2
0

intel-hda.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
  1. /*
  2. * Copyright (C) 2010 Red Hat, Inc.
  3. *
  4. * written by Gerd Hoffmann <kraxel@redhat.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "hw/pci/pci.h"
  21. #include "hw/qdev-properties.h"
  22. #include "hw/pci/msi.h"
  23. #include "qemu/timer.h"
  24. #include "qemu/bitops.h"
  25. #include "qemu/log.h"
  26. #include "qemu/module.h"
  27. #include "qemu/error-report.h"
  28. #include "hw/audio/soundhw.h"
  29. #include "intel-hda.h"
  30. #include "migration/vmstate.h"
  31. #include "intel-hda-defs.h"
  32. #include "system/dma.h"
  33. #include "qapi/error.h"
  34. #include "qom/object.h"
  35. /* --------------------------------------------------------------------- */
  36. /* hda bus */
  37. static const Property hda_props[] = {
  38. DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
  39. };
  40. static const TypeInfo hda_codec_bus_info = {
  41. .name = TYPE_HDA_BUS,
  42. .parent = TYPE_BUS,
  43. .instance_size = sizeof(HDACodecBus),
  44. };
  45. void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus, size_t bus_size,
  46. hda_codec_response_func response,
  47. hda_codec_xfer_func xfer)
  48. {
  49. qbus_init(bus, bus_size, TYPE_HDA_BUS, dev, NULL);
  50. bus->response = response;
  51. bus->xfer = xfer;
  52. }
  53. static void hda_codec_dev_realize(DeviceState *qdev, Error **errp)
  54. {
  55. HDACodecBus *bus = HDA_BUS(qdev->parent_bus);
  56. HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
  57. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  58. if (dev->cad == -1) {
  59. dev->cad = bus->next_cad;
  60. }
  61. if (dev->cad >= 15) {
  62. error_setg(errp, "HDA audio codec address is full");
  63. return;
  64. }
  65. bus->next_cad = dev->cad + 1;
  66. cdc->init(dev, errp);
  67. }
  68. static void hda_codec_dev_unrealize(DeviceState *qdev)
  69. {
  70. HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
  71. HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
  72. if (cdc->exit) {
  73. cdc->exit(dev);
  74. }
  75. }
  76. HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
  77. {
  78. BusChild *kid;
  79. HDACodecDevice *cdev;
  80. QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) {
  81. DeviceState *qdev = kid->child;
  82. cdev = HDA_CODEC_DEVICE(qdev);
  83. if (cdev->cad == cad) {
  84. return cdev;
  85. }
  86. }
  87. return NULL;
  88. }
  89. void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  90. {
  91. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  92. bus->response(dev, solicited, response);
  93. }
  94. bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  95. uint8_t *buf, uint32_t len)
  96. {
  97. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  98. return bus->xfer(dev, stnr, output, buf, len);
  99. }
  100. /* --------------------------------------------------------------------- */
  101. /* intel hda emulation */
  102. typedef struct IntelHDAStream IntelHDAStream;
  103. typedef struct IntelHDAState IntelHDAState;
  104. typedef struct IntelHDAReg IntelHDAReg;
  105. typedef struct bpl {
  106. uint64_t addr;
  107. uint32_t len;
  108. uint32_t flags;
  109. } bpl;
  110. struct IntelHDAStream {
  111. /* registers */
  112. uint32_t ctl;
  113. uint32_t lpib;
  114. uint32_t cbl;
  115. uint32_t lvi;
  116. uint32_t fmt;
  117. uint32_t bdlp_lbase;
  118. uint32_t bdlp_ubase;
  119. /* state */
  120. bpl *bpl;
  121. uint32_t bentries;
  122. uint32_t bsize, be, bp;
  123. };
  124. struct IntelHDAState {
  125. PCIDevice pci;
  126. const char *name;
  127. HDACodecBus codecs;
  128. /* registers */
  129. uint32_t g_ctl;
  130. uint32_t wake_en;
  131. uint32_t state_sts;
  132. uint32_t int_ctl;
  133. uint32_t int_sts;
  134. uint32_t wall_clk;
  135. uint32_t corb_lbase;
  136. uint32_t corb_ubase;
  137. uint32_t corb_rp;
  138. uint32_t corb_wp;
  139. uint32_t corb_ctl;
  140. uint32_t corb_sts;
  141. uint32_t corb_size;
  142. uint32_t rirb_lbase;
  143. uint32_t rirb_ubase;
  144. uint32_t rirb_wp;
  145. uint32_t rirb_cnt;
  146. uint32_t rirb_ctl;
  147. uint32_t rirb_sts;
  148. uint32_t rirb_size;
  149. uint32_t dp_lbase;
  150. uint32_t dp_ubase;
  151. uint32_t icw;
  152. uint32_t irr;
  153. uint32_t ics;
  154. /* streams */
  155. IntelHDAStream st[8];
  156. /* state */
  157. MemoryRegion container;
  158. MemoryRegion mmio;
  159. MemoryRegion alias;
  160. uint32_t rirb_count;
  161. int64_t wall_base_ns;
  162. /* debug logging */
  163. const IntelHDAReg *last_reg;
  164. uint32_t last_val;
  165. uint32_t last_write;
  166. uint32_t last_sec;
  167. uint32_t repeat_count;
  168. /* properties */
  169. uint32_t debug;
  170. OnOffAuto msi;
  171. bool old_msi_addr;
  172. };
