp_iir = UART_IIR_MSI;
  120. }
  121. s->iir = tmp_iir | (s->iir & 0xF0);
  122. if (tmp_iir != UART_IIR_NO_INT) {
  123. qemu_irq_raise(s->irq);
  124. } else {
  125. qemu_irq_lower(s->irq);
  126. }
  127. }
  128. static void serial_update_parameters(SerialState *s)
  129. {
  130. float speed;
  131. int parity, data_bits, stop_bits, frame_size;
  132. QEMUSerialSetParams ssp;
  133. /* Start bit. */
  134. frame_size = 1;
  135. if (s->lcr & 0x08) {
  136. /* Parity bit. */
  137. frame_size++;
  138. if (s->lcr & 0x10)
  139. parity = 'E';
  140. else
  141. parity = 'O';
  142. } else {
  143. parity = 'N';
  144. }
  145. if (s->lcr & 0x04) {
  146. stop_bits = 2;
  147. } else {
  148. stop_bits = 1;
  149. }
  150. data_bits = (s->lcr & 0x03) + 5;
  151. frame_size += data_bits + stop_bits;
  152. /* Zero divisor should give about 3500 baud */
  153. speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider;
  154. ssp.speed = speed;
  155. ssp.parity = parity;
  156. ssp.data_bits = data_bits;
  157. ssp.stop_bits = stop_bits;
  158. s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
  159. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
  160. trace_serial_update_parameters(speed, parity, data_bits, stop_bits);
  161. }
  162. static void serial_update_msl(SerialState *s)
  163. {
  164. uint8_t omsr;
  165. int flags;
  166. timer_del(s->modem_status_poll);
  167. if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
  168. &flags) == -ENOTSUP) {
  169. s->poll_msl = -1;
  170. return;
  171. }
  172. omsr = s->msr;
  173. s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
  174. s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
  175. s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
  176. s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
  177. if (s->msr != omsr) {
  178. /* Set delta bits */
  179. s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
  180. /* UART_MSR_TERI only if change was from 1 -> 0 */
  181. if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
  182. s->msr &= ~UART_MSR_TERI;
  183. serial_update_irq(s);
  184. }
  185. /* The real 16550A apparently has a 250ns response latency to line status changes.
  186. We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
  187. if (s->poll_msl) {
  188. timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  189. NANOSECONDS_PER_SECOND / 100);
  190. }
  191. }
  192. static gboolean serial_watch_cb(void *do_not_use, GIOCondition cond,
  193. void *opaque)
  194. {
  195. SerialState *s = opaque;
  196. s->watch_tag = 0;
  197. serial_xmit(s);
  198. return G_SOURCE_REMOVE;
  199. }
  200. static void serial_xmit(SerialState *s)
  201. {
  202. do {
  203. assert(!(s->lsr & UART_LSR_TEMT));
  204. if (s->tsr_retry == 0) {
  205. assert(!(s->lsr & UART_LSR_THRE));
  206. if (s->fcr & UART_FCR_FE) {
  207. assert(!fifo8_is_empty(&s->xmit_fifo));
  208. s->tsr = fifo8_pop(&s->xmit_fifo);
  209. if (!s->xmit_fifo.num) {
  210. s->lsr |= UART_LSR_THRE;
  211. }
  212. } else {
  213. s->tsr = s->thr;
  214. s->lsr |= UART_LSR_THRE;
  215. }
  216. if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
  217. s->thr_ipending = 1;
  218. serial_update_irq(s);
  219. }
  220. }
  221. if (s->mcr & UART_MCR_LOOP) {
  222. /* in loopback mode, say that we just received a char */
  223. serial_receive1(s, &s->tsr, 1);
  224. } else {
  225. int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1);
  226. if ((rc == 0 ||
  227. (rc == -1 && errno == EAGAIN)) &&
  228. s->tsr_retry < MAX_XMIT_RETRY) {
  229. assert(s->watch_tag == 0);
  230. s->watch_tag =
  231. qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  232. serial_watch_cb, s);
  233. if (s->watch_tag > 0) {
  234. s->tsr_retry++;
  235. return;
  236. }
  237. }
  238. }
  239. s->tsr_retry = 0;
  240. /* Transmit another byte if it is already available. It is only
  241. possible when FIFO is enabled and not empty. */
  242. } while (!(s->lsr & UART_LSR_THRE));
  243. s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  244. s->lsr |= UART_LSR_TEMT;
  245. }
  246. /* Setter for FCR.
