2
0

omap1.c 114 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048
  1. /*
  2. * TI OMAP processors emulation.
  3. *
  4. * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 or
  9. * (at your option) version 3 of the License.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "qemu/osdep.h"
  20. #include "qemu/log.h"
  21. #include "qemu/error-report.h"
  22. #include "qemu/main-loop.h"
  23. #include "qapi/error.h"
  24. #include "cpu.h"
  25. #include "exec/address-spaces.h"
  26. #include "hw/hw.h"
  27. #include "hw/irq.h"
  28. #include "hw/qdev-properties.h"
  29. #include "hw/arm/boot.h"
  30. #include "hw/arm/omap.h"
  31. #include "hw/sd/sd.h"
  32. #include "system/blockdev.h"
  33. #include "system/system.h"
  34. #include "hw/arm/soc_dma.h"
  35. #include "system/qtest.h"
  36. #include "system/reset.h"
  37. #include "system/runstate.h"
  38. #include "system/rtc.h"
  39. #include "qemu/range.h"
  40. #include "hw/sysbus.h"
  41. #include "qemu/cutils.h"
  42. #include "qemu/bcd.h"
  43. #include "target/arm/cpu-qom.h"
  44. #include "trace.h"
  45. static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
  46. {
  47. qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
  48. funcname, 8 * sz, addr);
  49. }
  50. /* Should signal the TCMI/GPMC */
  51. uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
  52. {
  53. uint8_t ret;
  54. omap_log_badwidth(__func__, addr, 1);
  55. cpu_physical_memory_read(addr, &ret, 1);
  56. return ret;
  57. }
  58. void omap_badwidth_write8(void *opaque, hwaddr addr,
  59. uint32_t value)
  60. {
  61. uint8_t val8 = value;
  62. omap_log_badwidth(__func__, addr, 1);
  63. cpu_physical_memory_write(addr, &val8, 1);
  64. }
  65. uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
  66. {
  67. uint16_t ret;
  68. omap_log_badwidth(__func__, addr, 2);
  69. cpu_physical_memory_read(addr, &ret, 2);
  70. return ret;
  71. }
  72. void omap_badwidth_write16(void *opaque, hwaddr addr,
  73. uint32_t value)
  74. {
  75. uint16_t val16 = value;
  76. omap_log_badwidth(__func__, addr, 2);
  77. cpu_physical_memory_write(addr, &val16, 2);
  78. }
  79. uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
  80. {
  81. uint32_t ret;
  82. omap_log_badwidth(__func__, addr, 4);
  83. cpu_physical_memory_read(addr, &ret, 4);
  84. return ret;
  85. }
  86. void omap_badwidth_write32(void *opaque, hwaddr addr,
  87. uint32_t value)
  88. {
  89. omap_log_badwidth(__func__, addr, 4);
  90. cpu_physical_memory_write(addr, &value, 4);
  91. }
  92. /* MPU OS timers */
  93. struct omap_mpu_timer_s {
  94. MemoryRegion iomem;
  95. qemu_irq irq;
  96. omap_clk clk;
  97. uint32_t val;
  98. int64_t time;
  99. QEMUTimer *timer;
  100. QEMUBH *tick;
  101. int64_t rate;
  102. int it_ena;
  103. int enable;
  104. int ptv;
  105. int ar;
  106. int st;
  107. uint32_t reset_val;
  108. };
  109. static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
  110. {
  111. uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
  112. if (timer->st && timer->enable && timer->rate)
  113. return timer->val - muldiv64(distance >> (timer->ptv + 1),
  114. timer->rate, NANOSECONDS_PER_SECOND);
  115. else
  116. return timer->val;
  117. }
  118. static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
  119. {
  120. timer->val = omap_timer_read(timer);
  121. timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  122. }
  123. static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
  124. {
  125. int64_t expires;
  126. if (timer->enable && timer->st && timer->rate) {
  127. timer->val = timer->reset_val; /* Should skip this on clk enable */
  128. expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
  129. NANOSECONDS_PER_SECOND, timer->rate);
  130. /* If timer expiry would be sooner than in about 1 ms and
  131. * auto-reload isn't set, then fire immediately. This is a hack
  132. * to make systems like PalmOS run in acceptable time. PalmOS
  133. * sets the interval to a very low value and polls the status bit
  134. * in a busy loop when it wants to sleep just a couple of CPU
  135. * ticks. */