  173. #define TYPE_INTEL_HDA_GENERIC "intel-hda-generic"
  174. DECLARE_INSTANCE_CHECKER(IntelHDAState, INTEL_HDA,
  175. TYPE_INTEL_HDA_GENERIC)
  176. struct IntelHDAReg {
  177. const char *name; /* register name */
  178. uint32_t size; /* size in bytes */
  179. uint32_t reset; /* reset value */
  180. uint32_t wmask; /* write mask */
  181. uint32_t wclear; /* write 1 to clear bits */
  182. uint32_t offset; /* location in IntelHDAState */
  183. uint32_t shift; /* byte access entries for dwords */
  184. uint32_t stream;
  185. void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
  186. void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
  187. };
  188. /* --------------------------------------------------------------------- */
  189. static hwaddr intel_hda_addr(uint32_t lbase, uint32_t ubase)
  190. {
  191. return ((uint64_t)ubase << 32) | lbase;
  192. }
  193. static void intel_hda_update_int_sts(IntelHDAState *d)
  194. {
  195. uint32_t sts = 0;
  196. uint32_t i;
  197. /* update controller status */
  198. if (d->rirb_sts & ICH6_RBSTS_IRQ) {
  199. sts |= (1 << 30);
  200. }
  201. if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
  202. sts |= (1 << 30);
  203. }
  204. if (d->state_sts & d->wake_en) {
  205. sts |= (1 << 30);
  206. }
  207. /* update stream status */
  208. for (i = 0; i < 8; i++) {
  209. /* buffer completion interrupt */
  210. if (d->st[i].ctl & (1 << 26)) {
  211. sts |= (1 << i);
  212. }
  213. }
  214. /* update global status */
  215. if (sts & d->int_ctl) {
  216. sts |= (1U << 31);
  217. }
  218. d->int_sts = sts;
  219. }
  220. static void intel_hda_update_irq(IntelHDAState *d)
  221. {
  222. bool msi = msi_enabled(&d->pci);
  223. int level;
  224. intel_hda_update_int_sts(d);
  225. if (d->int_sts & (1U << 31) && d->int_ctl & (1U << 31)) {
  226. level = 1;
  227. } else {
  228. level = 0;
  229. }
  230. dprint(d, 2, "%s: level %d [%s]\n", __func__,
  231. level, msi ? "msi" : "intx");
  232. if (msi) {
  233. if (level) {
  234. msi_notify(&d->pci, 0);
  235. }
  236. } else {
  237. pci_set_irq(&d->pci, level);
  238. }
  239. }
  240. static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
  241. {
  242. uint32_t cad, nid, data;
  243. HDACodecDevice *codec;
  244. HDACodecDeviceClass *cdc;
  245. cad = (verb >> 28) & 0x0f;
  246. if (verb & (1 << 27)) {
  247. /* indirect node addressing, not specified in HDA 1.0 */
  248. dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __func__);
  249. return -1;
  250. }
  251. nid = (verb >> 20) & 0x7f;
  252. data = verb & 0xfffff;
  253. codec = hda_codec_find(&d->codecs, cad);
  254. if (codec == NULL) {
  255. dprint(d, 1, "%s: addressed non-existing codec\n", __func__);
  256. return -1;
  257. }
  258. cdc = HDA_CODEC_DEVICE_GET_CLASS(codec);
  259. cdc->command(codec, nid, data);
  260. return 0;
  261. }
  262. static void intel_hda_corb_run(IntelHDAState *d)
  263. {
  264. hwaddr addr;
  265. uint32_t rp, verb;
  266. if (d->ics & ICH6_IRS_BUSY) {
  267. dprint(d, 2, "%s: [icw] verb 0x%08x\n", __func__, d->icw);
  268. intel_hda_send_command(d, d->icw);
  269. return;
  270. }
  271. for (;;) {
  272. if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
  273. dprint(d, 2, "%s: !run\n", __func__);
  274. return;
  275. }
  276. if ((d->corb_rp & 0xff) == d->corb_wp) {
  277. dprint(d, 2, "%s: corb ring empty\n", __func__);
  278. return;
  279. }
  280. if (d->rirb_count == d->rirb_cnt) {
  281. dprint(d, 2, "%s: rirb count reached\n", __func__);
  282. return;
  283. }
  284. rp = (d->corb_rp + 1) & 0xff;
  285. addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
  286. ldl_le_pci_dma(&d->pci, addr + 4 * rp, &verb, MEMTXATTRS_UNSPECIFIED);
  287. d->corb_rp = rp;
  288. dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __func__, rp, verb);
  289. intel_hda_send_command(d, verb);
  290. }
  291. }
  292. static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
  293. {
  294. const MemTxAttrs attrs = { .memory = true };
  295. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  296. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  297. hwaddr addr;
  298. uint32_t wp, ex;
  299. MemTxResult res = MEMTX_OK;
  300. if (d->ics & ICH6_IRS_BUSY) {
  301. dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
  302. __func__, response, dev->cad);
  303. d->irr = response;
  304. d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
  305. d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
  306. return;
  307. }
  308. if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
  309. dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __func__);
  310. return;
  311. }
  312. ex = (solicited ? 0 : (1 << 4)) | dev->cad;
  313. wp = (d->rirb_wp + 1) & 0xff;
