xlnx-zynqmp.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881
  1. /*
  2. * Xilinx Zynq MPSoC emulation
  3. *
  4. * Copyright (C) 2015 Xilinx Inc
  5. * Written by Peter Crosthwaite <peter.crosthwaite@xilinx.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the
  9. * Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  15. * for more details.
  16. */
  17. #include "qemu/osdep.h"
  18. #include "qapi/error.h"
  19. #include "qemu/module.h"
  20. #include "hw/arm/xlnx-zynqmp.h"
  21. #include "hw/intc/arm_gic_common.h"
  22. #include "hw/misc/unimp.h"
  23. #include "hw/boards.h"
  24. #include "system/kvm.h"
  25. #include "system/system.h"
  26. #include "kvm_arm.h"
  27. #include "target/arm/cpu-qom.h"
  28. #include "target/arm/gtimer.h"
  29. #define GIC_NUM_SPI_INTR 160
  30. #define ARM_PHYS_TIMER_PPI 30
  31. #define ARM_VIRT_TIMER_PPI 27
  32. #define ARM_HYP_TIMER_PPI 26
  33. #define ARM_SEC_TIMER_PPI 29
  34. #define GIC_MAINTENANCE_PPI 25
  35. #define GEM_REVISION 0x40070106
  36. #define GIC_BASE_ADDR 0xf9000000
  37. #define GIC_DIST_ADDR 0xf9010000
  38. #define GIC_CPU_ADDR 0xf9020000
  39. #define GIC_VIFACE_ADDR 0xf9040000
  40. #define GIC_VCPU_ADDR 0xf9060000
  41. #define SATA_INTR 133
  42. #define SATA_ADDR 0xFD0C0000
  43. #define SATA_NUM_PORTS 2
  44. #define QSPI_ADDR 0xff0f0000
  45. #define LQSPI_ADDR 0xc0000000
  46. #define QSPI_IRQ 15
  47. #define QSPI_DMA_ADDR 0xff0f0800
  48. #define NUM_QSPI_IRQ_LINES 2
  49. #define CRF_ADDR 0xfd1a0000
  50. #define CRF_IRQ 120
  51. /* Serializer/Deserializer. */
  52. #define SERDES_ADDR 0xfd400000
  53. #define SERDES_SIZE 0x20000
  54. #define DP_ADDR 0xfd4a0000
  55. #define DP_IRQ 0x77
  56. #define DPDMA_ADDR 0xfd4c0000
  57. #define DPDMA_IRQ 0x7a
  58. #define APU_ADDR 0xfd5c0000
  59. #define APU_IRQ 153
  60. #define TTC0_ADDR 0xFF110000
  61. #define TTC0_IRQ 36
  62. #define IPI_ADDR 0xFF300000
  63. #define IPI_IRQ 64
  64. #define RTC_ADDR 0xffa60000
  65. #define RTC_IRQ 26
  66. #define BBRAM_ADDR 0xffcd0000
  67. #define BBRAM_IRQ 11
  68. #define EFUSE_ADDR 0xffcc0000
  69. #define EFUSE_IRQ 87
  70. #define SDHCI_CAPABILITIES 0x280737ec6481 /* Datasheet: UG1085 (v1.7) */
  71. static const uint64_t gem_addr[XLNX_ZYNQMP_NUM_GEMS] = {
  72. 0xFF0B0000, 0xFF0C0000, 0xFF0D0000, 0xFF0E0000,
  73. };
  74. static const int gem_intr[XLNX_ZYNQMP_NUM_GEMS] = {
  75. 57, 59, 61, 63,
  76. };
  77. static const uint64_t uart_addr[XLNX_ZYNQMP_NUM_UARTS] = {
  78. 0xFF000000, 0xFF010000,
  79. };
  80. static const int uart_intr[XLNX_ZYNQMP_NUM_UARTS] = {
  81. 21, 22,
  82. };
  83. static const uint64_t can_addr[XLNX_ZYNQMP_NUM_CAN] = {
  84. 0xFF060000, 0xFF070000,
  85. };
  86. static const int can_intr[XLNX_ZYNQMP_NUM_CAN] = {
  87. 23, 24,
  88. };
  89. static const uint64_t sdhci_addr[XLNX_ZYNQMP_NUM_SDHCI] = {
  90. 0xFF160000, 0xFF170000,
  91. };
  92. static const int sdhci_intr[XLNX_ZYNQMP_NUM_SDHCI] = {
  93. 48, 49,
  94. };
  95. static const uint64_t spi_addr[XLNX_ZYNQMP_NUM_SPIS] = {
  96. 0xFF040000, 0xFF050000,
