cadence_uart.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649
  1. /*
  2. * Device model for Cadence UART
  3. *
  4. * Reference: Xilinx Zynq 7000 reference manual
  5. * - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
  6. * - Chapter 19 UART Controller
  7. * - Appendix B for Register details
  8. *
  9. * Copyright (c) 2010 Xilinx Inc.
  10. * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
  11. * Copyright (c) 2012 PetaLogix Pty Ltd.
  12. * Written by Haibing Ma
  13. * M.Habib
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. * You should have received a copy of the GNU General Public License along
  21. * with this program; if not, see <http://www.gnu.org/licenses/>.
  22. */
  23. #include "qemu/osdep.h"
  24. #include "hw/sysbus.h"
  25. #include "migration/vmstate.h"
  26. #include "chardev/char-fe.h"
  27. #include "chardev/char-serial.h"
  28. #include "qemu/timer.h"
  29. #include "qemu/log.h"
  30. #include "qemu/module.h"
  31. #include "hw/char/cadence_uart.h"
  32. #include "hw/irq.h"
  33. #include "hw/qdev-clock.h"
  34. #include "hw/qdev-properties-system.h"
  35. #include "trace.h"
  36. #ifdef CADENCE_UART_ERR_DEBUG
  37. #define DB_PRINT(...) do { \
  38. fprintf(stderr, ": %s: ", __func__); \
  39. fprintf(stderr, ## __VA_ARGS__); \
  40. } while (0)
  41. #else
  42. #define DB_PRINT(...)
  43. #endif
  44. #define UART_SR_INTR_RTRIG 0x00000001
  45. #define UART_SR_INTR_REMPTY 0x00000002
  46. #define UART_SR_INTR_RFUL 0x00000004
  47. #define UART_SR_INTR_TEMPTY 0x00000008
  48. #define UART_SR_INTR_TFUL 0x00000010
  49. /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
  50. #define UART_SR_TTRIG 0x00002000
  51. #define UART_INTR_TTRIG 0x00000400
  52. /* bits fields in CSR that correlate to CISR. If any of these bits are set in
  53. * SR, then the same bit in CISR is set high too */
  54. #define UART_SR_TO_CISR_MASK 0x0000001F
  55. #define UART_INTR_ROVR 0x00000020
  56. #define UART_INTR_FRAME 0x00000040
  57. #define UART_INTR_PARE 0x00000080
  58. #define UART_INTR_TIMEOUT 0x00000100
  59. #define UART_INTR_DMSI 0x00000200
  60. #define UART_INTR_TOVR 0x00001000
  61. #define UART_SR_RACTIVE 0x00000400
  62. #define UART_SR_TACTIVE 0x00000800
  63. #define UART_SR_FDELT 0x00001000
  64. #define UART_CR_RXRST 0x00000001
  65. #define UART_CR_TXRST 0x00000002
  66. #define UART_CR_RX_EN 0x00000004
  67. #define UART_CR_RX_DIS 0x00000008
  68. #define UART_CR_TX_EN 0x00000010
  69. #define UART_CR_TX_DIS 0x00000020
  70. #define UART_CR_RST_TO 0x00000040
  71. #define UART_CR_STARTBRK 0x00000080
  72. #define UART_CR_STOPBRK 0x00000100
  73. #define UART_MR_CLKS 0x00000001
  74. #define UART_MR_CHRL 0x00000006
  75. #define UART_MR_CHRL_SH 1
  76. #define UART_MR_PAR 0x00000038
  77. #define UART_MR_PAR_SH 3
  78. #define UART_MR_NBSTOP 0x000000C0
  79. #define UART_MR_NBSTOP_SH 6
  80. #define UART_MR_CHMODE 0x00000300
  81. #define UART_MR_CHMODE_SH 8
  82. #define UART_MR_UCLKEN 0x00000400
  83. #define UART_MR_IRMODE 0x00000800
  84. #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
  85. #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
  86. #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
  87. #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
  88. #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
  89. #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
