2
0

nrf51_uart.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334
  1. /*
  2. * nRF51 SoC UART emulation
  3. *
  4. * See nRF51 Series Reference Manual, "29 Universal Asynchronous
  5. * Receiver/Transmitter" for hardware specifications:
  6. * http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
  7. *
  8. * Copyright (c) 2018 Julia Suvorova <jusual@mail.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 or
  12. * (at your option) any later version.
  13. */
  14. #include "qemu/osdep.h"
  15. #include "qemu/log.h"
  16. #include "qemu/module.h"
  17. #include "hw/char/nrf51_uart.h"
  18. #include "hw/irq.h"
  19. #include "hw/qdev-properties.h"
  20. #include "hw/qdev-properties-system.h"
  21. #include "migration/vmstate.h"
  22. #include "trace.h"
  23. static void nrf51_uart_update_irq(NRF51UARTState *s)
  24. {
  25. bool irq = false;
  26. irq |= (s->reg[R_UART_RXDRDY] &&
  27. (s->reg[R_UART_INTEN] & R_UART_INTEN_RXDRDY_MASK));
  28. irq |= (s->reg[R_UART_TXDRDY] &&
  29. (s->reg[R_UART_INTEN] & R_UART_INTEN_TXDRDY_MASK));
  30. irq |= (s->reg[R_UART_ERROR] &&
  31. (s->reg[R_UART_INTEN] & R_UART_INTEN_ERROR_MASK));
  32. irq |= (s->reg[R_UART_RXTO] &&
  33. (s->reg[R_UART_INTEN] & R_UART_INTEN_RXTO_MASK));
  34. qemu_set_irq(s->irq, irq);
  35. }
  36. static uint64_t uart_read(void *opaque, hwaddr addr, unsigned int size)
  37. {
  38. NRF51UARTState *s = NRF51_UART(opaque);
  39. uint64_t r;
  40. if (!s->enabled) {
  41. return 0;
  42. }
  43. switch (addr) {
  44. case A_UART_RXD:
  45. r = s->rx_fifo[s->rx_fifo_pos];
  46. if (s->rx_started && s->rx_fifo_len) {
  47. s->rx_fifo_pos = (s->rx_fifo_pos + 1) % UART_FIFO_LENGTH;
  48. s->rx_fifo_len--;
  49. if (s->rx_fifo_len) {
  50. s->reg[R_UART_RXDRDY] = 1;
  51. nrf51_uart_update_irq(s);
  52. }
  53. qemu_chr_fe_accept_input(&s->chr);
  54. }
  55. break;
  56. case A_UART_INTENSET:
  57. case A_UART_INTENCLR:
  58. case A_UART_INTEN:
  59. r = s->reg[R_UART_INTEN];
  60. break;
  61. default:
  62. r = s->reg[addr / 4];
  63. break;
  64. }
  65. trace_nrf51_uart_read(addr, r, size);
  66. return r;
  67. }
  68. static gboolean uart_transmit(void *do_not_use, GIOCondition cond, void *opaque)
  69. {
  70. NRF51UARTState *s = NRF51_UART(opaque);
  71. int r;
  72. uint8_t c = s->reg[R_UART_TXD];
  73. s->watch_tag = 0;
  74. r = qemu_chr_fe_write(&s->chr, &c, 1);
  75. if (r <= 0) {
  76. s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  77. uart_transmit, s);
  78. if (!s->watch_tag) {
  79. /* The hardware has no transmit error reporting,
  80. * so silently drop the byte
  81. */
  82. goto buffer_drained;
  83. }
  84. return G_SOURCE_REMOVE;
  85. }
  86. buffer_drained:
  87. s->reg[R_UART_TXDRDY] = 1;
  88. s->pending_tx_byte = false;
  89. return G_SOURCE_REMOVE;
  90. }
  91. static void uart_cancel_transmit(NRF51UARTState *s)
  92. {
  93. if (s->watch_tag) {
  94. g_source_remove(s->watch_tag);
  95. s->watch_tag = 0;
  96. }
  97. }