  247. is_load flag means, that value is set while loading VM state
  248. and interrupt should not be invoked */
  249. static void serial_write_fcr(SerialState *s, uint8_t val)
  250. {
  251. /* Set fcr - val only has the bits that are supposed to "stick" */
  252. s->fcr = val;
  253. if (val & UART_FCR_FE) {
  254. s->iir |= UART_IIR_FE;
  255. /* Set recv_fifo trigger Level */
  256. switch (val & 0xC0) {
  257. case UART_FCR_ITL_1:
  258. s->recv_fifo_itl = 1;
  259. break;
  260. case UART_FCR_ITL_2:
  261. s->recv_fifo_itl = 4;
  262. break;
  263. case UART_FCR_ITL_3:
  264. s->recv_fifo_itl = 8;
  265. break;
  266. case UART_FCR_ITL_4:
  267. s->recv_fifo_itl = 14;
  268. break;
  269. }
  270. } else {
  271. s->iir &= ~UART_IIR_FE;
  272. }
  273. }
  274. static void serial_update_tiocm(SerialState *s)
  275. {
  276. int flags;
  277. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
  278. flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
  279. if (s->mcr & UART_MCR_RTS) {
  280. flags |= CHR_TIOCM_RTS;
  281. }
  282. if (s->mcr & UART_MCR_DTR) {
  283. flags |= CHR_TIOCM_DTR;
  284. }
  285. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
  286. }
  287. static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
  288. unsigned size)
  289. {
  290. SerialState *s = opaque;
  291. assert(size == 1 && addr < 8);
  292. trace_serial_write(addr, val);
  293. switch(addr) {
  294. default:
  295. case 0:
  296. if (s->lcr & UART_LCR_DLAB) {
  297. s->divider = deposit32(s->divider, 8 * addr, 8, val);
  298. serial_update_parameters(s);
  299. } else {
  300. s->thr = (uint8_t) val;
  301. if(s->fcr & UART_FCR_FE) {
  302. /* xmit overruns overwrite data, so make space if needed */
  303. if (fifo8_is_full(&s->xmit_fifo)) {
  304. fifo8_pop(&s->xmit_fifo);
  305. }
  306. fifo8_push(&s->xmit_fifo, s->thr);
  307. }
  308. s->thr_ipending = 0;
  309. s->lsr &= ~UART_LSR_THRE;
  310. s->lsr &= ~UART_LSR_TEMT;
  311. serial_update_irq(s);
  312. if (s->tsr_retry == 0) {
  313. serial_xmit(s);
  314. }
  315. }
  316. break;
  317. case 1:
  318. if (s->lcr & UART_LCR_DLAB) {
  319. s->divider = deposit32(s->divider, 8 * addr, 8, val);
  320. serial_update_parameters(s);
  321. } else {
  322. uint8_t changed = (s->ier ^ val) & 0x0f;
  323. s->ier = val & 0x0f;
  324. /* If the backend device is a real serial port, turn polling of the modem
  325. * status lines on physical port on or off depending on UART_IER_MSI state.
  326. */
  327. if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
  328. if (s->ier & UART_IER_MSI) {
  329. s->poll_msl = 1;
  330. serial_update_msl(s);
  331. } else {
  332. timer_del(s->modem_status_poll);
  333. s->poll_msl = 0;
  334. }
  335. }
  336. /* Turning on the THRE interrupt on IER can trigger the interrupt
  337. * if LSR.THRE=1, even if it had been masked before by reading IIR.
