mcf_uart.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. /*
  2. * ColdFire UART emulation.
  3. *
  4. * Copyright (c) 2007 CodeSourcery.
  5. *
  6. * This code is licensed under the GPL
  7. */
  8. #include "qemu/osdep.h"
  9. #include "hw/irq.h"
  10. #include "hw/sysbus.h"
  11. #include "qemu/module.h"
  12. #include "qapi/error.h"
  13. #include "hw/m68k/mcf.h"
  14. #include "hw/qdev-properties.h"
  15. #include "hw/qdev-properties-system.h"
  16. #include "chardev/char-fe.h"
  17. #include "qom/object.h"
  18. #define FIFO_DEPTH 4
  19. struct mcf_uart_state {
  20. SysBusDevice parent_obj;
  21. MemoryRegion iomem;
  22. uint8_t mr[2];
  23. uint8_t sr;
  24. uint8_t isr;
  25. uint8_t imr;
  26. uint8_t bg1;
  27. uint8_t bg2;
  28. uint8_t fifo[FIFO_DEPTH];
  29. uint8_t tb;
  30. int current_mr;
  31. int fifo_len;
  32. int tx_enabled;
  33. int rx_enabled;
  34. qemu_irq irq;
  35. CharBackend chr;
  36. };
  37. #define TYPE_MCF_UART "mcf-uart"
  38. OBJECT_DECLARE_SIMPLE_TYPE(mcf_uart_state, MCF_UART)
  39. /* UART Status Register bits. */
  40. #define MCF_UART_RxRDY 0x01
  41. #define MCF_UART_FFULL 0x02
  42. #define MCF_UART_TxRDY 0x04
  43. #define MCF_UART_TxEMP 0x08
  44. #define MCF_UART_OE 0x10
  45. #define MCF_UART_PE 0x20
  46. #define MCF_UART_FE 0x40
  47. #define MCF_UART_RB 0x80
  48. /* Interrupt flags. */
  49. #define MCF_UART_TxINT 0x01
  50. #define MCF_UART_RxINT 0x02
  51. #define MCF_UART_DBINT 0x04
  52. #define MCF_UART_COSINT 0x80
  53. /* UMR1 flags. */
  54. #define MCF_UART_BC0 0x01
  55. #define MCF_UART_BC1 0x02
  56. #define MCF_UART_PT 0x04
  57. #define MCF_UART_PM0 0x08
  58. #define MCF_UART_PM1 0x10
  59. #define MCF_UART_ERR 0x20
  60. #define MCF_UART_RxIRQ 0x40
  61. #define MCF_UART_RxRTS 0x80
  62. static void mcf_uart_update(mcf_uart_state *s)
  63. {
  64. s->isr &= ~(MCF_UART_TxINT | MCF_UART_RxINT);
  65. if (s->sr & MCF_UART_TxRDY)
  66. s->isr |= MCF_UART_TxINT;
  67. if ((s->sr & ((s->mr[0] & MCF_UART_RxIRQ)
  68. ? MCF_UART_FFULL : MCF_UART_RxRDY)) != 0)
  69. s->isr |= MCF_UART_RxINT;
  70. qemu_set_irq(s->irq, (s->isr & s->imr) != 0);
  71. }
  72. uint64_t mcf_uart_read(void *opaque, hwaddr addr,
  73. unsigned size)
  74. {
  75. mcf_uart_state *s = (mcf_uart_state *)opaque;
  76. switch (addr & 0x3f) {
  77. case 0x00:
  78. return s->mr[s->current_mr];
  79. case 0x04:
  80. return s->sr;
  81. case 0x0c:
  82. {
  83. uint8_t val;
  84. int i;
  85. if (s->fifo_len == 0)
  86. return 0;
  87. val = s->fifo[0];
  88. s->fifo_len--;
  89. for (i = 0; i < s->fifo_len; i++)
  90. s->fifo[i] = s->fifo[i + 1];
  91. s->sr &= ~MCF_UART_FFULL;
  92. if (s->fifo_len == 0)
  93. s->sr &= ~MCF_UART_RxRDY;
  94. mcf_uart_update(s);
  95. qemu_chr_fe_accept_input(&s->chr);
  96. return val;
  97. }
  98. case 0x10:
  99. /* TODO: Implement IPCR. */
  100. return 0;
  101. case 0x14:
  102. return s->isr;
  103. case 0x18:
  104. return s->bg1;
  105. case 0x1c:
  106. return s->bg2;
  107. default:
  108. return 0;
  109. }
  110. }
  111. /* Update TxRDY flag and set data if present and enabled. */
  112. static void mcf_uart_do_tx(mcf_uart_state *s)
  113. {