  97. };
  98. static const int spi_intr[XLNX_ZYNQMP_NUM_SPIS] = {
  99. 19, 20,
  100. };
  101. static const uint64_t gdma_ch_addr[XLNX_ZYNQMP_NUM_GDMA_CH] = {
  102. 0xFD500000, 0xFD510000, 0xFD520000, 0xFD530000,
  103. 0xFD540000, 0xFD550000, 0xFD560000, 0xFD570000
  104. };
  105. static const int gdma_ch_intr[XLNX_ZYNQMP_NUM_GDMA_CH] = {
  106. 124, 125, 126, 127, 128, 129, 130, 131
  107. };
  108. static const uint64_t adma_ch_addr[XLNX_ZYNQMP_NUM_ADMA_CH] = {
  109. 0xFFA80000, 0xFFA90000, 0xFFAA0000, 0xFFAB0000,
  110. 0xFFAC0000, 0xFFAD0000, 0xFFAE0000, 0xFFAF0000
  111. };
  112. static const int adma_ch_intr[XLNX_ZYNQMP_NUM_ADMA_CH] = {
  113. 77, 78, 79, 80, 81, 82, 83, 84
  114. };
  115. static const uint64_t usb_addr[XLNX_ZYNQMP_NUM_USB] = {
  116. 0xFE200000, 0xFE300000
  117. };
  118. static const int usb_intr[XLNX_ZYNQMP_NUM_USB] = {
  119. 65, 70
  120. };
  121. typedef struct XlnxZynqMPGICRegion {
  122. int region_index;
  123. uint32_t address;
  124. uint32_t offset;
  125. bool virt;
  126. } XlnxZynqMPGICRegion;
  127. static const XlnxZynqMPGICRegion xlnx_zynqmp_gic_regions[] = {
  128. /* Distributor */
  129. {
  130. .region_index = 0,
  131. .address = GIC_DIST_ADDR,
  132. .offset = 0,
  133. .virt = false
  134. },
  135. /* CPU interface */
  136. {
  137. .region_index = 1,
  138. .address = GIC_CPU_ADDR,
  139. .offset = 0,
  140. .virt = false
  141. },
  142. {
  143. .region_index = 1,
  144. .address = GIC_CPU_ADDR + 0x10000,
  145. .offset = 0x1000,
  146. .virt = false
  147. },
  148. /* Virtual interface */
  149. {
  150. .region_index = 2,
  151. .address = GIC_VIFACE_ADDR,
  152. .offset = 0,
  153. .virt = true
  154. },
  155. /* Virtual CPU interface */
  156. {
  157. .region_index = 3,
  158. .address = GIC_VCPU_ADDR,
  159. .offset = 0,
  160. .virt = true
  161. },
  162. {
  163. .region_index = 3,
  164. .address = GIC_VCPU_ADDR + 0x10000,
  165. .offset = 0x1000,
  166. .virt = true
  167. },
  168. };
  169. static inline int arm_gic_ppi_index(int cpu_nr, int ppi_index)
  170. {
  171. return GIC_NUM_SPI_INTR + cpu_nr * GIC_INTERNAL + ppi_index;
  172. }
  173. static void xlnx_zynqmp_create_rpu(MachineState *ms, XlnxZynqMPState *s,
  174. const char *boot_cpu, Error **errp)
  175. {
  176. int i;
  177. int num_rpus = MIN((int)(ms->smp.cpus - XLNX_ZYNQMP_NUM_APU_CPUS),
  178. XLNX_ZYNQMP_NUM_RPU_CPUS);
  179. if (num_rpus <= 0) {
  180. /* Don't create rpu-cluster object if there's nothing to put in it */
  181. return;
  182. }
  183. object_initialize_child(OBJECT(s), "rpu-cluster", &s->rpu_cluster,
  184. TYPE_CPU_CLUSTER);
  185. qdev_prop_set_uint32(DEVICE(&s->rpu_cluster), "cluster-id", 1);
  186. for (i = 0; i < num_rpus; i++) {
  187. const char *name;
  188. object_initialize_child(OBJECT(&s->rpu_cluster), "rpu-cpu[*]",
  189. &s->rpu_cpu[i],
  190. ARM_CPU_TYPE_NAME("cortex-r5f"));
  191. name = object_get_canonical_path_component(OBJECT(&s->rpu_cpu[i]));
  192. if (strcmp(name, boot_cpu)) {
  193. /*
  194. * Secondary CPUs start in powered-down state.