  338. * This is not in the datasheet, but Windows relies on it. It is
  339. * unclear if THRE has to be resampled every time THRI becomes
  340. * 1, or only on the rising edge. Bochs does the latter, and Windows
  341. * always toggles IER to all zeroes and back to all ones, so do the
  342. * same.
  343. *
  344. * If IER.THRI is zero, thr_ipending is not used. Set it to zero
  345. * so that the thr_ipending subsection is not migrated.
  346. */
  347. if (changed & UART_IER_THRI) {
  348. if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
  349. s->thr_ipending = 1;
  350. } else {
  351. s->thr_ipending = 0;
  352. }
  353. }
  354. if (changed) {
  355. serial_update_irq(s);
  356. }
  357. }
  358. break;
  359. case 2:
  360. /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
  361. if ((val ^ s->fcr) & UART_FCR_FE) {
  362. val |= UART_FCR_XFR | UART_FCR_RFR;
  363. }
  364. /* FIFO clear */
  365. if (val & UART_FCR_RFR) {
  366. s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
  367. timer_del(s->fifo_timeout_timer);
  368. s->timeout_ipending = 0;
  369. fifo8_reset(&s->recv_fifo);
  370. }
  371. if (val & UART_FCR_XFR) {
  372. s->lsr |= UART_LSR_THRE;
  373. s->thr_ipending = 1;
  374. fifo8_reset(&s->xmit_fifo);
  375. }
  376. serial_write_fcr(s, val & 0xC9);
  377. serial_update_irq(s);
  378. break;
  379. case 3:
  380. {
  381. int break_enable;
  382. s->lcr = val;
  383. serial_update_parameters(s);
  384. break_enable = (val >> 6) & 1;
  385. if (break_enable != s->last_break_enable) {
  386. s->last_break_enable = break_enable;
  387. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
  388. &break_enable);
  389. }
  390. }
  391. break;
  392. case 4:
  393. {
  394. int old_mcr = s->mcr;
  395. s->mcr = val & 0x1f;
  396. if (val & UART_MCR_LOOP)
  397. break;
  398. if (s->poll_msl >= 0 && old_mcr != s->mcr) {
  399. serial_update_tiocm(s);
  400. /* Update the modem status after a one-character-send wait-time, since there may be a response
  401. from the device/computer at the other end of the serial line */
  402. timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
  403. }
  404. }
  405. break;
  406. case 5:
  407. break;
  408. case 6:
  409. break;
  410. case 7:
  411. s->scr = val;
  412. break;
  413. }
  414. }
  415. static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
  416. {
  417. SerialState *s = opaque;
  418. uint32_t ret;
  419. assert(size == 1 && addr < 8);
  420. switch(addr) {
  421. default:
  422. case 0:
  423. if (s->lcr & UART_LCR_DLAB) {
  424. ret = extract16(s->divider, 8 * addr, 8);
  425. } else {
  426. if(s->fcr & UART_FCR_FE) {
  427. ret = fifo8_is_empty(&s->recv_fifo) ?