  314. addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
  315. res |= stl_le_pci_dma(&d->pci, addr + 8 * wp, response, attrs);
  316. res |= stl_le_pci_dma(&d->pci, addr + 8 * wp + 4, ex, attrs);
  317. if (res != MEMTX_OK && (d->rirb_ctl & ICH6_RBCTL_OVERRUN_EN)) {
  318. d->rirb_sts |= ICH6_RBSTS_OVERRUN;
  319. intel_hda_update_irq(d);
  320. }
  321. d->rirb_wp = wp;
  322. dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
  323. __func__, wp, response, ex);
  324. d->rirb_count++;
  325. if (d->rirb_count == d->rirb_cnt) {
  326. dprint(d, 2, "%s: rirb count reached (%d)\n", __func__, d->rirb_count);
  327. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  328. d->rirb_sts |= ICH6_RBSTS_IRQ;
  329. intel_hda_update_irq(d);
  330. }
  331. } else if ((d->corb_rp & 0xff) == d->corb_wp) {
  332. dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __func__,
  333. d->rirb_count, d->rirb_cnt);
  334. if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
  335. d->rirb_sts |= ICH6_RBSTS_IRQ;
  336. intel_hda_update_irq(d);
  337. }
  338. }
  339. }
  340. static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
  341. uint8_t *buf, uint32_t len)
  342. {
  343. const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
  344. HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
  345. IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
  346. hwaddr addr;
  347. uint32_t s, copy, left;
  348. IntelHDAStream *st;
  349. bool irq = false;
  350. st = output ? d->st + 4 : d->st;
  351. for (s = 0; s < 4; s++) {
  352. if (stnr == ((st[s].ctl >> 20) & 0x0f)) {
  353. st = st + s;
  354. break;
  355. }
  356. }
  357. if (s == 4) {
  358. return false;
  359. }
  360. if (st->bpl == NULL) {
  361. return false;
  362. }
  363. left = len;
  364. s = st->bentries;
  365. while (left > 0 && s-- > 0) {
  366. copy = left;
  367. if (copy > st->bsize - st->lpib)
  368. copy = st->bsize - st->lpib;
  369. if (copy > st->bpl[st->be].len - st->bp)
  370. copy = st->bpl[st->be].len - st->bp;
  371. dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
  372. st->be, st->bp, st->bpl[st->be].len, copy);
  373. pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output,
  374. attrs);
  375. st->lpib += copy;
  376. st->bp += copy;
  377. buf += copy;
  378. left -= copy;
  379. if (st->bpl[st->be].len == st->bp) {
  380. /* bpl entry filled */
  381. if (st->bpl[st->be].flags & 0x01) {
  382. irq = true;
  383. }
  384. st->bp = 0;
  385. st->be++;
  386. if (st->be == st->bentries) {
  387. /* bpl wrap around */
  388. st->be = 0;
  389. st->lpib = 0;
  390. }
  391. }
  392. }
  393. if (d->dp_lbase & 0x01) {
  394. s = st - d->st;
  395. addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
  396. stl_le_pci_dma(&d->pci, addr + 8 * s, st->lpib, attrs);
  397. }
  398. dprint(d, 3, "dma: --\n");
  399. if (irq) {
  400. st->ctl |= (1 << 26); /* buffer completion interrupt */
  401. intel_hda_update_irq(d);
  402. }
  403. return true;
  404. }
  405. static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
  406. {
  407. hwaddr addr;
  408. uint8_t buf[16];
  409. uint32_t i;
  410. addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
  411. st->bentries = st->lvi +1;
  412. g_free(st->bpl);
  413. st->bpl = g_new(bpl, st->bentries);
  414. for (i = 0; i < st->bentries; i++, addr += 16) {
  415. pci_dma_read(&d->pci, addr, buf, 16);
  416. st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
  417. st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
  418. st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
  419. dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
  420. i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
  421. }
  422. st->bsize = st->cbl;
  423. st->lpib = 0;
  424. st->be = 0;
  425. st->bp = 0;
  426. }
  427. static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output)
  428. {
  429. BusChild *kid;
  430. HDACodecDevice *cdev;
  431. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  432. DeviceState *qdev = kid->child;
  433. HDACodecDeviceClass *cdc;
  434. cdev = HDA_CODEC_DEVICE(qdev);
  435. cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev);
  436. if (cdc->stream) {
  437. cdc->stream(cdev, stream, running, output);
  438. }
  439. }
  440. }
  441. /* --------------------------------------------------------------------- */
  442. static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  443. {
  444. if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
  445. device_cold_reset(DEVICE(d));
  446. }
  447. }
  448. static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  449. {
  450. intel_hda_update_irq(d);
  451. }
  452. static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  453. {