  195. */
  196. object_property_set_bool(OBJECT(&s->rpu_cpu[i]),
  197. "start-powered-off", true, &error_abort);
  198. } else {
  199. s->boot_cpu_ptr = &s->rpu_cpu[i];
  200. }
  201. object_property_set_bool(OBJECT(&s->rpu_cpu[i]), "reset-hivecs", true,
  202. &error_abort);
  203. if (!qdev_realize(DEVICE(&s->rpu_cpu[i]), NULL, errp)) {
  204. return;
  205. }
  206. }
  207. qdev_realize(DEVICE(&s->rpu_cluster), NULL, &error_fatal);
  208. }
  209. static void xlnx_zynqmp_create_bbram(XlnxZynqMPState *s, qemu_irq *gic)
  210. {
  211. SysBusDevice *sbd;
  212. object_initialize_child_with_props(OBJECT(s), "bbram", &s->bbram,
  213. sizeof(s->bbram), TYPE_XLNX_BBRAM,
  214. &error_fatal,
  215. "crc-zpads", "1",
  216. NULL);
  217. sbd = SYS_BUS_DEVICE(&s->bbram);
  218. sysbus_realize(sbd, &error_fatal);
  219. sysbus_mmio_map(sbd, 0, BBRAM_ADDR);
  220. sysbus_connect_irq(sbd, 0, gic[BBRAM_IRQ]);
  221. }
  222. static void xlnx_zynqmp_create_efuse(XlnxZynqMPState *s, qemu_irq *gic)
  223. {
  224. Object *bits = OBJECT(&s->efuse);
  225. Object *ctrl = OBJECT(&s->efuse_ctrl);
  226. SysBusDevice *sbd;
  227. object_initialize_child(OBJECT(s), "efuse-ctrl", &s->efuse_ctrl,
  228. TYPE_XLNX_ZYNQMP_EFUSE);
  229. object_initialize_child_with_props(ctrl, "xlnx-efuse@0", bits,
  230. sizeof(s->efuse),
  231. TYPE_XLNX_EFUSE, &error_abort,
  232. "efuse-nr", "3",
  233. "efuse-size", "2048",
  234. NULL);
  235. qdev_realize(DEVICE(bits), NULL, &error_abort);
  236. object_property_set_link(ctrl, "efuse", bits, &error_abort);
  237. sbd = SYS_BUS_DEVICE(ctrl);
  238. sysbus_realize(sbd, &error_abort);
  239. sysbus_mmio_map(sbd, 0, EFUSE_ADDR);
  240. sysbus_connect_irq(sbd, 0, gic[EFUSE_IRQ]);
  241. }
  242. static void xlnx_zynqmp_create_apu_ctrl(XlnxZynqMPState *s, qemu_irq *gic)
  243. {
  244. SysBusDevice *sbd;
  245. int i;
  246. object_initialize_child(OBJECT(s), "apu-ctrl", &s->apu_ctrl,
  247. TYPE_XLNX_ZYNQMP_APU_CTRL);
  248. sbd = SYS_BUS_DEVICE(&s->apu_ctrl);
  249. for (i = 0; i < XLNX_ZYNQMP_NUM_APU_CPUS; i++) {
  250. g_autofree gchar *name = g_strdup_printf("cpu%d", i);
  251. object_property_set_link(OBJECT(&s->apu_ctrl), name,
  252. OBJECT(&s->apu_cpu[i]), &error_abort);
  253. }
  254. sysbus_realize(sbd, &error_fatal);
  255. sysbus_mmio_map(sbd, 0, APU_ADDR);
  256. sysbus_connect_irq(sbd, 0, gic[APU_IRQ]);
  257. }
  258. static void xlnx_zynqmp_create_crf(XlnxZynqMPState *s, qemu_irq *gic)
  259. {
  260. SysBusDevice *sbd;
  261. object_initialize_child(OBJECT(s), "crf", &s->crf, TYPE_XLNX_ZYNQMP_CRF);
  262. sbd = SYS_BUS_DEVICE(&s->crf);
  263. sysbus_realize(sbd, &error_fatal);
  264. sysbus_mmio_map(sbd, 0, CRF_ADDR);
  265. sysbus_connect_irq(sbd, 0, gic[CRF_IRQ]);
  266. }
  267. static void xlnx_zynqmp_create_ttc(XlnxZynqMPState *s, qemu_irq *gic)
  268. {
  269. SysBusDevice *sbd;
  270. int i, irq;
  271. for (i = 0; i < XLNX_ZYNQMP_NUM_TTC; i++) {
  272. object_initialize_child(OBJECT(s), "ttc[*]", &s->ttc[i],
  273. TYPE_CADENCE_TTC);
  274. sbd = SYS_BUS_DEVICE(&s->ttc[i]);
  275. sysbus_realize(sbd, &error_fatal);
  276. sysbus_mmio_map(sbd, 0, TTC0_ADDR + i * 0x10000);
  277. for (irq = 0; irq < 3; irq++) {
  278. sysbus_connect_irq(sbd, irq, gic[TTC0_IRQ + i * 3 + irq]);
  279. }
  280. }
  281. }
  282. static void xlnx_zynqmp_create_unimp_mmio(XlnxZynqMPState *s)
  283. {
  284. static const struct UnimpInfo {
  285. const char *name;
  286. hwaddr base;
  287. hwaddr size;
  288. } unimp_areas[ARRAY_SIZE(s->mr_unimp)] = {
  289. { .name = "serdes", SERDES_ADDR, SERDES_SIZE },
  290. };
  291. unsigned int nr;
  292. for (nr = 0; nr < ARRAY_SIZE(unimp_areas); nr++) {
  293. const struct UnimpInfo *info = &unimp_areas[nr];
  294. DeviceState *dev = qdev_new(TYPE_UNIMPLEMENTED_DEVICE);