  428. 0 : fifo8_pop(&s->recv_fifo);
  429. if (s->recv_fifo.num == 0) {
  430. s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
  431. } else {
  432. timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
  433. }
  434. s->timeout_ipending = 0;
  435. } else {
  436. ret = s->rbr;
  437. s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
  438. }
  439. serial_update_irq(s);
  440. if (!(s->mcr & UART_MCR_LOOP)) {
  441. /* in loopback mode, don't receive any data */
  442. qemu_chr_fe_accept_input(&s->chr);
  443. }
  444. }
  445. break;
  446. case 1:
  447. if (s->lcr & UART_LCR_DLAB) {
  448. ret = extract16(s->divider, 8 * addr, 8);
  449. } else {
  450. ret = s->ier;
  451. }
  452. break;
  453. case 2:
  454. ret = s->iir;
  455. if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
  456. s->thr_ipending = 0;
  457. serial_update_irq(s);
  458. }
  459. break;
  460. case 3:
  461. ret = s->lcr;
  462. break;
  463. case 4:
  464. ret = s->mcr;
  465. break;
  466. case 5:
  467. ret = s->lsr;
  468. /* Clear break and overrun interrupts */
  469. if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
  470. s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
  471. serial_update_irq(s);
  472. }
  473. break;
  474. case 6:
  475. if (s->mcr & UART_MCR_LOOP) {
  476. /* in loopback, the modem output pins are connected to the
  477. inputs */
  478. ret = (s->mcr & 0x0c) << 4;
  479. ret |= (s->mcr & 0x02) << 3;
  480. ret |= (s->mcr & 0x01) << 5;
  481. } else {
  482. if (s->poll_msl >= 0)
  483. serial_update_msl(s);
  484. ret = s->msr;
  485. /* Clear delta bits & msr int after read, if they were set */
  486. if (s->msr & UART_MSR_ANY_DELTA) {
  487. s->msr &= 0xF0;
  488. serial_update_irq(s);
  489. }
  490. }
  491. break;
  492. case 7:
  493. ret = s->scr;
  494. break;
  495. }
  496. trace_serial_read(addr, ret);
  497. return ret;
  498. }
  499. static int serial_can_receive(SerialState *s)
  500. {
  501. if(s->fcr & UART_FCR_FE) {
  502. if (s->recv_fifo.num < UART_FIFO_LENGTH) {
  503. /*
  504. * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
  505. * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
  506. * effect will be to almost always fill the fifo completely before
  507. * the guest has a chance to respond, effectively overriding the ITL
  508. * that the guest has set.
  509. */
  510. return (s->recv_fifo.num <= s->recv_fifo_itl) ?
  511. s->recv_fifo_itl - s->recv_fifo.num : 1;
  512. } else {
  513. return 0;
  514. }
  515. } else {
  516. return !(s->lsr & UART_LSR_DR);
  517. }
  518. }
  519. static void serial_receive_break(SerialState *s)
  520. {
  521. s->rbr = 0;
  522. /* When the LSR_DR is set a null byte is pushed into the fifo */
  523. recv_fifo_put(s, '\0');
  524. s->lsr |= UART_LSR_BI | UART_LSR_DR;
  525. serial_update_irq(s);
  526. }
  527. /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
  528. static void fifo_timeout_int (void *opaque) {
  529. SerialState *s = opaque;
  530. if (s->recv_fifo.num) {
  531. s->timeout_ipending = 1;
  532. serial_update_irq(s);
  533. }
  534. }
  535. static int serial_can_receive1(void *opaque)
  536. {
  537. SerialState *s = opaque;
  538. return serial_can_receive(s);
  539. }
  540. static void serial_receive1(void *opaque, const uint8_t *buf, int size)
  541. {
  542. SerialState *s = opaque;
  543. if (s->wakeup) {
  544. qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL);
  545. }
  546. if(s->fcr & UART_FCR_FE) {
  547. int i;
  548. for (i = 0; i < size; i++) {
  549. recv_fifo_put(s, buf[i]);
  550. }
  551. s->lsr |= UART_LSR_DR;
  552. /* call the timeout receive callback in 4 char transmit time */