  98. static void uart_write(void *opaque, hwaddr addr,
  99. uint64_t value, unsigned int size)
  100. {
  101. NRF51UARTState *s = NRF51_UART(opaque);
  102. trace_nrf51_uart_write(addr, value, size);
  103. if (!s->enabled && (addr != A_UART_ENABLE)) {
  104. return;
  105. }
  106. switch (addr) {
  107. case A_UART_TXD:
  108. if (!s->pending_tx_byte && s->tx_started) {
  109. s->reg[R_UART_TXD] = value;
  110. s->pending_tx_byte = true;
  111. uart_transmit(NULL, G_IO_OUT, s);
  112. }
  113. break;
  114. case A_UART_INTEN:
  115. s->reg[R_UART_INTEN] = value;
  116. break;
  117. case A_UART_INTENSET:
  118. s->reg[R_UART_INTEN] |= value;
  119. break;
  120. case A_UART_INTENCLR:
  121. s->reg[R_UART_INTEN] &= ~value;
  122. break;
  123. case A_UART_TXDRDY ... A_UART_RXTO:
  124. s->reg[addr / 4] = value;
  125. break;
  126. case A_UART_ERRORSRC:
  127. s->reg[addr / 4] &= ~value;
  128. break;
  129. case A_UART_RXD:
  130. break;
  131. case A_UART_RXDRDY:
  132. if (value == 0) {
  133. s->reg[R_UART_RXDRDY] = 0;
  134. }
  135. break;
  136. case A_UART_STARTTX:
  137. if (value == 1) {
  138. s->tx_started = true;
  139. }
  140. break;
  141. case A_UART_STARTRX:
  142. if (value == 1) {
  143. s->rx_started = true;
  144. }
  145. break;
  146. case A_UART_ENABLE:
  147. if (value) {
  148. if (value == 4) {
  149. s->enabled = true;
  150. }
  151. break;
  152. }
  153. s->enabled = false;
  154. value = 1;
  155. /* fall through */
  156. case A_UART_SUSPEND:
  157. case A_UART_STOPTX:
  158. if (value == 1) {
  159. s->tx_started = false;
  160. }
  161. /* fall through */
  162. case A_UART_STOPRX:
  163. if (addr != A_UART_STOPTX && value == 1) {
  164. s->rx_started = false;
  165. s->reg[R_UART_RXTO] = 1;
  166. }
  167. break;
  168. default:
  169. s->reg[addr / 4] = value;
  170. break;
  171. }
  172. nrf51_uart_update_irq(s);
  173. }
  174. static const MemoryRegionOps uart_ops = {
  175. .read = uart_read,
  176. .write = uart_write,
  177. .endianness = DEVICE_LITTLE_ENDIAN,
  178. };
  179. static void nrf51_uart_reset(DeviceState *dev)
  180. {
  181. NRF51UARTState *s = NRF51_UART(dev);
  182. s->pending_tx_byte = 0;
  183. uart_cancel_transmit(s);
  184. memset(s->reg, 0, sizeof(s->reg));
  185. s->reg[R_UART_PSELRTS] = 0xFFFFFFFF;
  186. s->reg[R_UART_PSELTXD] = 0xFFFFFFFF;
  187. s->reg[R_UART_PSELCTS] = 0xFFFFFFFF;
  188. s->reg[R_UART_PSELRXD] = 0xFFFFFFFF;
  189. s->reg[R_UART_BAUDRATE] = 0x4000000;
  190. s->rx_fifo_len = 0;
  191. s->rx_fifo_pos = 0;
  192. s->rx_started = false;
  193. s->tx_started = false;
  194. s->enabled = false;
  195. }
  196. static void uart_receive(void *opaque, const uint8_t *buf, int size)
  197. {
  198. NRF51UARTState *s = NRF51_UART(opaque);
  199. int i;
  200. if (size == 0 || s->rx_fifo_len >= UART_FIFO_LENGTH) {
  201. return;
  202. }
  203. for (i = 0; i < size; i++) {
  204. uint32_t pos = (s->rx_fifo_pos + s->rx_fifo_len) % UART_FIFO_LENGTH;