  454. intel_hda_update_irq(d);
  455. }
  456. static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  457. {
  458. intel_hda_update_irq(d);
  459. }
  460. static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
  461. {
  462. int64_t ns;
  463. ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - d->wall_base_ns;
  464. d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
  465. }
  466. static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  467. {
  468. intel_hda_corb_run(d);
  469. }
  470. static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  471. {
  472. intel_hda_corb_run(d);
  473. }
  474. static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  475. {
  476. if (d->rirb_wp & ICH6_RIRBWP_RST) {
  477. d->rirb_wp = 0;
  478. }
  479. }
  480. static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  481. {
  482. intel_hda_update_irq(d);
  483. if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
  484. /* cleared ICH6_RBSTS_IRQ */
  485. d->rirb_count = 0;
  486. intel_hda_corb_run(d);
  487. }
  488. }
  489. static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  490. {
  491. if (d->ics & ICH6_IRS_BUSY) {
  492. intel_hda_corb_run(d);
  493. }
  494. }
  495. static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
  496. {
  497. bool output = reg->stream >= 4;
  498. IntelHDAStream *st = d->st + reg->stream;
  499. if (st->ctl & 0x01) {
  500. /* reset */
  501. dprint(d, 1, "st #%d: reset\n", reg->stream);
  502. st->ctl = SD_STS_FIFO_READY << 24 | SD_CTL_STREAM_RESET;
  503. }
  504. if ((st->ctl & 0x02) != (old & 0x02)) {
  505. uint32_t stnr = (st->ctl >> 20) & 0x0f;
  506. /* run bit flipped */
  507. if (st->ctl & 0x02) {
  508. /* start */
  509. dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
  510. reg->stream, stnr, st->cbl);
  511. intel_hda_parse_bdl(d, st);
  512. intel_hda_notify_codecs(d, stnr, true, output);
  513. } else {
  514. /* stop */
  515. dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
  516. intel_hda_notify_codecs(d, stnr, false, output);
  517. }
  518. }
  519. intel_hda_update_irq(d);
  520. }
  521. /* --------------------------------------------------------------------- */
  522. #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
  523. static const struct IntelHDAReg regtab[] = {
  524. /* global */
  525. [ ICH6_REG_GCAP ] = {
  526. .name = "GCAP",
  527. .size = 2,
  528. .reset = 0x4401,
  529. },
  530. [ ICH6_REG_VMIN ] = {
  531. .name = "VMIN",
  532. .size = 1,
  533. },
  534. [ ICH6_REG_VMAJ ] = {
  535. .name = "VMAJ",
  536. .size = 1,
  537. .reset = 1,
  538. },
  539. [ ICH6_REG_OUTPAY ] = {
  540. .name = "OUTPAY",
  541. .size = 2,
  542. .reset = 0x3c,
  543. },
  544. [ ICH6_REG_INPAY ] = {
  545. .name = "INPAY",
  546. .size = 2,
  547. .reset = 0x1d,
  548. },
  549. [ ICH6_REG_GCTL ] = {
  550. .name = "GCTL",
  551. .size = 4,
  552. .wmask = 0x0103,
  553. .offset = offsetof(IntelHDAState, g_ctl),
  554. .whandler = intel_hda_set_g_ctl,
  555. },
  556. [ ICH6_REG_WAKEEN ] = {
  557. .name = "WAKEEN",
  558. .size = 2,
  559. .wmask = 0x7fff,
  560. .offset = offsetof(IntelHDAState, wake_en),
  561. .whandler = intel_hda_set_wake_en,
  562. },
  563. [ ICH6_REG_STATESTS ] = {
  564. .name = "STATESTS",
  565. .size = 2,
  566. .wmask = 0x7fff,
  567. .wclear = 0x7fff,
  568. .offset = offsetof(IntelHDAState, state_sts),
  569. .whandler = intel_hda_set_state_sts,
  570. },
  571. /* interrupts */
  572. [ ICH6_REG_INTCTL ] = {
  573. .name = "INTCTL",
  574. .size = 4,
  575. .wmask = 0xc00000ff,
  576. .offset = offsetof(IntelHDAState, int_ctl),
  577. .whandler = intel_hda_set_int_ctl,
  578. },
  579. [ ICH6_REG_INTSTS ] = {
  580. .name = "INTSTS",
  581. .size = 4,
  582. .wmask = 0xc00000ff,
  583. .wclear = 0xc00000ff,
  584. .offset = offsetof(IntelHDAState, int_sts),
  585. },
  586. /* misc */
  587. [ ICH6_REG_WALLCLK ] = {
  588. .name = "WALLCLK",
  589. .size = 4,
  590. .offset = offsetof(IntelHDAState, wall_clk),
  591. .rhandler = intel_hda_get_wall_clk,
  592. },
  593. /* dma engine */
  594. [ ICH6_REG_CORBLBASE ] = {
  595. .name = "CORBLBASE",
  596. .size = 4,
  597. .wmask = 0xffffff80,
  598. .offset = offsetof(IntelHDAState, corb_lbase),
  599. },
  600. [ ICH6_REG_CORBUBASE ] = {
  601. .name = "CORBUBASE",
  602. .size = 4,
  603. .wmask = 0xffffffff,
  604. .offset = offsetof(IntelHDAState, corb_ubase),
  605. },
  606. [ ICH6_REG_CORBWP ] = {
  607. .name = "CORBWP",
  608. .size = 2,
  609. .wmask = 0xff,
  610. .offset = offsetof(IntelHDAState, corb_wp),
  611. .whandler = intel_hda_set_corb_wp,
  612. },
  613. [ ICH6_REG_CORBRP ] = {
  614. .name = "CORBRP",
  615. .size = 2,
  616. .wmask = 0x80ff,
  617. .offset = offsetof(IntelHDAState, corb_rp),