  553. timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
  554. } else {
  555. if (s->lsr & UART_LSR_DR)
  556. s->lsr |= UART_LSR_OE;
  557. s->rbr = buf[0];
  558. s->lsr |= UART_LSR_DR;
  559. }
  560. serial_update_irq(s);
  561. }
  562. static void serial_event(void *opaque, QEMUChrEvent event)
  563. {
  564. SerialState *s = opaque;
  565. if (event == CHR_EVENT_BREAK)
  566. serial_receive_break(s);
  567. }
  568. static int serial_pre_save(void *opaque)
  569. {
  570. SerialState *s = opaque;
  571. s->fcr_vmstate = s->fcr;
  572. return 0;
  573. }
  574. static int serial_pre_load(void *opaque)
  575. {
  576. SerialState *s = opaque;
  577. s->thr_ipending = -1;
  578. s->poll_msl = -1;
  579. return 0;
  580. }
  581. static int serial_post_load(void *opaque, int version_id)
  582. {
  583. SerialState *s = opaque;
  584. if (version_id < 3) {
  585. s->fcr_vmstate = 0;
  586. }
  587. if (s->thr_ipending == -1) {
  588. s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
  589. }
  590. if (s->tsr_retry > 0) {
  591. /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
  592. if (s->lsr & UART_LSR_TEMT) {
  593. error_report("inconsistent state in serial device "
  594. "(tsr empty, tsr_retry=%d", s->tsr_retry);
  595. return -1;
  596. }
  597. if (s->tsr_retry > MAX_XMIT_RETRY) {
  598. s->tsr_retry = MAX_XMIT_RETRY;
  599. }
  600. assert(s->watch_tag == 0);
  601. s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  602. serial_watch_cb, s);
  603. } else {
  604. /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
  605. if (!(s->lsr & UART_LSR_TEMT)) {
  606. error_report("inconsistent state in serial device "
  607. "(tsr not empty, tsr_retry=0");
  608. return -1;
  609. }
  610. }
  611. s->last_break_enable = (s->lcr >> 6) & 1;
  612. /* Initialize fcr via setter to perform essential side-effects */
  613. serial_write_fcr(s, s->fcr_vmstate);
  614. serial_update_parameters(s);
  615. return 0;
  616. }
  617. static bool serial_thr_ipending_needed(void *opaque)
  618. {
  619. SerialState *s = opaque;
  620. if (s->ier & UART_IER_THRI) {
  621. bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
  622. return s->thr_ipending != expected_value;
  623. } else {
  624. /* LSR.THRE will be sampled again when the interrupt is
  625. * enabled. thr_ipending is not used in this case, do
  626. * not migrate it.
  627. */
  628. return false;
  629. }
  630. }
  631. static const VMStateDescription vmstate_serial_thr_ipending = {
  632. .name = "serial/thr_ipending",
  633. .version_id = 1,
  634. .minimum_version_id = 1,
  635. .needed = serial_thr_ipending_needed,
  636. .fields = (const VMStateField[]) {
  637. VMSTATE_INT32(thr_ipending, SerialState),
  638. VMSTATE_END_OF_LIST()
  639. }
  640. };
  641. static bool serial_tsr_needed(void *opaque)
  642. {
  643. SerialState *s = (SerialState *)opaque;
  644. return s->tsr_retry != 0;
  645. }
  646. static const VMStateDescription vmstate_serial_tsr = {
  647. .name = "serial/tsr",
  648. .version_id = 1,
  649. .minimum_version_id = 1,
  650. .needed = serial_tsr_needed,
  651. .fields = (const VMStateField[]) {
  652. VMSTATE_UINT32(tsr_retry, SerialState),
  653. VMSTATE_UINT8(thr, SerialState),
  654. VMSTATE_UINT8(tsr, SerialState),
  655. VMSTATE_END_OF_LIST()
  656. }
  657. };
  658. static bool serial_recv_fifo_needed(void *opaque)
  659. {
  660. SerialState *s = (SerialState *)opaque;
  661. return !fifo8_is_empty(&s->recv_fifo);
  662. }
  663. static const VMStateDescription vmstate_serial_recv_fifo = {
  664. .name = "serial/recv_fifo",
  665. .version_id = 1,
  666. .minimum_version_id = 1,