  295. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  296. assert(info->name && info->base && info->size > 0);
  297. qdev_prop_set_string(dev, "name", info->name);
  298. qdev_prop_set_uint64(dev, "size", info->size);
  299. object_property_add_child(OBJECT(s), info->name, OBJECT(dev));
  300. sysbus_realize_and_unref(sbd, &error_fatal);
  301. sysbus_mmio_map(sbd, 0, info->base);
  302. }
  303. }
  304. static void xlnx_zynqmp_init(Object *obj)
  305. {
  306. MachineState *ms = MACHINE(qdev_get_machine());
  307. XlnxZynqMPState *s = XLNX_ZYNQMP(obj);
  308. int i;
  309. int num_apus = MIN(ms->smp.cpus, XLNX_ZYNQMP_NUM_APU_CPUS);
  310. object_initialize_child(obj, "apu-cluster", &s->apu_cluster,
  311. TYPE_CPU_CLUSTER);
  312. qdev_prop_set_uint32(DEVICE(&s->apu_cluster), "cluster-id", 0);
  313. for (i = 0; i < num_apus; i++) {
  314. object_initialize_child(OBJECT(&s->apu_cluster), "apu-cpu[*]",
  315. &s->apu_cpu[i],
  316. ARM_CPU_TYPE_NAME("cortex-a53"));
  317. }
  318. object_initialize_child(obj, "gic", &s->gic, gic_class_name());
  319. for (i = 0; i < XLNX_ZYNQMP_NUM_GEMS; i++) {
  320. object_initialize_child(obj, "gem[*]", &s->gem[i], TYPE_CADENCE_GEM);
  321. object_initialize_child(obj, "gem-irq-orgate[*]",
  322. &s->gem_irq_orgate[i], TYPE_OR_IRQ);
  323. }
  324. for (i = 0; i < XLNX_ZYNQMP_NUM_UARTS; i++) {
  325. object_initialize_child(obj, "uart[*]", &s->uart[i],
  326. TYPE_CADENCE_UART);
  327. }
  328. for (i = 0; i < XLNX_ZYNQMP_NUM_CAN; i++) {
  329. object_initialize_child(obj, "can[*]", &s->can[i],
  330. TYPE_XLNX_ZYNQMP_CAN);
  331. }
  332. object_initialize_child(obj, "sata", &s->sata, TYPE_SYSBUS_AHCI);
  333. for (i = 0; i < XLNX_ZYNQMP_NUM_SDHCI; i++) {
  334. object_initialize_child(obj, "sdhci[*]", &s->sdhci[i],
  335. TYPE_SYSBUS_SDHCI);
  336. }
  337. for (i = 0; i < XLNX_ZYNQMP_NUM_SPIS; i++) {
  338. object_initialize_child(obj, "spi[*]", &s->spi[i], TYPE_XILINX_SPIPS);
  339. }
  340. object_initialize_child(obj, "qspi", &s->qspi, TYPE_XLNX_ZYNQMP_QSPIPS);
  341. object_initialize_child(obj, "xxxdp", &s->dp, TYPE_XLNX_DP);
  342. object_initialize_child(obj, "dp-dma", &s->dpdma, TYPE_XLNX_DPDMA);
  343. object_initialize_child(obj, "ipi", &s->ipi, TYPE_XLNX_ZYNQMP_IPI);
  344. object_initialize_child(obj, "rtc", &s->rtc, TYPE_XLNX_ZYNQMP_RTC);
  345. for (i = 0; i < XLNX_ZYNQMP_NUM_GDMA_CH; i++) {
  346. object_initialize_child(obj, "gdma[*]", &s->gdma[i], TYPE_XLNX_ZDMA);
  347. }
  348. for (i = 0; i < XLNX_ZYNQMP_NUM_ADMA_CH; i++) {
  349. object_initialize_child(obj, "adma[*]", &s->adma[i], TYPE_XLNX_ZDMA);
  350. }
  351. object_initialize_child(obj, "qspi-dma", &s->qspi_dma, TYPE_XLNX_CSU_DMA);
  352. object_initialize_child(obj, "qspi-irq-orgate",
  353. &s->qspi_irq_orgate, TYPE_OR_IRQ);
  354. for (i = 0; i < XLNX_ZYNQMP_NUM_USB; i++) {
  355. object_initialize_child(obj, "usb[*]", &s->usb[i], TYPE_USB_DWC3);
  356. }
  357. }
  358. static void xlnx_zynqmp_realize(DeviceState *dev, Error **errp)
  359. {
  360. MachineState *ms = MACHINE(qdev_get_machine());
  361. XlnxZynqMPState *s = XLNX_ZYNQMP(dev);
  362. MemoryRegion *system_memory = get_system_memory();
  363. uint8_t i;
  364. uint64_t ram_size;
  365. int num_apus = MIN(ms->smp.cpus, XLNX_ZYNQMP_NUM_APU_CPUS);
  366. const char *boot_cpu = s->boot_cpu ? s->boot_cpu : "apu-cpu[0]";
  367. ram_addr_t ddr_low_size, ddr_high_size;
  368. qemu_irq gic_spi[GIC_NUM_SPI_INTR];
  369. Error *err = NULL;
  370. ram_size = memory_region_size(s->ddr_ram);
  371. /*
  372. * Create the DDR Memory Regions. User friendly checks should happen at
  373. * the board level
  374. */
  375. if (ram_size > XLNX_ZYNQMP_MAX_LOW_RAM_SIZE) {
  376. /*
  377. * The RAM size is above the maximum available for the low DDR.
  378. * Create the high DDR memory region as well.