  618. },
  619. [ ICH6_REG_CORBCTL ] = {
  620. .name = "CORBCTL",
  621. .size = 1,
  622. .wmask = 0x03,
  623. .offset = offsetof(IntelHDAState, corb_ctl),
  624. .whandler = intel_hda_set_corb_ctl,
  625. },
  626. [ ICH6_REG_CORBSTS ] = {
  627. .name = "CORBSTS",
  628. .size = 1,
  629. .wmask = 0x01,
  630. .wclear = 0x01,
  631. .offset = offsetof(IntelHDAState, corb_sts),
  632. },
  633. [ ICH6_REG_CORBSIZE ] = {
  634. .name = "CORBSIZE",
  635. .size = 1,
  636. .reset = 0x42,
  637. .offset = offsetof(IntelHDAState, corb_size),
  638. },
  639. [ ICH6_REG_RIRBLBASE ] = {
  640. .name = "RIRBLBASE",
  641. .size = 4,
  642. .wmask = 0xffffff80,
  643. .offset = offsetof(IntelHDAState, rirb_lbase),
  644. },
  645. [ ICH6_REG_RIRBUBASE ] = {
  646. .name = "RIRBUBASE",
  647. .size = 4,
  648. .wmask = 0xffffffff,
  649. .offset = offsetof(IntelHDAState, rirb_ubase),
  650. },
  651. [ ICH6_REG_RIRBWP ] = {
  652. .name = "RIRBWP",
  653. .size = 2,
  654. .wmask = 0x8000,
  655. .offset = offsetof(IntelHDAState, rirb_wp),
  656. .whandler = intel_hda_set_rirb_wp,
  657. },
  658. [ ICH6_REG_RINTCNT ] = {
  659. .name = "RINTCNT",
  660. .size = 2,
  661. .wmask = 0xff,
  662. .offset = offsetof(IntelHDAState, rirb_cnt),
  663. },
  664. [ ICH6_REG_RIRBCTL ] = {
  665. .name = "RIRBCTL",
  666. .size = 1,
  667. .wmask = 0x07,
  668. .offset = offsetof(IntelHDAState, rirb_ctl),
  669. },
  670. [ ICH6_REG_RIRBSTS ] = {
  671. .name = "RIRBSTS",
  672. .size = 1,
  673. .wmask = 0x05,
  674. .wclear = 0x05,
  675. .offset = offsetof(IntelHDAState, rirb_sts),
  676. .whandler = intel_hda_set_rirb_sts,
  677. },
  678. [ ICH6_REG_RIRBSIZE ] = {
  679. .name = "RIRBSIZE",
  680. .size = 1,
  681. .reset = 0x42,
  682. .offset = offsetof(IntelHDAState, rirb_size),
  683. },
  684. [ ICH6_REG_DPLBASE ] = {
  685. .name = "DPLBASE",
  686. .size = 4,
  687. .wmask = 0xffffff81,
  688. .offset = offsetof(IntelHDAState, dp_lbase),
  689. },
  690. [ ICH6_REG_DPUBASE ] = {
  691. .name = "DPUBASE",
  692. .size = 4,
  693. .wmask = 0xffffffff,
  694. .offset = offsetof(IntelHDAState, dp_ubase),
  695. },
  696. [ ICH6_REG_IC ] = {
  697. .name = "ICW",
  698. .size = 4,
  699. .wmask = 0xffffffff,
  700. .offset = offsetof(IntelHDAState, icw),
  701. },
  702. [ ICH6_REG_IR ] = {
  703. .name = "IRR",
  704. .size = 4,
  705. .offset = offsetof(IntelHDAState, irr),
  706. },
  707. [ ICH6_REG_IRS ] = {
  708. .name = "ICS",
  709. .size = 2,
  710. .wmask = 0x0003,
  711. .wclear = 0x0002,
  712. .offset = offsetof(IntelHDAState, ics),
  713. .whandler = intel_hda_set_ics,
  714. },
  715. #define HDA_STREAM(_t, _i) \
  716. [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
  717. .stream = _i, \
  718. .name = _t stringify(_i) " CTL", \
  719. .size = 4, \
  720. .wmask = 0x1cff001f, \
  721. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  722. .whandler = intel_hda_set_st_ctl, \
  723. }, \
  724. [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
  725. .stream = _i, \
  726. .name = _t stringify(_i) " CTL(stnr)", \
  727. .size = 1, \
  728. .shift = 16, \
  729. .wmask = 0x00ff0000, \
  730. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  731. .whandler = intel_hda_set_st_ctl, \
  732. }, \
  733. [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
  734. .stream = _i, \
  735. .name = _t stringify(_i) " CTL(sts)", \
  736. .size = 1, \
  737. .shift = 24, \
  738. .wmask = 0x1c000000, \
  739. .wclear = 0x1c000000, \
  740. .offset = offsetof(IntelHDAState, st[_i].ctl), \
  741. .whandler = intel_hda_set_st_ctl, \
  742. .reset = SD_STS_FIFO_READY << 24 \
  743. }, \
  744. [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
  745. .stream = _i, \
  746. .name = _t stringify(_i) " LPIB", \
  747. .size = 4, \
  748. .offset = offsetof(IntelHDAState, st[_i].lpib), \
  749. }, \
  750. [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
  751. .stream = _i, \
  752. .name = _t stringify(_i) " CBL", \
  753. .size = 4, \
  754. .wmask = 0xffffffff, \
  755. .offset = offsetof(IntelHDAState, st[_i].cbl), \
  756. }, \
  757. [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
  758. .stream = _i, \
  759. .name = _t stringify(_i) " LVI", \
  760. .size = 2, \
  761. .wmask = 0x00ff, \
  762. .offset = offsetof(IntelHDAState, st[_i].lvi), \
  763. }, \
  764. [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
  765. .stream = _i, \
  766. .name = _t stringify(_i) " FIFOS", \
  767. .size = 2, \
  768. .reset = HDA_BUFFER_SIZE, \
  769. }, \
  770. [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
  771. .stream = _i, \
  772. .name = _t stringify(_i) " FMT", \
  773. .size = 2, \
  774. .wmask = 0x7f7f, \
  775. .offset = offsetof(IntelHDAState, st[_i].fmt), \