  667. .needed = serial_recv_fifo_needed,
  668. .fields = (const VMStateField[]) {
  669. VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
  670. VMSTATE_END_OF_LIST()
  671. }
  672. };
  673. static bool serial_xmit_fifo_needed(void *opaque)
  674. {
  675. SerialState *s = (SerialState *)opaque;
  676. return !fifo8_is_empty(&s->xmit_fifo);
  677. }
  678. static const VMStateDescription vmstate_serial_xmit_fifo = {
  679. .name = "serial/xmit_fifo",
  680. .version_id = 1,
  681. .minimum_version_id = 1,
  682. .needed = serial_xmit_fifo_needed,
  683. .fields = (const VMStateField[]) {
  684. VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
  685. VMSTATE_END_OF_LIST()
  686. }
  687. };
  688. static bool serial_fifo_timeout_timer_needed(void *opaque)
  689. {
  690. SerialState *s = (SerialState *)opaque;
  691. return timer_pending(s->fifo_timeout_timer);
  692. }
  693. static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
  694. .name = "serial/fifo_timeout_timer",
  695. .version_id = 1,
  696. .minimum_version_id = 1,
  697. .needed = serial_fifo_timeout_timer_needed,
  698. .fields = (const VMStateField[]) {
  699. VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
  700. VMSTATE_END_OF_LIST()
  701. }
  702. };
  703. static bool serial_timeout_ipending_needed(void *opaque)
  704. {
  705. SerialState *s = (SerialState *)opaque;
  706. return s->timeout_ipending != 0;
  707. }
  708. static const VMStateDescription vmstate_serial_timeout_ipending = {
  709. .name = "serial/timeout_ipending",
  710. .version_id = 1,
  711. .minimum_version_id = 1,
  712. .needed = serial_timeout_ipending_needed,
  713. .fields = (const VMStateField[]) {
  714. VMSTATE_INT32(timeout_ipending, SerialState),
  715. VMSTATE_END_OF_LIST()
  716. }
  717. };
  718. static bool serial_poll_needed(void *opaque)
  719. {
  720. SerialState *s = (SerialState *)opaque;
  721. return s->poll_msl >= 0;
  722. }
  723. static const VMStateDescription vmstate_serial_poll = {
  724. .name = "serial/poll",
  725. .version_id = 1,
  726. .needed = serial_poll_needed,
  727. .minimum_version_id = 1,
  728. .fields = (const VMStateField[]) {
  729. VMSTATE_INT32(poll_msl, SerialState),
  730. VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
  731. VMSTATE_END_OF_LIST()
  732. }
  733. };
  734. const VMStateDescription vmstate_serial = {
  735. .name = "serial",
  736. .version_id = 3,
  737. .minimum_version_id = 2,
  738. .pre_save = serial_pre_save,
  739. .pre_load = serial_pre_load,
  740. .post_load = serial_post_load,
  741. .fields = (const VMStateField[]) {
  742. VMSTATE_UINT16_V(divider, SerialState, 2),
  743. VMSTATE_UINT8(rbr, SerialState),
  744. VMSTATE_UINT8(ier, SerialState),
  745. VMSTATE_UINT8(iir, SerialState),
  746. VMSTATE_UINT8(lcr, SerialState),
  747. VMSTATE_UINT8(mcr, SerialState),
  748. VMSTATE_UINT8(lsr, SerialState),
  749. VMSTATE_UINT8(msr, SerialState),
  750. VMSTATE_UINT8(scr, SerialState),
  751. VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
  752. VMSTATE_END_OF_LIST()
  753. },
  754. .subsections = (const VMStateDescription * const []) {
  755. &vmstate_serial_thr_ipending,
  756. &vmstate_serial_tsr,
  757. &vmstate_serial_recv_fifo,
  758. &vmstate_serial_xmit_fifo,
  759. &vmstate_serial_fifo_timeout_timer,
  760. &vmstate_serial_timeout_ipending,
  761. &vmstate_serial_poll,
  762. NULL
  763. }
  764. };
  765. static void serial_reset(void *opaque)
  766. {
  767. SerialState *s = opaque;
  768. if (s->watch_tag > 0) {
  769. g_source_remove(s->watch_tag);
  770. s->watch_tag = 0;
  771. }
  772. s->rbr = 0;
  773. s->ier = 0;
  774. s->iir = UART_IIR_NO_INT;
  775. s->lcr = 0;