  379. */
  380. assert(ram_size <= XLNX_ZYNQMP_MAX_RAM_SIZE);
  381. ddr_low_size = XLNX_ZYNQMP_MAX_LOW_RAM_SIZE;
  382. ddr_high_size = ram_size - XLNX_ZYNQMP_MAX_LOW_RAM_SIZE;
  383. memory_region_init_alias(&s->ddr_ram_high, OBJECT(dev),
  384. "ddr-ram-high", s->ddr_ram, ddr_low_size,
  385. ddr_high_size);
  386. memory_region_add_subregion(get_system_memory(),
  387. XLNX_ZYNQMP_HIGH_RAM_START,
  388. &s->ddr_ram_high);
  389. } else {
  390. /* RAM must be non-zero */
  391. assert(ram_size);
  392. ddr_low_size = ram_size;
  393. }
  394. memory_region_init_alias(&s->ddr_ram_low, OBJECT(dev), "ddr-ram-low",
  395. s->ddr_ram, 0, ddr_low_size);
  396. memory_region_add_subregion(get_system_memory(), 0, &s->ddr_ram_low);
  397. /* Create the four OCM banks */
  398. for (i = 0; i < XLNX_ZYNQMP_NUM_OCM_BANKS; i++) {
  399. char *ocm_name = g_strdup_printf("zynqmp.ocm_ram_bank_%d", i);
  400. memory_region_init_ram(&s->ocm_ram[i], NULL, ocm_name,
  401. XLNX_ZYNQMP_OCM_RAM_SIZE, &error_fatal);
  402. memory_region_add_subregion(get_system_memory(),
  403. XLNX_ZYNQMP_OCM_RAM_0_ADDRESS +
  404. i * XLNX_ZYNQMP_OCM_RAM_SIZE,
  405. &s->ocm_ram[i]);
  406. g_free(ocm_name);
  407. }
  408. qdev_prop_set_uint32(DEVICE(&s->gic), "num-irq", GIC_NUM_SPI_INTR + 32);
  409. qdev_prop_set_uint32(DEVICE(&s->gic), "revision", 2);
  410. qdev_prop_set_uint32(DEVICE(&s->gic), "num-cpu", num_apus);
  411. qdev_prop_set_bit(DEVICE(&s->gic), "has-security-extensions", s->secure);
  412. qdev_prop_set_bit(DEVICE(&s->gic),
  413. "has-virtualization-extensions", s->virt);
  414. qdev_realize(DEVICE(&s->apu_cluster), NULL, &error_fatal);
  415. /* Realize APUs before realizing the GIC. KVM requires this. */
  416. for (i = 0; i < num_apus; i++) {
  417. const char *name;
  418. name = object_get_canonical_path_component(OBJECT(&s->apu_cpu[i]));
  419. if (strcmp(name, boot_cpu)) {
  420. /*
  421. * Secondary CPUs start in powered-down state.
  422. */
  423. object_property_set_bool(OBJECT(&s->apu_cpu[i]),
  424. "start-powered-off", true, &error_abort);
  425. } else {
  426. s->boot_cpu_ptr = &s->apu_cpu[i];
  427. }
  428. object_property_set_bool(OBJECT(&s->apu_cpu[i]), "has_el3", s->secure,
  429. NULL);
  430. object_property_set_bool(OBJECT(&s->apu_cpu[i]), "has_el2", s->virt,
  431. NULL);
  432. object_property_set_int(OBJECT(&s->apu_cpu[i]), "reset-cbar",
  433. GIC_BASE_ADDR, &error_abort);
  434. object_property_set_int(OBJECT(&s->apu_cpu[i]), "core-count",
  435. num_apus, &error_abort);
  436. if (!qdev_realize(DEVICE(&s->apu_cpu[i]), NULL, errp)) {
  437. return;
  438. }
  439. }
  440. if (!sysbus_realize(SYS_BUS_DEVICE(&s->gic), errp)) {
  441. return;
  442. }
  443. assert(ARRAY_SIZE(xlnx_zynqmp_gic_regions) == XLNX_ZYNQMP_GIC_REGIONS);
  444. for (i = 0; i < XLNX_ZYNQMP_GIC_REGIONS; i++) {
  445. SysBusDevice *gic = SYS_BUS_DEVICE(&s->gic);
  446. const XlnxZynqMPGICRegion *r = &xlnx_zynqmp_gic_regions[i];
  447. MemoryRegion *mr;
  448. uint32_t addr = r->address;
  449. int j;
  450. if (r->virt && !s->virt) {
  451. continue;
  452. }
  453. mr = sysbus_mmio_get_region(gic, r->region_index);
  454. for (j = 0; j < XLNX_ZYNQMP_GIC_ALIASES; j++) {
  455. MemoryRegion *alias = &s->gic_mr[i][j];
  456. memory_region_init_alias(alias, OBJECT(s), "zynqmp-gic-alias", mr,
  457. r->offset, XLNX_ZYNQMP_GIC_REGION_SIZE);
  458. memory_region_add_subregion(system_memory, addr, alias);
  459. addr += XLNX_ZYNQMP_GIC_REGION_SIZE;
  460. }
  461. }
  462. for (i = 0; i < num_apus; i++) {
  463. qemu_irq irq;
  464. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i,
  465. qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]),
  466. ARM_CPU_IRQ));
  467. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus,
  468. qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]),