  776. }, \
  777. [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
  778. .stream = _i, \
  779. .name = _t stringify(_i) " BDLPL", \
  780. .size = 4, \
  781. .wmask = 0xffffff80, \
  782. .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
  783. }, \
  784. [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
  785. .stream = _i, \
  786. .name = _t stringify(_i) " BDLPU", \
  787. .size = 4, \
  788. .wmask = 0xffffffff, \
  789. .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
  790. }, \
  791. HDA_STREAM("IN", 0)
  792. HDA_STREAM("IN", 1)
  793. HDA_STREAM("IN", 2)
  794. HDA_STREAM("IN", 3)
  795. HDA_STREAM("OUT", 4)
  796. HDA_STREAM("OUT", 5)
  797. HDA_STREAM("OUT", 6)
  798. HDA_STREAM("OUT", 7)
  799. };
  800. static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, hwaddr addr)
  801. {
  802. const IntelHDAReg *reg;
  803. if (addr >= ARRAY_SIZE(regtab)) {
  804. goto noreg;
  805. }
  806. reg = regtab+addr;
  807. if (reg->name == NULL) {
  808. goto noreg;
  809. }
  810. return reg;
  811. noreg:
  812. dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
  813. return NULL;
  814. }
  815. static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
  816. {
  817. uint8_t *addr = (void*)d;
  818. addr += reg->offset;
  819. return (uint32_t*)addr;
  820. }
  821. static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
  822. uint32_t wmask)
  823. {
  824. uint32_t *addr;
  825. uint32_t old;
  826. if (!reg) {
  827. return;
  828. }
  829. if (!reg->wmask) {
  830. qemu_log_mask(LOG_GUEST_ERROR, "intel-hda: write to r/o reg %s\n",
  831. reg->name);
  832. return;
  833. }
  834. if (d->debug) {
  835. time_t now = time(NULL);
  836. if (d->last_write && d->last_reg == reg && d->last_val == val) {
  837. d->repeat_count++;
  838. if (d->last_sec != now) {
  839. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  840. d->last_sec = now;
  841. d->repeat_count = 0;
  842. }
  843. } else {
  844. if (d->repeat_count) {
  845. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  846. }
  847. dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
  848. d->last_write = 1;
  849. d->last_reg = reg;
  850. d->last_val = val;
  851. d->last_sec = now;
  852. d->repeat_count = 0;
  853. }
  854. }
  855. assert(reg->offset != 0);
  856. addr = intel_hda_reg_addr(d, reg);
  857. old = *addr;
  858. if (reg->shift) {
  859. val <<= reg->shift;
  860. wmask <<= reg->shift;
  861. }
  862. wmask &= reg->wmask;
  863. *addr &= ~wmask;
  864. *addr |= wmask & val;
  865. *addr &= ~(val & reg->wclear);
  866. if (reg->whandler) {
  867. reg->whandler(d, reg, old);
  868. }
  869. }
  870. static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
  871. uint32_t rmask)
  872. {
  873. uint32_t *addr, ret;
  874. if (!reg) {
  875. return 0;
  876. }
  877. if (reg->rhandler) {
  878. reg->rhandler(d, reg);
  879. }
  880. if (reg->offset == 0) {
  881. /* constant read-only register */
  882. ret = reg->reset;
  883. } else {
  884. addr = intel_hda_reg_addr(d, reg);
  885. ret = *addr;
  886. if (reg->shift) {
  887. ret >>= reg->shift;
  888. }
  889. ret &= rmask;
  890. }
  891. if (d->debug) {
  892. time_t now = time(NULL);
  893. if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
  894. d->repeat_count++;
  895. if (d->last_sec != now) {
  896. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  897. d->last_sec = now;
  898. d->repeat_count = 0;
  899. }
  900. } else {
  901. if (d->repeat_count) {
  902. dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
  903. }
  904. dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
  905. d->last_write = 0;
  906. d->last_reg = reg;
  907. d->last_val = ret;
  908. d->last_sec = now;
  909. d->repeat_count = 0;
  910. }
  911. }
  912. return ret;
  913. }
  914. static void intel_hda_regs_reset(IntelHDAState *d)
  915. {
  916. uint32_t *addr;
  917. int i;
  918. for (i = 0; i < ARRAY_SIZE(regtab); i++) {
  919. if (regtab[i].name == NULL) {
  920. continue;
  921. }
  922. if (regtab[i].offset == 0) {
  923. continue;
  924. }
  925. addr = intel_hda_reg_addr(d, regtab + i);
  926. *addr = regtab[i].reset;
  927. }
  928. }
  929. /* --------------------------------------------------------------------- */
  930. static void intel_hda_mmio_write(void *opaque, hwaddr addr, uint64_t val,
  931. unsigned size)
  932. {
  933. IntelHDAState *d = opaque;
  934. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  935. intel_hda_reg_write(d, reg, val, MAKE_64BIT_MASK(0, size * 8));
  936. }
  937. static uint64_t intel_hda_mmio_read(void *opaque, hwaddr addr, unsigned size)
  938. {
  939. IntelHDAState *d = opaque;
  940. const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