  90. #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
  91. #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
  92. #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
  93. #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
  94. #define UART_DEFAULT_REF_CLK (50 * 1000 * 1000)
  95. #define R_CR (0x00/4)
  96. #define R_MR (0x04/4)
  97. #define R_IER (0x08/4)
  98. #define R_IDR (0x0C/4)
  99. #define R_IMR (0x10/4)
  100. #define R_CISR (0x14/4)
  101. #define R_BRGR (0x18/4)
  102. #define R_RTOR (0x1C/4)
  103. #define R_RTRIG (0x20/4)
  104. #define R_MCR (0x24/4)
  105. #define R_MSR (0x28/4)
  106. #define R_SR (0x2C/4)
  107. #define R_TX_RX (0x30/4)
  108. #define R_BDIV (0x34/4)
  109. #define R_FDEL (0x38/4)
  110. #define R_PMIN (0x3C/4)
  111. #define R_PWID (0x40/4)
  112. #define R_TTRIG (0x44/4)
  113. static void uart_update_status(CadenceUARTState *s)
  114. {
  115. s->r[R_SR] = 0;
  116. s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
  117. : 0;
  118. s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
  119. s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
  120. s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
  121. : 0;
  122. s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
  123. s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
  124. s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
  125. s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
  126. qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
  127. }
  128. static void fifo_trigger_update(void *opaque)
  129. {
  130. CadenceUARTState *s = opaque;
  131. if (s->r[R_RTOR]) {
  132. s->r[R_CISR] |= UART_INTR_TIMEOUT;
  133. uart_update_status(s);
  134. }
  135. }
  136. static void uart_rx_reset(CadenceUARTState *s)
  137. {
  138. s->rx_wpos = 0;
  139. s->rx_count = 0;
  140. qemu_chr_fe_accept_input(&s->chr);
  141. }
  142. static void uart_tx_reset(CadenceUARTState *s)
  143. {
  144. s->tx_count = 0;
  145. }
  146. static void uart_send_breaks(CadenceUARTState *s)
  147. {
  148. int break_enabled = 1;
  149. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
  150. &break_enabled);
  151. }
  152. static void uart_parameters_setup(CadenceUARTState *s)
  153. {
  154. QEMUSerialSetParams ssp;
  155. unsigned int baud_rate, packet_size, input_clk;
  156. input_clk = clock_get_hz(s->refclk);
  157. baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk;
  158. baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
  159. trace_cadence_uart_baudrate(baud_rate);
  160. ssp.speed = baud_rate;
  161. packet_size = 1;
  162. switch (s->r[R_MR] & UART_MR_PAR) {
  163. case UART_PARITY_EVEN:
  164. ssp.parity = 'E';
  165. packet_size++;
  166. break;
  167. case UART_PARITY_ODD:
  168. ssp.parity = 'O';
  169. packet_size++;
  170. break;
  171. default:
  172. ssp.parity = 'N';
  173. break;
  174. }
  175. switch (s->r[R_MR] & UART_MR_CHRL) {
  176. case UART_DATA_BITS_6:
  177. ssp.data_bits = 6;
  178. break;
  179. case UART_DATA_BITS_7:
  180. ssp.data_bits = 7;
  181. break;
  182. default:
  183. ssp.data_bits = 8;
  184. break;
  185. }
  186. switch (s->r[R_MR] & UART_MR_NBSTOP) {
  187. case UART_STOP_BITS_1:
  188. ssp.stop_bits = 1;
  189. break;
  190. default:
  191. ssp.stop_bits = 2;
  192. break;
  193. }
  194. packet_size += ssp.data_bits + ssp.stop_bits;
  195. if (ssp.speed == 0) {
  196. /*
  197. * Avoid division-by-zero below.