  469. ARM_CPU_FIQ));
  470. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus * 2,
  471. qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]),
  472. ARM_CPU_VIRQ));
  473. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus * 3,
  474. qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]),
  475. ARM_CPU_VFIQ));
  476. irq = qdev_get_gpio_in(DEVICE(&s->gic),
  477. arm_gic_ppi_index(i, ARM_PHYS_TIMER_PPI));
  478. qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_PHYS, irq);
  479. irq = qdev_get_gpio_in(DEVICE(&s->gic),
  480. arm_gic_ppi_index(i, ARM_VIRT_TIMER_PPI));
  481. qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_VIRT, irq);
  482. irq = qdev_get_gpio_in(DEVICE(&s->gic),
  483. arm_gic_ppi_index(i, ARM_HYP_TIMER_PPI));
  484. qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_HYP, irq);
  485. irq = qdev_get_gpio_in(DEVICE(&s->gic),
  486. arm_gic_ppi_index(i, ARM_SEC_TIMER_PPI));
  487. qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_SEC, irq);
  488. if (s->virt) {
  489. irq = qdev_get_gpio_in(DEVICE(&s->gic),
  490. arm_gic_ppi_index(i, GIC_MAINTENANCE_PPI));
  491. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus * 4, irq);
  492. }
  493. }
  494. xlnx_zynqmp_create_rpu(ms, s, boot_cpu, &err);
  495. if (err) {
  496. error_propagate(errp, err);
  497. return;
  498. }
  499. if (!s->boot_cpu_ptr) {
  500. error_setg(errp, "ZynqMP Boot cpu %s not found", boot_cpu);
  501. return;
  502. }
  503. for (i = 0; i < GIC_NUM_SPI_INTR; i++) {
  504. gic_spi[i] = qdev_get_gpio_in(DEVICE(&s->gic), i);
  505. }
  506. for (i = 0; i < XLNX_ZYNQMP_NUM_GEMS; i++) {
  507. qemu_configure_nic_device(DEVICE(&s->gem[i]), true, NULL);
  508. object_property_set_int(OBJECT(&s->gem[i]), "revision", GEM_REVISION,
  509. &error_abort);
  510. object_property_set_int(OBJECT(&s->gem[i]), "phy-addr", 23,
  511. &error_abort);
  512. object_property_set_int(OBJECT(&s->gem[i]), "num-priority-queues", 2,
  513. &error_abort);
  514. object_property_set_int(OBJECT(&s->gem_irq_orgate[i]),
  515. "num-lines", 2, &error_fatal);
  516. qdev_realize(DEVICE(&s->gem_irq_orgate[i]), NULL, &error_fatal);
  517. qdev_connect_gpio_out(DEVICE(&s->gem_irq_orgate[i]), 0, gic_spi[gem_intr[i]]);
  518. if (!sysbus_realize(SYS_BUS_DEVICE(&s->gem[i]), errp)) {
  519. return;
  520. }
  521. sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem[i]), 0, gem_addr[i]);
  522. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem[i]), 0,
  523. qdev_get_gpio_in(DEVICE(&s->gem_irq_orgate[i]), 0));
  524. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem[i]), 1,
  525. qdev_get_gpio_in(DEVICE(&s->gem_irq_orgate[i]), 1));
  526. }
  527. for (i = 0; i < XLNX_ZYNQMP_NUM_UARTS; i++) {
  528. qdev_prop_set_chr(DEVICE(&s->uart[i]), "chardev", serial_hd(i));
  529. if (!sysbus_realize(SYS_BUS_DEVICE(&s->uart[i]), errp)) {
  530. return;
  531. }
  532. sysbus_mmio_map(SYS_BUS_DEVICE(&s->uart[i]), 0, uart_addr[i]);
  533. sysbus_connect_irq(SYS_BUS_DEVICE(&s->uart[i]), 0,
  534. gic_spi[uart_intr[i]]);
  535. }
  536. for (i = 0; i < XLNX_ZYNQMP_NUM_CAN; i++) {
  537. object_property_set_int(OBJECT(&s->can[i]), "ext_clk_freq",
  538. XLNX_ZYNQMP_CAN_REF_CLK, &error_abort);
  539. object_property_set_link(OBJECT(&s->can[i]), "canbus",
  540. OBJECT(s->canbus[i]), &error_fatal);
  541. sysbus_realize(SYS_BUS_DEVICE(&s->can[i]), &err);
  542. if (err) {
  543. error_propagate(errp, err);
  544. return;
  545. }
  546. sysbus_mmio_map(SYS_BUS_DEVICE(&s->can[i]), 0, can_addr[i]);
  547. sysbus_connect_irq(SYS_BUS_DEVICE(&s->can[i]), 0,
  548. gic_spi[can_intr[i]]);
  549. }
  550. object_property_set_int(OBJECT(&s->sata), "num-ports", SATA_NUM_PORTS,
  551. &error_abort);
  552. if (!sysbus_realize(SYS_BUS_DEVICE(&s->sata), errp)) {