  941. return intel_hda_reg_read(d, reg, MAKE_64BIT_MASK(0, size * 8));
  942. }
  943. static const MemoryRegionOps intel_hda_mmio_ops = {
  944. .read = intel_hda_mmio_read,
  945. .write = intel_hda_mmio_write,
  946. .impl = {
  947. .min_access_size = 1,
  948. .max_access_size = 4,
  949. },
  950. .endianness = DEVICE_NATIVE_ENDIAN,
  951. };
  952. /* --------------------------------------------------------------------- */
  953. static void intel_hda_reset(DeviceState *dev)
  954. {
  955. BusChild *kid;
  956. IntelHDAState *d = INTEL_HDA(dev);
  957. HDACodecDevice *cdev;
  958. intel_hda_regs_reset(d);
  959. d->wall_base_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  960. QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
  961. DeviceState *qdev = kid->child;
  962. cdev = HDA_CODEC_DEVICE(qdev);
  963. d->state_sts |= (1 << cdev->cad);
  964. }
  965. intel_hda_update_irq(d);
  966. }
  967. static void intel_hda_realize(PCIDevice *pci, Error **errp)
  968. {
  969. IntelHDAState *d = INTEL_HDA(pci);
  970. uint8_t *conf = d->pci.config;
  971. Error *err = NULL;
  972. int ret;
  973. d->name = object_get_typename(OBJECT(d));
  974. pci_config_set_interrupt_pin(conf, 1);
  975. /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
  976. conf[0x40] = 0x01;
  977. if (d->msi != ON_OFF_AUTO_OFF) {
  978. ret = msi_init(&d->pci, d->old_msi_addr ? 0x50 : 0x60,
  979. 1, true, false, &err);
  980. /* Any error other than -ENOTSUP(board's MSI support is broken)
  981. * is a programming error */
  982. assert(!ret || ret == -ENOTSUP);
  983. if (ret && d->msi == ON_OFF_AUTO_ON) {
  984. /* Can't satisfy user's explicit msi=on request, fail */
  985. error_append_hint(&err, "You have to use msi=auto (default) or "
  986. "msi=off with this machine type.\n");
  987. error_propagate(errp, err);
  988. return;
  989. }
  990. assert(!err || d->msi == ON_OFF_AUTO_AUTO);
  991. /* With msi=auto, we fall back to MSI off silently */
  992. error_free(err);
  993. }
  994. memory_region_init(&d->container, OBJECT(d),
  995. "intel-hda-container", 0x4000);
  996. memory_region_init_io(&d->mmio, OBJECT(d), &intel_hda_mmio_ops, d,
  997. "intel-hda", 0x2000);
  998. memory_region_add_subregion(&d->container, 0x0000, &d->mmio);
  999. memory_region_init_alias(&d->alias, OBJECT(d), "intel-hda-alias",
  1000. &d->mmio, 0, 0x2000);
  1001. memory_region_add_subregion(&d->container, 0x2000, &d->alias);
  1002. pci_register_bar(&d->pci, 0, 0, &d->container);
  1003. hda_codec_bus_init(DEVICE(pci), &d->codecs, sizeof(d->codecs),
  1004. intel_hda_response, intel_hda_xfer);
  1005. }
  1006. static void intel_hda_exit(PCIDevice *pci)
  1007. {
  1008. IntelHDAState *d = INTEL_HDA(pci);
  1009. msi_uninit(&d->pci);
  1010. }
  1011. static int intel_hda_post_load(void *opaque, int version)
  1012. {
  1013. IntelHDAState* d = opaque;
  1014. int i;
  1015. dprint(d, 1, "%s\n", __func__);
  1016. for (i = 0; i < ARRAY_SIZE(d->st); i++) {
  1017. if (d->st[i].ctl & 0x02) {
  1018. intel_hda_parse_bdl(d, &d->st[i]);
  1019. }
  1020. }
  1021. intel_hda_update_irq(d);
  1022. return 0;
  1023. }
  1024. static const VMStateDescription vmstate_intel_hda_stream = {
  1025. .name = "intel-hda-stream",
  1026. .version_id = 1,
  1027. .fields = (const VMStateField[]) {
  1028. VMSTATE_UINT32(ctl, IntelHDAStream),
  1029. VMSTATE_UINT32(lpib, IntelHDAStream),
  1030. VMSTATE_UINT32(cbl, IntelHDAStream),
  1031. VMSTATE_UINT32(lvi, IntelHDAStream),
  1032. VMSTATE_UINT32(fmt, IntelHDAStream),
  1033. VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
  1034. VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
  1035. VMSTATE_END_OF_LIST()
  1036. }
  1037. };
  1038. static const VMStateDescription vmstate_intel_hda = {
  1039. .name = "intel-hda",
  1040. .version_id = 1,
  1041. .post_load = intel_hda_post_load,
  1042. .fields = (const VMStateField[]) {
  1043. VMSTATE_PCI_DEVICE(pci, IntelHDAState),
  1044. /* registers */
  1045. VMSTATE_UINT32(g_ctl, IntelHDAState),
  1046. VMSTATE_UINT32(wake_en, IntelHDAState),
  1047. VMSTATE_UINT32(state_sts, IntelHDAState),
  1048. VMSTATE_UINT32(int_ctl, IntelHDAState),
  1049. VMSTATE_UINT32(int_sts, IntelHDAState),
  1050. VMSTATE_UINT32(wall_clk, IntelHDAState),
  1051. VMSTATE_UINT32(corb_lbase, IntelHDAState),
  1052. VMSTATE_UINT32(corb_ubase, IntelHDAState),
  1053. VMSTATE_UINT32(corb_rp, IntelHDAState),
  1054. VMSTATE_UINT32(corb_wp, IntelHDAState),
  1055. VMSTATE_UINT32(corb_ctl, IntelHDAState),
  1056. VMSTATE_UINT32(corb_sts, IntelHDAState),
  1057. VMSTATE_UINT32(corb_size, IntelHDAState),
  1058. VMSTATE_UINT32(rirb_lbase, IntelHDAState),
  1059. VMSTATE_UINT32(rirb_ubase, IntelHDAState),
  1060. VMSTATE_UINT32(rirb_wp, IntelHDAState),
  1061. VMSTATE_UINT32(rirb_cnt, IntelHDAState),