  198. * TODO: find something better
  199. */
  200. ssp.speed = 1;
  201. }
  202. s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
  203. qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
  204. }
  205. static int uart_can_receive(void *opaque)
  206. {
  207. CadenceUARTState *s = opaque;
  208. int ret;
  209. uint32_t ch_mode;
  210. /* ignore characters when unclocked or in reset */
  211. if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
  212. qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
  213. __func__);
  214. return 0;
  215. }
  216. ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
  217. ch_mode = s->r[R_MR] & UART_MR_CHMODE;
  218. if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
  219. ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
  220. }
  221. if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
  222. ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
  223. }
  224. return ret;
  225. }
  226. static void uart_ctrl_update(CadenceUARTState *s)
  227. {
  228. if (s->r[R_CR] & UART_CR_TXRST) {
  229. uart_tx_reset(s);
  230. }
  231. if (s->r[R_CR] & UART_CR_RXRST) {
  232. uart_rx_reset(s);
  233. }
  234. s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
  235. if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
  236. uart_send_breaks(s);
  237. }
  238. }
  239. static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
  240. {
  241. CadenceUARTState *s = opaque;
  242. uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  243. int i;
  244. if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
  245. return;
  246. }
  247. if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
  248. s->r[R_CISR] |= UART_INTR_ROVR;
  249. } else {
  250. for (i = 0; i < size; i++) {
  251. s->rx_fifo[s->rx_wpos] = buf[i];
  252. s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
  253. s->rx_count++;
  254. }
  255. timer_mod(s->fifo_trigger_handle, new_rx_time +
  256. (s->char_tx_time * 4));
  257. }
  258. uart_update_status(s);
  259. }
  260. static gboolean cadence_uart_xmit(void *do_not_use, GIOCondition cond,
  261. void *opaque)
  262. {
  263. CadenceUARTState *s = opaque;
  264. int ret;
  265. /* instant drain the fifo when there's no back-end */
  266. if (!qemu_chr_fe_backend_connected(&s->chr)) {
  267. s->tx_count = 0;
  268. return G_SOURCE_REMOVE;
  269. }
  270. if (!s->tx_count) {
  271. return G_SOURCE_REMOVE;
  272. }
  273. ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
  274. if (ret >= 0) {
  275. s->tx_count -= ret;
  276. memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
  277. }
  278. if (s->tx_count) {
  279. guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
  280. cadence_uart_xmit, s);
  281. if (!r) {
  282. s->tx_count = 0;
  283. return G_SOURCE_REMOVE;
  284. }
  285. }
  286. uart_update_status(s);
  287. return G_SOURCE_REMOVE;
  288. }
  289. static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
  290. int size)
  291. {
  292. if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
  293. return;
  294. }
  295. if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
  296. size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
  297. /*
  298. * This can only be a guest error via a bad tx fifo register push,
  299. * as can_receive() should stop remote loop and echo modes ever getting
  300. * us to here.
  301. */
  302. qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
  303. s->r[R_CISR] |= UART_INTR_ROVR;
  304. }
  305. memcpy(s->tx_fifo + s->tx_count, buf, size);
  306. s->tx_count += size;
  307. cadence_uart_xmit(NULL, G_IO_OUT, s);
  308. }
  309. static void uart_receive(void *opaque, const uint8_t *buf, int size)
  310. {
  311. CadenceUARTState *s = opaque;
  312. uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
  313. if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
  314. uart_write_rx_fifo(opaque, buf, size);
  315. }
  316. if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