  136. if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
  137. timer_mod(timer->timer, timer->time + expires);
  138. } else {
  139. qemu_bh_schedule(timer->tick);
  140. }
  141. } else
  142. timer_del(timer->timer);
  143. }
  144. static void omap_timer_fire(void *opaque)
  145. {
  146. struct omap_mpu_timer_s *timer = opaque;
  147. if (!timer->ar) {
  148. timer->val = 0;
  149. timer->st = 0;
  150. }
  151. if (timer->it_ena)
  152. /* Edge-triggered irq */
  153. qemu_irq_pulse(timer->irq);
  154. }
  155. static void omap_timer_tick(void *opaque)
  156. {
  157. struct omap_mpu_timer_s *timer = opaque;
  158. omap_timer_sync(timer);
  159. omap_timer_fire(timer);
  160. omap_timer_update(timer);
  161. }
  162. static void omap_timer_clk_update(void *opaque, int line, int on)
  163. {
  164. struct omap_mpu_timer_s *timer = opaque;
  165. omap_timer_sync(timer);
  166. timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
  167. omap_timer_update(timer);
  168. }
  169. static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
  170. {
  171. omap_clk_adduser(timer->clk,
  172. qemu_allocate_irq(omap_timer_clk_update, timer, 0));
  173. timer->rate = omap_clk_getrate(timer->clk);
  174. }
  175. static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
  176. unsigned size)
  177. {
  178. struct omap_mpu_timer_s *s = opaque;
  179. if (size != 4) {
  180. return omap_badwidth_read32(opaque, addr);
  181. }
  182. switch (addr) {
  183. case 0x00: /* CNTL_TIMER */
  184. return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
  185. case 0x04: /* LOAD_TIM */
  186. break;
  187. case 0x08: /* READ_TIM */
  188. return omap_timer_read(s);
  189. }
  190. OMAP_BAD_REG(addr);
  191. return 0;
  192. }
  193. static void omap_mpu_timer_write(void *opaque, hwaddr addr,
  194. uint64_t value, unsigned size)
  195. {
  196. struct omap_mpu_timer_s *s = opaque;
  197. if (size != 4) {
  198. omap_badwidth_write32(opaque, addr, value);
  199. return;
  200. }
  201. switch (addr) {
  202. case 0x00: /* CNTL_TIMER */
  203. omap_timer_sync(s);
  204. s->enable = (value >> 5) & 1;
  205. s->ptv = (value >> 2) & 7;
  206. s->ar = (value >> 1) & 1;
  207. s->st = value & 1;
  208. omap_timer_update(s);
  209. return;
  210. case 0x04: /* LOAD_TIM */
  211. s->reset_val = value;
  212. return;
  213. case 0x08: /* READ_TIM */
  214. OMAP_RO_REG(addr);
  215. break;
  216. default:
  217. OMAP_BAD_REG(addr);
  218. }
  219. }
  220. static const MemoryRegionOps omap_mpu_timer_ops = {
  221. .read = omap_mpu_timer_read,
  222. .write = omap_mpu_timer_write,
  223. .endianness = DEVICE_LITTLE_ENDIAN,
  224. };
  225. static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
  226. {
  227. timer_del(s->timer);
  228. s->enable = 0;
  229. s->reset_val = 31337;
  230. s->val = 0;
  231. s->ptv = 0;
  232. s->ar = 0;
  233. s->st = 0;
  234. s->it_ena = 1;
  235. }
  236. static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
  237. hwaddr base,
  238. qemu_irq irq, omap_clk clk)
  239. {
  240. struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
  241. s->irq = irq;
  242. s->clk = clk;
  243. s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
  244. s->tick = qemu_bh_new(omap_timer_fire, s);
  245. omap_mpu_timer_reset(s);
  246. omap_timer_clk_setup(s);
  247. memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
  248. "omap-mpu-timer", 0x100);
  249. memory_region_add_subregion(system_memory, base, &s->iomem);
  250. return s;
  251. }
  252. /* Watchdog timer */
  253. struct omap_watchdog_timer_s {
  254. struct omap_mpu_timer_s timer;
  255. MemoryRegion iomem;
  256. uint8_t last_wr;
  257. int mode;
  258. int free;
  259. int reset;
  260. };
  261. static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
  262. unsigned size)
  263. {
  264. struct omap_watchdog_timer_s *s = opaque;
  265. if (size != 2) {
  266. return omap_badwidth_read16(opaque, addr);
  267. }
  268. switch (addr) {
  269. case 0x00: /* CNTL_TIMER */
  270. return (s->timer.ptv << 9) | (s->timer.ar << 8) |
  271. (s->timer.st << 7) | (s->free << 1);
  272. case 0x04: /* READ_TIMER */