  1062. VMSTATE_UINT32(rirb_ctl, IntelHDAState),
  1063. VMSTATE_UINT32(rirb_sts, IntelHDAState),
  1064. VMSTATE_UINT32(rirb_size, IntelHDAState),
  1065. VMSTATE_UINT32(dp_lbase, IntelHDAState),
  1066. VMSTATE_UINT32(dp_ubase, IntelHDAState),
  1067. VMSTATE_UINT32(icw, IntelHDAState),
  1068. VMSTATE_UINT32(irr, IntelHDAState),
  1069. VMSTATE_UINT32(ics, IntelHDAState),
  1070. VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
  1071. vmstate_intel_hda_stream,
  1072. IntelHDAStream),
  1073. /* additional state info */
  1074. VMSTATE_UINT32(rirb_count, IntelHDAState),
  1075. VMSTATE_INT64(wall_base_ns, IntelHDAState),
  1076. VMSTATE_END_OF_LIST()
  1077. }
  1078. };
  1079. static const Property intel_hda_properties[] = {
  1080. DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
  1081. DEFINE_PROP_ON_OFF_AUTO("msi", IntelHDAState, msi, ON_OFF_AUTO_AUTO),
  1082. DEFINE_PROP_BOOL("old_msi_addr", IntelHDAState, old_msi_addr, false),
  1083. };
  1084. static void intel_hda_class_init(ObjectClass *klass, void *data)
  1085. {
  1086. DeviceClass *dc = DEVICE_CLASS(klass);
  1087. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1088. k->realize = intel_hda_realize;
  1089. k->exit = intel_hda_exit;
  1090. k->vendor_id = PCI_VENDOR_ID_INTEL;
  1091. k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO;
  1092. device_class_set_legacy_reset(dc, intel_hda_reset);
  1093. dc->vmsd = &vmstate_intel_hda;
  1094. device_class_set_props(dc, intel_hda_properties);
  1095. }
  1096. static void intel_hda_class_init_ich6(ObjectClass *klass, void *data)
  1097. {
  1098. DeviceClass *dc = DEVICE_CLASS(klass);
  1099. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1100. k->device_id = 0x2668;
  1101. k->revision = 1;
  1102. set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
  1103. dc->desc = "Intel HD Audio Controller (ich6)";
  1104. }
  1105. static void intel_hda_class_init_ich9(ObjectClass *klass, void *data)
  1106. {
  1107. DeviceClass *dc = DEVICE_CLASS(klass);
  1108. PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
  1109. k->device_id = 0x293e;
  1110. k->revision = 3;
  1111. set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
  1112. dc->desc = "Intel HD Audio Controller (ich9)";
  1113. }
  1114. static const TypeInfo intel_hda_info = {
  1115. .name = TYPE_INTEL_HDA_GENERIC,
  1116. .parent = TYPE_PCI_DEVICE,
  1117. .instance_size = sizeof(IntelHDAState),
  1118. .class_init = intel_hda_class_init,
  1119. .abstract = true,
  1120. .interfaces = (InterfaceInfo[]) {
  1121. { INTERFACE_CONVENTIONAL_PCI_DEVICE },
  1122. { },
  1123. },
  1124. };
  1125. static const TypeInfo intel_hda_info_ich6 = {
  1126. .name = "intel-hda",
  1127. .parent = TYPE_INTEL_HDA_GENERIC,
  1128. .class_init = intel_hda_class_init_ich6,
  1129. };
  1130. static const TypeInfo intel_hda_info_ich9 = {
  1131. .name = "ich9-intel-hda",
  1132. .parent = TYPE_INTEL_HDA_GENERIC,
  1133. .class_init = intel_hda_class_init_ich9,
  1134. };
  1135. static void hda_codec_device_class_init(ObjectClass *klass, void *data)
  1136. {
  1137. DeviceClass *k = DEVICE_CLASS(klass);
  1138. k->realize = hda_codec_dev_realize;
  1139. k->unrealize = hda_codec_dev_unrealize;
  1140. set_bit(DEVICE_CATEGORY_SOUND, k->categories);
  1141. k->bus_type = TYPE_HDA_BUS;
  1142. device_class_set_props(k, hda_props);
  1143. }
  1144. static const TypeInfo hda_codec_device_type_info = {
  1145. .name = TYPE_HDA_CODEC_DEVICE,
  1146. .parent = TYPE_DEVICE,
  1147. .instance_size = sizeof(HDACodecDevice),
  1148. .abstract = true,
  1149. .class_size = sizeof(HDACodecDeviceClass),
  1150. .class_init = hda_codec_device_class_init,
  1151. };
  1152. /*
  1153. * create intel hda controller with codec attached to it,
  1154. * so '-soundhw hda' works.
  1155. */
  1156. static int intel_hda_and_codec_init(PCIBus *bus, const char *audiodev)
  1157. {
  1158. DeviceState *controller;
  1159. BusState *hdabus;
  1160. DeviceState *codec;
  1161. controller = DEVICE(pci_create_simple(bus, -1, "intel-hda"));
  1162. hdabus = QLIST_FIRST(&controller->child_bus);
  1163. codec = qdev_new("hda-duplex");
  1164. qdev_prop_set_string(codec, "audiodev", audiodev);
  1165. qdev_realize_and_unref(codec, hdabus, &error_fatal);
  1166. return 0;
  1167. }
  1168. static void intel_hda_register_types(void)
  1169. {
  1170. type_register_static(&hda_codec_bus_info);
  1171. type_register_static(&intel_hda_info);
  1172. type_register_static(&intel_hda_info_ich6);
  1173. type_register_static(&intel_hda_info_ich9);
  1174. type_register_static(&hda_codec_device_type_info);
  1175. pci_register_soundhw("hda", "Intel HD Audio", intel_hda_and_codec_init);
  1176. }
  1177. type_init(intel_hda_register_types)