  114. if (s->tx_enabled && (s->sr & MCF_UART_TxEMP) == 0) {
  115. /* XXX this blocks entire thread. Rewrite to use
  116. * qemu_chr_fe_write and background I/O callbacks */
  117. qemu_chr_fe_write_all(&s->chr, (unsigned char *)&s->tb, 1);
  118. s->sr |= MCF_UART_TxEMP;
  119. }
  120. if (s->tx_enabled) {
  121. s->sr |= MCF_UART_TxRDY;
  122. } else {
  123. s->sr &= ~MCF_UART_TxRDY;
  124. }
  125. }
  126. static void mcf_do_command(mcf_uart_state *s, uint8_t cmd)
  127. {
  128. /* Misc command. */
  129. switch ((cmd >> 4) & 7) {
  130. case 0: /* No-op. */
  131. break;
  132. case 1: /* Reset mode register pointer. */
  133. s->current_mr = 0;
  134. break;
  135. case 2: /* Reset receiver. */
  136. s->rx_enabled = 0;
  137. s->fifo_len = 0;
  138. s->sr &= ~(MCF_UART_RxRDY | MCF_UART_FFULL);
  139. break;
  140. case 3: /* Reset transmitter. */
  141. s->tx_enabled = 0;
  142. s->sr |= MCF_UART_TxEMP;
  143. s->sr &= ~MCF_UART_TxRDY;
  144. break;
  145. case 4: /* Reset error status. */
  146. break;
  147. case 5: /* Reset break-change interrupt. */
  148. s->isr &= ~MCF_UART_DBINT;
  149. break;
  150. case 6: /* Start break. */
  151. case 7: /* Stop break. */
  152. break;
  153. }
  154. /* Transmitter command. */
  155. switch ((cmd >> 2) & 3) {
  156. case 0: /* No-op. */
  157. break;
  158. case 1: /* Enable. */
  159. s->tx_enabled = 1;
  160. mcf_uart_do_tx(s);
  161. break;
  162. case 2: /* Disable. */
  163. s->tx_enabled = 0;
  164. mcf_uart_do_tx(s);
  165. break;
  166. case 3: /* Reserved. */
  167. fprintf(stderr, "mcf_uart: Bad TX command\n");
  168. break;
  169. }
  170. /* Receiver command. */
  171. switch (cmd & 3) {
  172. case 0: /* No-op. */
  173. break;
  174. case 1: /* Enable. */
  175. s->rx_enabled = 1;
  176. break;
  177. case 2:
  178. s->rx_enabled = 0;
  179. break;
  180. case 3: /* Reserved. */
  181. fprintf(stderr, "mcf_uart: Bad RX command\n");
  182. break;
  183. }
  184. }
  185. void mcf_uart_write(void *opaque, hwaddr addr,
  186. uint64_t val, unsigned size)
  187. {
  188. mcf_uart_state *s = (mcf_uart_state *)opaque;
  189. switch (addr & 0x3f) {
  190. case 0x00:
  191. s->mr[s->current_mr] = val;
  192. s->current_mr = 1;
  193. break;
  194. case 0x04:
  195. /* CSR is ignored. */
  196. break;
  197. case 0x08: /* Command Register. */
  198. mcf_do_command(s, val);
  199. break;
  200. case 0x0c: /* Transmit Buffer. */
  201. s->sr &= ~MCF_UART_TxEMP;
  202. s->tb = val;
  203. mcf_uart_do_tx(s);
  204. break;
  205. case 0x10:
  206. /* ACR is ignored. */
  207. break;
  208. case 0x14:
  209. s->imr = val;
  210. break;
  211. default:
  212. break;
  213. }
  214. mcf_uart_update(s);
  215. }
  216. static void mcf_uart_reset(DeviceState *dev)
  217. {
  218. mcf_uart_state *s = MCF_UART(dev);
  219. s->fifo_len = 0;
  220. s->mr[0] = 0;
  221. s->mr[1] = 0;
  222. s->sr = MCF_UART_TxEMP;
  223. s->tx_enabled = 0;
  224. s->rx_enabled = 0;
  225. s->isr = 0;
  226. s->imr = 0;
  227. }
  228. static void mcf_uart_push_byte(mcf_uart_state *s, uint8_t data)
  229. {
  230. /* Break events overwrite the last byte if the fifo is full. */
  231. if (s->fifo_len == FIFO_DEPTH) {