  776. s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
  777. s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
  778. /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
  779. s->divider = 0x0C;
  780. s->mcr = UART_MCR_OUT2;
  781. s->scr = 0;
  782. s->tsr_retry = 0;
  783. s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
  784. s->poll_msl = 0;
  785. s->timeout_ipending = 0;
  786. timer_del(s->fifo_timeout_timer);
  787. timer_del(s->modem_status_poll);
  788. fifo8_reset(&s->recv_fifo);
  789. fifo8_reset(&s->xmit_fifo);
  790. s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  791. s->thr_ipending = 0;
  792. s->last_break_enable = 0;
  793. qemu_irq_lower(s->irq);
  794. serial_update_msl(s);
  795. s->msr &= ~UART_MSR_ANY_DELTA;
  796. }
  797. static int serial_be_change(void *opaque)
  798. {
  799. SerialState *s = opaque;
  800. qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
  801. serial_event, serial_be_change, s, NULL, true);
  802. serial_update_parameters(s);
  803. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
  804. &s->last_break_enable);
  805. s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
  806. serial_update_msl(s);
  807. if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
  808. serial_update_tiocm(s);
  809. }
  810. if (s->watch_tag > 0) {
  811. g_source_remove(s->watch_tag);
  812. s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  813. serial_watch_cb, s);
  814. }
  815. return 0;
  816. }
  817. static void serial_realize(DeviceState *dev, Error **errp)
  818. {
  819. SerialState *s = SERIAL(dev);
  820. s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
  821. s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
  822. qemu_register_reset(serial_reset, s);
  823. qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
  824. serial_event, serial_be_change, s, NULL, true);
  825. fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
  826. fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
  827. serial_reset(s);
  828. }
  829. static void serial_unrealize(DeviceState *dev)
  830. {
  831. SerialState *s = SERIAL(dev);
  832. qemu_chr_fe_deinit(&s->chr, false);
  833. timer_free(s->modem_status_poll);
  834. timer_free(s->fifo_timeout_timer);
  835. fifo8_destroy(&s->recv_fifo);
  836. fifo8_destroy(&s->xmit_fifo);
  837. qemu_unregister_reset(serial_reset, s);
  838. }
  839. const MemoryRegionOps serial_io_ops = {
  840. .read = serial_ioport_read,
  841. .write = serial_ioport_write,
  842. .valid = {
  843. .unaligned = 1,
  844. },
  845. .impl = {
  846. .min_access_size = 1,
  847. .max_access_size = 1,
  848. },
  849. .endianness = DEVICE_LITTLE_ENDIAN,
  850. };
  851. static const Property serial_properties[] = {
  852. DEFINE_PROP_CHR("chardev", SerialState, chr),
  853. DEFINE_PROP_UINT32("baudbase", SerialState, baudbase, 115200),
  854. DEFINE_PROP_BOOL("wakeup", SerialState, wakeup, false),
  855. };
  856. static void serial_class_init(ObjectClass *klass, void* data)
  857. {
  858. DeviceClass *dc = DEVICE_CLASS(klass);
  859. /* internal device for serialio/serialmm, not user-creatable */
  860. dc->user_creatable = false;
  861. dc->realize = serial_realize;
  862. dc->unrealize = serial_unrealize;
  863. device_class_set_props(dc, serial_properties);
  864. }
  865. static const TypeInfo serial_info = {
  866. .name = TYPE_SERIAL,
  867. .parent = TYPE_DEVICE,
  868. .instance_size = sizeof(SerialState),
  869. .class_init = serial_class_init,
  870. };
  871. static void serial_register_types(void)
  872. {
  873. type_register_static(&serial_info);
  874. }
  875. type_init(serial_register_types)