  553. return;
  554. }
  555. sysbus_mmio_map(SYS_BUS_DEVICE(&s->sata), 0, SATA_ADDR);
  556. sysbus_connect_irq(SYS_BUS_DEVICE(&s->sata), 0, gic_spi[SATA_INTR]);
  557. for (i = 0; i < XLNX_ZYNQMP_NUM_SDHCI; i++) {
  558. char *bus_name;
  559. SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sdhci[i]);
  560. Object *sdhci = OBJECT(&s->sdhci[i]);
  561. /*
  562. * Compatible with:
  563. * - SD Host Controller Specification Version 3.00
  564. * - SDIO Specification Version 3.0
  565. * - eMMC Specification Version 4.51
  566. */
  567. object_property_set_uint(sdhci, "sd-spec-version", 3, &error_abort);
  568. object_property_set_uint(sdhci, "capareg", SDHCI_CAPABILITIES,
  569. &error_abort);
  570. object_property_set_uint(sdhci, "uhs", UHS_I, &error_abort);
  571. if (!sysbus_realize(SYS_BUS_DEVICE(sdhci), errp)) {
  572. return;
  573. }
  574. sysbus_mmio_map(sbd, 0, sdhci_addr[i]);
  575. sysbus_connect_irq(sbd, 0, gic_spi[sdhci_intr[i]]);
  576. /* Alias controller SD bus to the SoC itself */
  577. bus_name = g_strdup_printf("sd-bus%d", i);
  578. object_property_add_alias(OBJECT(s), bus_name, sdhci, "sd-bus");
  579. g_free(bus_name);
  580. }
  581. for (i = 0; i < XLNX_ZYNQMP_NUM_SPIS; i++) {
  582. gchar *bus_name;
  583. if (!sysbus_realize(SYS_BUS_DEVICE(&s->spi[i]), errp)) {
  584. return;
  585. }
  586. sysbus_mmio_map(SYS_BUS_DEVICE(&s->spi[i]), 0, spi_addr[i]);
  587. sysbus_connect_irq(SYS_BUS_DEVICE(&s->spi[i]), 0,
  588. gic_spi[spi_intr[i]]);
  589. /* Alias controller SPI bus to the SoC itself */
  590. bus_name = g_strdup_printf("spi%d", i);
  591. object_property_add_alias(OBJECT(s), bus_name,
  592. OBJECT(&s->spi[i]), "spi0");
  593. g_free(bus_name);
  594. }
  595. if (!sysbus_realize(SYS_BUS_DEVICE(&s->dp), errp)) {
  596. return;
  597. }
  598. sysbus_mmio_map(SYS_BUS_DEVICE(&s->dp), 0, DP_ADDR);
  599. sysbus_connect_irq(SYS_BUS_DEVICE(&s->dp), 0, gic_spi[DP_IRQ]);
  600. if (!sysbus_realize(SYS_BUS_DEVICE(&s->dpdma), errp)) {
  601. return;
  602. }
  603. object_property_set_link(OBJECT(&s->dp), "dpdma", OBJECT(&s->dpdma),
  604. &error_abort);
  605. sysbus_mmio_map(SYS_BUS_DEVICE(&s->dpdma), 0, DPDMA_ADDR);
  606. sysbus_connect_irq(SYS_BUS_DEVICE(&s->dpdma), 0, gic_spi[DPDMA_IRQ]);
  607. if (!sysbus_realize(SYS_BUS_DEVICE(&s->ipi), errp)) {
  608. return;
  609. }
  610. sysbus_mmio_map(SYS_BUS_DEVICE(&s->ipi), 0, IPI_ADDR);
  611. sysbus_connect_irq(SYS_BUS_DEVICE(&s->ipi), 0, gic_spi[IPI_IRQ]);
  612. if (!sysbus_realize(SYS_BUS_DEVICE(&s->rtc), errp)) {
  613. return;
  614. }
  615. sysbus_mmio_map(SYS_BUS_DEVICE(&s->rtc), 0, RTC_ADDR);
  616. sysbus_connect_irq(SYS_BUS_DEVICE(&s->rtc), 0, gic_spi[RTC_IRQ]);
  617. xlnx_zynqmp_create_bbram(s, gic_spi);
  618. xlnx_zynqmp_create_efuse(s, gic_spi);
  619. xlnx_zynqmp_create_apu_ctrl(s, gic_spi);
  620. xlnx_zynqmp_create_crf(s, gic_spi);
  621. xlnx_zynqmp_create_ttc(s, gic_spi);
  622. xlnx_zynqmp_create_unimp_mmio(s);
  623. for (i = 0; i < XLNX_ZYNQMP_NUM_GDMA_CH; i++) {
  624. object_property_set_uint(OBJECT(&s->gdma[i]), "bus-width", 128,
  625. &error_abort);
  626. object_property_set_link(OBJECT(&s->gdma[i]), "dma",
  627. OBJECT(system_memory), &error_abort);
  628. if (!sysbus_realize(SYS_BUS_DEVICE(&s->gdma[i]), errp)) {
  629. return;
  630. }
  631. sysbus_mmio_map(SYS_BUS_DEVICE(&s->gdma[i]), 0, gdma_ch_addr[i]);
  632. sysbus_connect_irq(SYS_BUS_DEVICE(&s->gdma[i]), 0,
  633. gic_spi[gdma_ch_intr[i]]);
  634. }
  635. for (i = 0; i < XLNX_ZYNQMP_NUM_ADMA_CH; i++) {
  636. if (!object_property_set_link(OBJECT(&s->adma[i]), "dma",
  637. OBJECT(system_memory), errp)) {
  638. return;
  639. }
  640. if (!sysbus_realize(SYS_BUS_DEVICE(&s->adma[i]), errp)) {
  641. return;
  642. }
  643. sysbus_mmio_map(SYS_BUS_DEVICE(&s->adma[i]), 0, adma_ch_addr[i]);