  273. return omap_timer_read(&s->timer);
  274. case 0x08: /* TIMER_MODE */
  275. return s->mode << 15;
  276. }
  277. OMAP_BAD_REG(addr);
  278. return 0;
  279. }
  280. static void omap_wd_timer_write(void *opaque, hwaddr addr,
  281. uint64_t value, unsigned size)
  282. {
  283. struct omap_watchdog_timer_s *s = opaque;
  284. if (size != 2) {
  285. omap_badwidth_write16(opaque, addr, value);
  286. return;
  287. }
  288. switch (addr) {
  289. case 0x00: /* CNTL_TIMER */
  290. omap_timer_sync(&s->timer);
  291. s->timer.ptv = (value >> 9) & 7;
  292. s->timer.ar = (value >> 8) & 1;
  293. s->timer.st = (value >> 7) & 1;
  294. s->free = (value >> 1) & 1;
  295. omap_timer_update(&s->timer);
  296. break;
  297. case 0x04: /* LOAD_TIMER */
  298. s->timer.reset_val = value & 0xffff;
  299. break;
  300. case 0x08: /* TIMER_MODE */
  301. if (!s->mode && ((value >> 15) & 1))
  302. omap_clk_get(s->timer.clk);
  303. s->mode |= (value >> 15) & 1;
  304. if (s->last_wr == 0xf5) {
  305. if ((value & 0xff) == 0xa0) {
  306. if (s->mode) {
  307. s->mode = 0;
  308. omap_clk_put(s->timer.clk);
  309. }
  310. } else {
  311. /* XXX: on T|E hardware somehow this has no effect,
  312. * on Zire 71 it works as specified. */
  313. s->reset = 1;
  314. qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
  315. }
  316. }
  317. s->last_wr = value & 0xff;
  318. break;
  319. default:
  320. OMAP_BAD_REG(addr);
  321. }
  322. }
  323. static const MemoryRegionOps omap_wd_timer_ops = {
  324. .read = omap_wd_timer_read,
  325. .write = omap_wd_timer_write,
  326. .endianness = DEVICE_NATIVE_ENDIAN,
  327. };
  328. static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
  329. {
  330. timer_del(s->timer.timer);
  331. if (!s->mode)
  332. omap_clk_get(s->timer.clk);
  333. s->mode = 1;
  334. s->free = 1;
  335. s->reset = 0;
  336. s->timer.enable = 1;
  337. s->timer.it_ena = 1;
  338. s->timer.reset_val = 0xffff;
  339. s->timer.val = 0;
  340. s->timer.st = 0;
  341. s->timer.ptv = 0;
  342. s->timer.ar = 0;
  343. omap_timer_update(&s->timer);
  344. }
  345. static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
  346. hwaddr base,
  347. qemu_irq irq, omap_clk clk)
  348. {
  349. struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
  350. s->timer.irq = irq;
  351. s->timer.clk = clk;
  352. s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
  353. omap_wd_timer_reset(s);
  354. omap_timer_clk_setup(&s->timer);
  355. memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
  356. "omap-wd-timer", 0x100);
  357. memory_region_add_subregion(memory, base, &s->iomem);
  358. return s;
  359. }
  360. /* 32-kHz timer */
  361. struct omap_32khz_timer_s {
  362. struct omap_mpu_timer_s timer;
  363. MemoryRegion iomem;
  364. };
  365. static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
  366. unsigned size)
  367. {
  368. struct omap_32khz_timer_s *s = opaque;
  369. int offset = addr & OMAP_MPUI_REG_MASK;
  370. if (size != 4) {
  371. return omap_badwidth_read32(opaque, addr);
  372. }
  373. switch (offset) {
  374. case 0x00: /* TVR */
  375. return s->timer.reset_val;
  376. case 0x04: /* TCR */
  377. return omap_timer_read(&s->timer);
  378. case 0x08: /* CR */
  379. return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
  380. default:
  381. break;
  382. }
  383. OMAP_BAD_REG(addr);
  384. return 0;
  385. }
  386. static void omap_os_timer_write(void *opaque, hwaddr addr,
  387. uint64_t value, unsigned size)
  388. {
  389. struct omap_32khz_timer_s *s = opaque;
  390. int offset = addr & OMAP_MPUI_REG_MASK;
  391. if (size != 4) {
  392. omap_badwidth_write32(opaque, addr, value);
  393. return;
  394. }
  395. switch (offset) {
  396. case 0x00: /* TVR */
  397. s->timer.reset_val = value & 0x00ffffff;
  398. break;
  399. case 0x04: /* TCR */
  400. OMAP_RO_REG(addr);
  401. break;
  402. case 0x08: /* CR */
  403. s->timer.ar = (value >> 3) & 1;
  404. s->timer.it_ena = (value >> 2) & 1;
  405. if (s->timer.st != (value & 1) || (value & 2)) {
  406. omap_timer_sync(&s->timer);
  407. s->timer.enable = value & 1;
  408. s->timer.st = value & 1;