  317. uart_write_tx_fifo(s, buf, size);
  318. }
  319. }
  320. static void uart_event(void *opaque, QEMUChrEvent event)
  321. {
  322. CadenceUARTState *s = opaque;
  323. uint8_t buf = '\0';
  324. /* ignore characters when unclocked or in reset */
  325. if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
  326. qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
  327. __func__);
  328. return;
  329. }
  330. if (event == CHR_EVENT_BREAK) {
  331. uart_write_rx_fifo(opaque, &buf, 1);
  332. }
  333. uart_update_status(s);
  334. }
  335. static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
  336. {
  337. if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
  338. return;
  339. }
  340. if (s->rx_count) {
  341. uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
  342. s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
  343. *c = s->rx_fifo[rx_rpos];
  344. s->rx_count--;
  345. qemu_chr_fe_accept_input(&s->chr);
  346. } else {
  347. *c = 0;
  348. }
  349. uart_update_status(s);
  350. }
  351. static MemTxResult uart_write(void *opaque, hwaddr offset,
  352. uint64_t value, unsigned size, MemTxAttrs attrs)
  353. {
  354. CadenceUARTState *s = opaque;
  355. /* ignore access when unclocked or in reset */
  356. if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
  357. qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
  358. __func__);
  359. return MEMTX_ERROR;
  360. }
  361. DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
  362. offset >>= 2;
  363. if (offset >= CADENCE_UART_R_MAX) {
  364. return MEMTX_DECODE_ERROR;
  365. }
  366. switch (offset) {
  367. case R_IER: /* ier (wts imr) */
  368. s->r[R_IMR] |= value;
  369. break;
  370. case R_IDR: /* idr (wtc imr) */
  371. s->r[R_IMR] &= ~value;
  372. break;
  373. case R_IMR: /* imr (read only) */
  374. break;
  375. case R_CISR: /* cisr (wtc) */
  376. s->r[R_CISR] &= ~value;
  377. break;
  378. case R_TX_RX: /* UARTDR */
  379. switch (s->r[R_MR] & UART_MR_CHMODE) {
  380. case NORMAL_MODE:
  381. uart_write_tx_fifo(s, (uint8_t *) &value, 1);
  382. break;
  383. case LOCAL_LOOPBACK:
  384. uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
  385. break;
  386. }
  387. break;
  388. case R_BRGR: /* Baud rate generator */
  389. value &= 0xffff;
  390. if (value >= 0x01) {
  391. s->r[offset] = value;
  392. }
  393. break;
  394. case R_BDIV: /* Baud rate divider */
  395. value &= 0xff;
  396. if (value >= 0x04) {
  397. s->r[offset] = value;
  398. }
  399. break;
  400. default:
  401. s->r[offset] = value;
  402. }
  403. switch (offset) {
  404. case R_CR:
  405. uart_ctrl_update(s);
  406. break;
  407. case R_MR:
  408. uart_parameters_setup(s);
  409. break;
  410. }
  411. uart_update_status(s);
  412. return MEMTX_OK;
  413. }
  414. static MemTxResult uart_read(void *opaque, hwaddr offset,
  415. uint64_t *value, unsigned size, MemTxAttrs attrs)
  416. {
  417. CadenceUARTState *s = opaque;
  418. uint32_t c = 0;
  419. /* ignore access when unclocked or in reset */
  420. if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
  421. qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n",
  422. __func__);
  423. return MEMTX_ERROR;
  424. }
  425. offset >>= 2;
  426. if (offset >= CADENCE_UART_R_MAX) {
  427. return MEMTX_DECODE_ERROR;
  428. }
  429. if (offset == R_TX_RX) {
  430. uart_read_rx_fifo(s, &c);
  431. } else {
  432. c = s->r[offset];
  433. }
  434. DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
  435. *value = c;
  436. return MEMTX_OK;
  437. }
  438. static const MemoryRegionOps uart_ops = {
  439. .read_with_attrs = uart_read,
  440. .write_with_attrs = uart_write,
  441. .endianness = DEVICE_NATIVE_ENDIAN,
  442. };
  443. static void cadence_uart_reset_init(Object *obj, ResetType type)
  444. {
  445. CadenceUARTState *s = CADENCE_UART(obj);
  446. s->r[R_CR] = 0x00000128;
  447. s->r[R_IMR] = 0;
  448. s->r[R_CISR] = 0;
  449. s->r[R_RTRIG] = 0x00000020;
  450. s->r[R_BRGR] = 0x0000028B;
  451. s->r[R_BDIV] = 0x0000000F;