  644. sysbus_connect_irq(SYS_BUS_DEVICE(&s->adma[i]), 0,
  645. gic_spi[adma_ch_intr[i]]);
  646. }
  647. object_property_set_int(OBJECT(&s->qspi_irq_orgate),
  648. "num-lines", NUM_QSPI_IRQ_LINES, &error_fatal);
  649. qdev_realize(DEVICE(&s->qspi_irq_orgate), NULL, &error_fatal);
  650. qdev_connect_gpio_out(DEVICE(&s->qspi_irq_orgate), 0, gic_spi[QSPI_IRQ]);
  651. if (!object_property_set_link(OBJECT(&s->qspi_dma), "dma",
  652. OBJECT(system_memory), errp)) {
  653. return;
  654. }
  655. if (!sysbus_realize(SYS_BUS_DEVICE(&s->qspi_dma), errp)) {
  656. return;
  657. }
  658. sysbus_mmio_map(SYS_BUS_DEVICE(&s->qspi_dma), 0, QSPI_DMA_ADDR);
  659. sysbus_connect_irq(SYS_BUS_DEVICE(&s->qspi_dma), 0,
  660. qdev_get_gpio_in(DEVICE(&s->qspi_irq_orgate), 0));
  661. object_property_set_link(OBJECT(&s->qspi), "stream-connected-dma",
  662. OBJECT(&s->qspi_dma), &error_abort);
  663. if (!sysbus_realize(SYS_BUS_DEVICE(&s->qspi), errp)) {
  664. return;
  665. }
  666. sysbus_mmio_map(SYS_BUS_DEVICE(&s->qspi), 0, QSPI_ADDR);
  667. sysbus_mmio_map(SYS_BUS_DEVICE(&s->qspi), 1, LQSPI_ADDR);
  668. sysbus_connect_irq(SYS_BUS_DEVICE(&s->qspi), 0,
  669. qdev_get_gpio_in(DEVICE(&s->qspi_irq_orgate), 1));
  670. for (i = 0; i < XLNX_ZYNQMP_NUM_QSPI_BUS; i++) {
  671. g_autofree gchar *bus_name = g_strdup_printf("qspi%d", i);
  672. g_autofree gchar *target_bus = g_strdup_printf("spi%d", i);
  673. /* Alias controller SPI bus to the SoC itself */
  674. object_property_add_alias(OBJECT(s), bus_name,
  675. OBJECT(&s->qspi), target_bus);
  676. }
  677. for (i = 0; i < XLNX_ZYNQMP_NUM_USB; i++) {
  678. object_property_set_link(OBJECT(&s->usb[i].sysbus_xhci), "dma",
  679. OBJECT(system_memory), &error_abort);
  680. qdev_prop_set_uint32(DEVICE(&s->usb[i].sysbus_xhci), "intrs", 4);
  681. qdev_prop_set_uint32(DEVICE(&s->usb[i].sysbus_xhci), "slots", 2);
  682. if (!sysbus_realize(SYS_BUS_DEVICE(&s->usb[i]), errp)) {
  683. return;
  684. }
  685. sysbus_mmio_map(SYS_BUS_DEVICE(&s->usb[i]), 0, usb_addr[i]);
  686. sysbus_connect_irq(SYS_BUS_DEVICE(&s->usb[i].sysbus_xhci), 0,
  687. gic_spi[usb_intr[i]]);
  688. sysbus_connect_irq(SYS_BUS_DEVICE(&s->usb[i].sysbus_xhci), 1,
  689. gic_spi[usb_intr[i] + 1]);
  690. sysbus_connect_irq(SYS_BUS_DEVICE(&s->usb[i].sysbus_xhci), 2,
  691. gic_spi[usb_intr[i] + 2]);
  692. sysbus_connect_irq(SYS_BUS_DEVICE(&s->usb[i].sysbus_xhci), 3,
  693. gic_spi[usb_intr[i] + 3]);
  694. }
  695. }
  696. static const Property xlnx_zynqmp_props[] = {
  697. DEFINE_PROP_STRING("boot-cpu", XlnxZynqMPState, boot_cpu),
  698. DEFINE_PROP_BOOL("secure", XlnxZynqMPState, secure, false),
  699. DEFINE_PROP_BOOL("virtualization", XlnxZynqMPState, virt, false),
  700. DEFINE_PROP_LINK("ddr-ram", XlnxZynqMPState, ddr_ram, TYPE_MEMORY_REGION,
  701. MemoryRegion *),
  702. DEFINE_PROP_LINK("canbus0", XlnxZynqMPState, canbus[0], TYPE_CAN_BUS,
  703. CanBusState *),
  704. DEFINE_PROP_LINK("canbus1", XlnxZynqMPState, canbus[1], TYPE_CAN_BUS,
  705. CanBusState *),
  706. };
  707. static void xlnx_zynqmp_class_init(ObjectClass *oc, void *data)
  708. {
  709. DeviceClass *dc = DEVICE_CLASS(oc);
  710. device_class_set_props(dc, xlnx_zynqmp_props);
  711. dc->realize = xlnx_zynqmp_realize;
  712. /* Reason: Uses serial_hds in realize function, thus can't be used twice */
  713. dc->user_creatable = false;
  714. }
  715. static const TypeInfo xlnx_zynqmp_type_info = {
  716. .name = TYPE_XLNX_ZYNQMP,
  717. .parent = TYPE_DEVICE,
  718. .instance_size = sizeof(XlnxZynqMPState),
  719. .instance_init = xlnx_zynqmp_init,
  720. .class_init = xlnx_zynqmp_class_init,
  721. };
  722. static void xlnx_zynqmp_register_types(void)
  723. {
  724. type_register_static(&xlnx_zynqmp_type_info);
  725. }
  726. type_init(xlnx_zynqmp_register_types)