  409. omap_timer_update(&s->timer);
  410. }
  411. break;
  412. default:
  413. OMAP_BAD_REG(addr);
  414. }
  415. }
  416. static const MemoryRegionOps omap_os_timer_ops = {
  417. .read = omap_os_timer_read,
  418. .write = omap_os_timer_write,
  419. .endianness = DEVICE_NATIVE_ENDIAN,
  420. };
  421. static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
  422. {
  423. timer_del(s->timer.timer);
  424. s->timer.enable = 0;
  425. s->timer.it_ena = 0;
  426. s->timer.reset_val = 0x00ffffff;
  427. s->timer.val = 0;
  428. s->timer.st = 0;
  429. s->timer.ptv = 0;
  430. s->timer.ar = 1;
  431. }
  432. static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
  433. hwaddr base,
  434. qemu_irq irq, omap_clk clk)
  435. {
  436. struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
  437. s->timer.irq = irq;
  438. s->timer.clk = clk;
  439. s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
  440. omap_os_timer_reset(s);
  441. omap_timer_clk_setup(&s->timer);
  442. memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
  443. "omap-os-timer", 0x800);
  444. memory_region_add_subregion(memory, base, &s->iomem);
  445. return s;
  446. }
  447. /* Ultra Low-Power Device Module */
  448. static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
  449. unsigned size)
  450. {
  451. struct omap_mpu_state_s *s = opaque;
  452. uint16_t ret;
  453. if (size != 2) {
  454. return omap_badwidth_read16(opaque, addr);
  455. }
  456. switch (addr) {
  457. case 0x14: /* IT_STATUS */
  458. ret = s->ulpd_pm_regs[addr >> 2];
  459. s->ulpd_pm_regs[addr >> 2] = 0;
  460. qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  461. return ret;
  462. case 0x18: /* Reserved */
  463. case 0x1c: /* Reserved */
  464. case 0x20: /* Reserved */
  465. case 0x28: /* Reserved */
  466. case 0x2c: /* Reserved */
  467. OMAP_BAD_REG(addr);
  468. /* fall through */
  469. case 0x00: /* COUNTER_32_LSB */
  470. case 0x04: /* COUNTER_32_MSB */
  471. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  472. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  473. case 0x10: /* GAUGING_CTRL */
  474. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  475. case 0x30: /* CLOCK_CTRL */
  476. case 0x34: /* SOFT_REQ */
  477. case 0x38: /* COUNTER_32_FIQ */
  478. case 0x3c: /* DPLL_CTRL */
  479. case 0x40: /* STATUS_REQ */
  480. /* XXX: check clk::usecount state for every clock */
  481. case 0x48: /* LOCL_TIME */
  482. case 0x4c: /* APLL_CTRL */
  483. case 0x50: /* POWER_CTRL */
  484. return s->ulpd_pm_regs[addr >> 2];
  485. }
  486. OMAP_BAD_REG(addr);
  487. return 0;
  488. }
  489. static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
  490. uint16_t diff, uint16_t value)
  491. {
  492. if (diff & (1 << 4)) /* USB_MCLK_EN */
  493. omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
  494. if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
  495. omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
  496. }
  497. static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
  498. uint16_t diff, uint16_t value)
  499. {
  500. if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
  501. omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
  502. if (diff & (1 << 1)) /* SOFT_COM_REQ */
  503. omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
  504. if (diff & (1 << 2)) /* SOFT_SDW_REQ */
  505. omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
  506. if (diff & (1 << 3)) /* SOFT_USB_REQ */
  507. omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
  508. }
  509. static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
  510. uint64_t value, unsigned size)
  511. {
  512. struct omap_mpu_state_s *s = opaque;
  513. int64_t now, ticks;
  514. int div, mult;
  515. static const int bypass_div[4] = { 1, 2, 4, 4 };
  516. uint16_t diff;
  517. if (size != 2) {
  518. omap_badwidth_write16(opaque, addr, value);
  519. return;
  520. }
  521. switch (addr) {
  522. case 0x00: /* COUNTER_32_LSB */
  523. case 0x04: /* COUNTER_32_MSB */
  524. case 0x08: /* COUNTER_HIGH_FREQ_LSB */
  525. case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