  205. s->rx_fifo[pos] = buf[i];
  206. s->rx_fifo_len++;
  207. }
  208. s->reg[R_UART_RXDRDY] = 1;
  209. nrf51_uart_update_irq(s);
  210. }
  211. static int uart_can_receive(void *opaque)
  212. {
  213. NRF51UARTState *s = NRF51_UART(opaque);
  214. return s->rx_started ? (UART_FIFO_LENGTH - s->rx_fifo_len) : 0;
  215. }
  216. static void uart_event(void *opaque, QEMUChrEvent event)
  217. {
  218. NRF51UARTState *s = NRF51_UART(opaque);
  219. if (event == CHR_EVENT_BREAK) {
  220. s->reg[R_UART_ERRORSRC] |= 3;
  221. s->reg[R_UART_ERROR] = 1;
  222. nrf51_uart_update_irq(s);
  223. }
  224. }
  225. static void nrf51_uart_realize(DeviceState *dev, Error **errp)
  226. {
  227. NRF51UARTState *s = NRF51_UART(dev);
  228. qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
  229. uart_event, NULL, s, NULL, true);
  230. }
  231. static void nrf51_uart_init(Object *obj)
  232. {
  233. NRF51UARTState *s = NRF51_UART(obj);
  234. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  235. memory_region_init_io(&s->iomem, obj, &uart_ops, s,
  236. "nrf51_soc.uart", UART_SIZE);
  237. sysbus_init_mmio(sbd, &s->iomem);
  238. sysbus_init_irq(sbd, &s->irq);
  239. }
  240. static int nrf51_uart_post_load(void *opaque, int version_id)
  241. {
  242. NRF51UARTState *s = NRF51_UART(opaque);
  243. if (s->pending_tx_byte) {
  244. s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  245. uart_transmit, s);
  246. }
  247. return 0;
  248. }
  249. static const VMStateDescription nrf51_uart_vmstate = {
  250. .name = "nrf51_soc.uart",
  251. .post_load = nrf51_uart_post_load,
  252. .fields = (const VMStateField[]) {
  253. VMSTATE_UINT32_ARRAY(reg, NRF51UARTState, 0x56C),
  254. VMSTATE_UINT8_ARRAY(rx_fifo, NRF51UARTState, UART_FIFO_LENGTH),
  255. VMSTATE_UINT32(rx_fifo_pos, NRF51UARTState),
  256. VMSTATE_UINT32(rx_fifo_len, NRF51UARTState),
  257. VMSTATE_BOOL(rx_started, NRF51UARTState),
  258. VMSTATE_BOOL(tx_started, NRF51UARTState),
  259. VMSTATE_BOOL(pending_tx_byte, NRF51UARTState),
  260. VMSTATE_BOOL(enabled, NRF51UARTState),
  261. VMSTATE_END_OF_LIST()
  262. }
  263. };
  264. static const Property nrf51_uart_properties[] = {
  265. DEFINE_PROP_CHR("chardev", NRF51UARTState, chr),
  266. };
  267. static void nrf51_uart_class_init(ObjectClass *klass, void *data)
  268. {
  269. DeviceClass *dc = DEVICE_CLASS(klass);
  270. device_class_set_legacy_reset(dc, nrf51_uart_reset);
  271. dc->realize = nrf51_uart_realize;
  272. device_class_set_props(dc, nrf51_uart_properties);
  273. dc->vmsd = &nrf51_uart_vmstate;
  274. }
  275. static const TypeInfo nrf51_uart_info = {
  276. .name = TYPE_NRF51_UART,
  277. .parent = TYPE_SYS_BUS_DEVICE,
  278. .instance_size = sizeof(NRF51UARTState),
  279. .instance_init = nrf51_uart_init,
  280. .class_init = nrf51_uart_class_init
  281. };
  282. static void nrf51_uart_register_types(void)
  283. {
  284. type_register_static(&nrf51_uart_info);
  285. }
  286. type_init(nrf51_uart_register_types)