  452. s->r[R_TTRIG] = 0x00000020;
  453. }
  454. static void cadence_uart_reset_hold(Object *obj, ResetType type)
  455. {
  456. CadenceUARTState *s = CADENCE_UART(obj);
  457. uart_rx_reset(s);
  458. uart_tx_reset(s);
  459. uart_update_status(s);
  460. }
  461. static void cadence_uart_realize(DeviceState *dev, Error **errp)
  462. {
  463. CadenceUARTState *s = CADENCE_UART(dev);
  464. s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
  465. fifo_trigger_update, s);
  466. qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
  467. uart_event, NULL, s, NULL, true);
  468. }
  469. static void cadence_uart_refclk_update(void *opaque, ClockEvent event)
  470. {
  471. CadenceUARTState *s = opaque;
  472. /* recompute uart's speed on clock change */
  473. uart_parameters_setup(s);
  474. }
  475. static void cadence_uart_init(Object *obj)
  476. {
  477. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  478. CadenceUARTState *s = CADENCE_UART(obj);
  479. memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
  480. sysbus_init_mmio(sbd, &s->iomem);
  481. sysbus_init_irq(sbd, &s->irq);
  482. s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
  483. cadence_uart_refclk_update, s, ClockUpdate);
  484. /* initialize the frequency in case the clock remains unconnected */
  485. clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
  486. s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
  487. }
  488. static int cadence_uart_pre_load(void *opaque)
  489. {
  490. CadenceUARTState *s = opaque;
  491. /* the frequency will be overridden if the refclk field is present */
  492. clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
  493. return 0;
  494. }
  495. static int cadence_uart_post_load(void *opaque, int version_id)
  496. {
  497. CadenceUARTState *s = opaque;
  498. /* Ensure these two aren't invalid numbers */
  499. if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
  500. s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
  501. /* Value is invalid, abort */
  502. return 1;
  503. }
  504. uart_parameters_setup(s);
  505. uart_update_status(s);
  506. return 0;
  507. }
  508. static const VMStateDescription vmstate_cadence_uart = {
  509. .name = "cadence_uart",
  510. .version_id = 3,
  511. .minimum_version_id = 2,
  512. .pre_load = cadence_uart_pre_load,
  513. .post_load = cadence_uart_post_load,
  514. .fields = (const VMStateField[]) {
  515. VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
  516. VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
  517. CADENCE_UART_RX_FIFO_SIZE),
  518. VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
  519. CADENCE_UART_TX_FIFO_SIZE),
  520. VMSTATE_UINT32(rx_count, CadenceUARTState),
  521. VMSTATE_UINT32(tx_count, CadenceUARTState),
  522. VMSTATE_UINT32(rx_wpos, CadenceUARTState),
  523. VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
  524. VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3),
  525. VMSTATE_END_OF_LIST()
  526. },
  527. };
  528. static const Property cadence_uart_properties[] = {
  529. DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
  530. };
  531. static void cadence_uart_class_init(ObjectClass *klass, void *data)
  532. {
  533. DeviceClass *dc = DEVICE_CLASS(klass);
  534. ResettableClass *rc = RESETTABLE_CLASS(klass);
  535. dc->realize = cadence_uart_realize;
  536. dc->vmsd = &vmstate_cadence_uart;
  537. rc->phases.enter = cadence_uart_reset_init;
  538. rc->phases.hold = cadence_uart_reset_hold;
  539. device_class_set_props(dc, cadence_uart_properties);
  540. }
  541. static const TypeInfo cadence_uart_info = {
  542. .name = TYPE_CADENCE_UART,
  543. .parent = TYPE_SYS_BUS_DEVICE,
  544. .instance_size = sizeof(CadenceUARTState),
  545. .instance_init = cadence_uart_init,
  546. .class_init = cadence_uart_class_init,
  547. };
  548. static void cadence_uart_register_types(void)
  549. {
  550. type_register_static(&cadence_uart_info);
  551. }
  552. type_init(cadence_uart_register_types)