  526. case 0x14: /* IT_STATUS */
  527. case 0x40: /* STATUS_REQ */
  528. OMAP_RO_REG(addr);
  529. break;
  530. case 0x10: /* GAUGING_CTRL */
  531. /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
  532. if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
  533. now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  534. if (value & 1)
  535. s->ulpd_gauge_start = now;
  536. else {
  537. now -= s->ulpd_gauge_start;
  538. /* 32-kHz ticks */
  539. ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
  540. s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
  541. s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
  542. if (ticks >> 32) /* OVERFLOW_32K */
  543. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
  544. /* High frequency ticks */
  545. ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
  546. s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
  547. s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
  548. if (ticks >> 32) /* OVERFLOW_HI_FREQ */
  549. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
  550. s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
  551. qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
  552. }
  553. }
  554. s->ulpd_pm_regs[addr >> 2] = value;
  555. break;
  556. case 0x18: /* Reserved */
  557. case 0x1c: /* Reserved */
  558. case 0x20: /* Reserved */
  559. case 0x28: /* Reserved */
  560. case 0x2c: /* Reserved */
  561. OMAP_BAD_REG(addr);
  562. /* fall through */
  563. case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
  564. case 0x38: /* COUNTER_32_FIQ */
  565. case 0x48: /* LOCL_TIME */
  566. case 0x50: /* POWER_CTRL */
  567. s->ulpd_pm_regs[addr >> 2] = value;
  568. break;
  569. case 0x30: /* CLOCK_CTRL */
  570. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  571. s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
  572. omap_ulpd_clk_update(s, diff, value);
  573. break;
  574. case 0x34: /* SOFT_REQ */
  575. diff = s->ulpd_pm_regs[addr >> 2] ^ value;
  576. s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
  577. omap_ulpd_req_update(s, diff, value);
  578. break;
  579. case 0x3c: /* DPLL_CTRL */
  580. /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
  581. * omitted altogether, probably a typo. */
  582. /* This register has identical semantics with DPLL(1:3) control
  583. * registers, see omap_dpll_write() */
  584. diff = s->ulpd_pm_regs[addr >> 2] & value;
  585. s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
  586. if (diff & (0x3ff << 2)) {
  587. if (value & (1 << 4)) { /* PLL_ENABLE */
  588. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  589. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  590. } else {
  591. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  592. mult = 1;
  593. }
  594. omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
  595. }
  596. /* Enter the desired mode. */
  597. s->ulpd_pm_regs[addr >> 2] =
  598. (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
  599. ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
  600. /* Act as if the lock is restored. */
  601. s->ulpd_pm_regs[addr >> 2] |= 2;
  602. break;
  603. case 0x4c: /* APLL_CTRL */
  604. diff = s->ulpd_pm_regs[addr >> 2] & value;
  605. s->ulpd_pm_regs[addr >> 2] = value & 0xf;
  606. if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
  607. omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
  608. (value & (1 << 0)) ? "apll" : "dpll4"));
  609. break;
  610. default:
  611. OMAP_BAD_REG(addr);
  612. }
  613. }
  614. static const MemoryRegionOps omap_ulpd_pm_ops = {
  615. .read = omap_ulpd_pm_read,
  616. .write = omap_ulpd_pm_write,
  617. .endianness = DEVICE_NATIVE_ENDIAN,
  618. };
  619. static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
  620. {
  621. mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
  622. mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
  623. mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
  624. mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
  625. mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