  232. s->fifo_len--;
  233. }
  234. s->fifo[s->fifo_len] = data;
  235. s->fifo_len++;
  236. s->sr |= MCF_UART_RxRDY;
  237. if (s->fifo_len == FIFO_DEPTH) {
  238. s->sr |= MCF_UART_FFULL;
  239. }
  240. mcf_uart_update(s);
  241. }
  242. static void mcf_uart_event(void *opaque, QEMUChrEvent event)
  243. {
  244. mcf_uart_state *s = (mcf_uart_state *)opaque;
  245. switch (event) {
  246. case CHR_EVENT_BREAK:
  247. s->isr |= MCF_UART_DBINT;
  248. mcf_uart_push_byte(s, 0);
  249. break;
  250. default:
  251. break;
  252. }
  253. }
  254. static int mcf_uart_can_receive(void *opaque)
  255. {
  256. mcf_uart_state *s = (mcf_uart_state *)opaque;
  257. return s->rx_enabled ? FIFO_DEPTH - s->fifo_len : 0;
  258. }
  259. static void mcf_uart_receive(void *opaque, const uint8_t *buf, int size)
  260. {
  261. mcf_uart_state *s = (mcf_uart_state *)opaque;
  262. for (int i = 0; i < size; i++) {
  263. mcf_uart_push_byte(s, buf[i]);
  264. }
  265. }
  266. static const MemoryRegionOps mcf_uart_ops = {
  267. .read = mcf_uart_read,
  268. .write = mcf_uart_write,
  269. .endianness = DEVICE_NATIVE_ENDIAN,
  270. };
  271. static void mcf_uart_instance_init(Object *obj)
  272. {
  273. SysBusDevice *dev = SYS_BUS_DEVICE(obj);
  274. mcf_uart_state *s = MCF_UART(dev);
  275. memory_region_init_io(&s->iomem, obj, &mcf_uart_ops, s, "uart", 0x40);
  276. sysbus_init_mmio(dev, &s->iomem);
  277. sysbus_init_irq(dev, &s->irq);
  278. }
  279. static void mcf_uart_realize(DeviceState *dev, Error **errp)
  280. {
  281. mcf_uart_state *s = MCF_UART(dev);
  282. qemu_chr_fe_set_handlers(&s->chr, mcf_uart_can_receive, mcf_uart_receive,
  283. mcf_uart_event, NULL, s, NULL, true);
  284. }
  285. static const Property mcf_uart_properties[] = {
  286. DEFINE_PROP_CHR("chardev", mcf_uart_state, chr),
  287. };
  288. static void mcf_uart_class_init(ObjectClass *oc, void *data)
  289. {
  290. DeviceClass *dc = DEVICE_CLASS(oc);
  291. dc->realize = mcf_uart_realize;
  292. device_class_set_legacy_reset(dc, mcf_uart_reset);
  293. device_class_set_props(dc, mcf_uart_properties);
  294. set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
  295. }
  296. static const TypeInfo mcf_uart_info = {
  297. .name = TYPE_MCF_UART,
  298. .parent = TYPE_SYS_BUS_DEVICE,
  299. .instance_size = sizeof(mcf_uart_state),
  300. .instance_init = mcf_uart_instance_init,
  301. .class_init = mcf_uart_class_init,
  302. };
  303. static void mcf_uart_register(void)
  304. {
  305. type_register_static(&mcf_uart_info);
  306. }
  307. type_init(mcf_uart_register)
  308. DeviceState *mcf_uart_create(qemu_irq irq, Chardev *chrdrv)
  309. {
  310. DeviceState *dev;
  311. dev = qdev_new(TYPE_MCF_UART);
  312. if (chrdrv) {
  313. qdev_prop_set_chr(dev, "chardev", chrdrv);
  314. }
  315. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  316. sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, irq);
  317. return dev;
  318. }
  319. DeviceState *mcf_uart_create_mmap(hwaddr base, qemu_irq irq, Chardev *chrdrv)
  320. {
  321. DeviceState *dev;
  322. dev = mcf_uart_create(irq, chrdrv);
  323. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
  324. return dev;
  325. }