  626. mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
  627. mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
  628. mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
  629. mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
  630. mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
  631. mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
  632. omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
  633. mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
  634. omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
  635. mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
  636. mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
  637. mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
  638. mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
  639. mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
  640. mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
  641. mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
  642. omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
  643. omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
  644. }
  645. static void omap_ulpd_pm_init(MemoryRegion *system_memory,
  646. hwaddr base,
  647. struct omap_mpu_state_s *mpu)
  648. {
  649. memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
  650. "omap-ulpd-pm", 0x800);
  651. memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
  652. omap_ulpd_pm_reset(mpu);
  653. }
  654. /* OMAP Pin Configuration */
  655. static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
  656. unsigned size)
  657. {
  658. struct omap_mpu_state_s *s = opaque;
  659. if (size != 4) {
  660. return omap_badwidth_read32(opaque, addr);
  661. }
  662. switch (addr) {
  663. case 0x00: /* FUNC_MUX_CTRL_0 */
  664. case 0x04: /* FUNC_MUX_CTRL_1 */
  665. case 0x08: /* FUNC_MUX_CTRL_2 */
  666. return s->func_mux_ctrl[addr >> 2];
  667. case 0x0c: /* COMP_MODE_CTRL_0 */
  668. return s->comp_mode_ctrl[0];
  669. case 0x10: /* FUNC_MUX_CTRL_3 */
  670. case 0x14: /* FUNC_MUX_CTRL_4 */
  671. case 0x18: /* FUNC_MUX_CTRL_5 */
  672. case 0x1c: /* FUNC_MUX_CTRL_6 */
  673. case 0x20: /* FUNC_MUX_CTRL_7 */
  674. case 0x24: /* FUNC_MUX_CTRL_8 */
  675. case 0x28: /* FUNC_MUX_CTRL_9 */
  676. case 0x2c: /* FUNC_MUX_CTRL_A */
  677. case 0x30: /* FUNC_MUX_CTRL_B */
  678. case 0x34: /* FUNC_MUX_CTRL_C */
  679. case 0x38: /* FUNC_MUX_CTRL_D */
  680. return s->func_mux_ctrl[(addr >> 2) - 1];
  681. case 0x40: /* PULL_DWN_CTRL_0 */
  682. case 0x44: /* PULL_DWN_CTRL_1 */
  683. case 0x48: /* PULL_DWN_CTRL_2 */
  684. case 0x4c: /* PULL_DWN_CTRL_3 */
  685. return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
  686. case 0x50: /* GATE_INH_CTRL_0 */
  687. return s->gate_inh_ctrl[0];
  688. case 0x60: /* VOLTAGE_CTRL_0 */
  689. return s->voltage_ctrl[0];
  690. case 0x70: /* TEST_DBG_CTRL_0 */
  691. return s->test_dbg_ctrl[0];
  692. case 0x80: /* MOD_CONF_CTRL_0 */
  693. return s->mod_conf_ctrl[0];
  694. }
  695. OMAP_BAD_REG(addr);
  696. return 0;
  697. }
  698. static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
  699. uint32_t diff, uint32_t value)
  700. {
  701. if (s->compat1509) {
  702. if (diff & (1 << 9)) /* BLUETOOTH */
  703. omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
  704. (~value >> 9) & 1);
  705. if (diff & (1 << 7)) /* USB.CLKO */
  706. omap_clk_onoff(omap_findclk(s, "usb.clko"),
  707. (value >> 7) & 1);
  708. }
  709. }
  710. static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
  711. uint32_t diff, uint32_t value)
  712. {
  713. if (s->compat1509) {
  714. if (diff & (1U << 31)) {
  715. /* MCBSP3_CLK_HIZ_DI */
  716. omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
  717. }
  718. if (diff & (1 << 1)) {
  719. /* CLK32K */
  720. omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
  721. }
  722. }
  723. }
  724. static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
  725. uint32_t diff, uint32_t value)
  726. {
  727. if (diff & (1U << 31)) {
  728. /* CONF_MOD_UART3_CLK_MODE_R */
  729. omap_clk_reparent(omap_findclk(s, "uart3_ck"),
  730. omap_findclk(s, ((value >> 31) & 1) ?
  731. "ck_48m" : "armper_ck"));
  732. }
  733. if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
  734. omap_clk_reparent(omap_findclk(s, "uart2_ck"),
  735. omap_findclk(s, ((value >> 30) & 1) ?
  736. "ck_48m" : "armper_ck"));
  737. if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
  738. omap_clk_reparent(omap_findclk(s, "uart1_ck"),
  739. omap_findclk(s, ((value >> 29) & 1) ?
  740. "ck_48m" : "armper_ck"));
  741. if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
  742. omap_clk_reparent(omap_findclk(s, "mmc_ck"),
  743. omap_findclk(s, ((value >> 23) & 1) ?
  744. "ck_48m" : "armper_ck"));
  745. if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
  746. omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
  747. omap_findclk(s, ((value >> 12) & 1) ?
  748. "ck_48m" : "armper_ck"));
  749. if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
  750. omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
  751. }
  752. static void omap_pin_cfg_write(void *opaque, hwaddr addr,
  753. uint64_t value, unsigned size)
  754. {
  755. struct omap_mpu_state_s *s = opaque;
  756. uint32_t diff;
  757. if (size != 4) {
  758. omap_badwidth_write32(opaque, addr, value);
  759. return;
  760. }
  761. switch (addr) {
  762. case 0x00: /* FUNC_MUX_CTRL_0 */
  763. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  764. s->func_mux_ctrl[addr >> 2] = value;
  765. omap_pin_funcmux0_update(s, diff, value);
  766. return;
  767. case 0x04: /* FUNC_MUX_CTRL_1 */
  768. diff = s->func_mux_ctrl[addr >> 2] ^ value;
  769. s->func_mux_ctrl[addr >> 2] = value;
  770. omap_pin_funcmux1_update(s, diff, value);
  771. return;
  772. case 0x08: /* FUNC_MUX_CTRL_2 */
  773. s->func_mux_ctrl[addr >> 2] = value;
  774. return;
  775. case 0x0c: /* COMP_MODE_CTRL_0 */
  776. s->comp_mode_ctrl[0] = value;
  777. s->compat1509 = (value != 0x0000eaef);
  778. omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
  779. omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
  780. return;
  781. case 0x10: /* FUNC_MUX_CTRL_3 */
  782. case 0x14: /* FUNC_MUX_CTRL_4 */
  783. case 0x18: /* FUNC_MUX_CTRL_5 */
  784. case 0x1c: /* FUNC_MUX_CTRL_6 */
  785. case 0x20: /* FUNC_MUX_CTRL_7 */
  786. case 0x24: /* FUNC_MUX_CTRL_8 */
  787. case 0x28: /* FUNC_MUX_CTRL_9 */
  788. case 0x2c: /* FUNC_MUX_CTRL_A */
  789. case 0x30: /* FUNC_MUX_CTRL_B */
  790. case 0x34: /* FUNC_MUX_CTRL_C */
  791. case 0x38: /* FUNC_MUX_CTRL_D */
  792. s->func_mux_ctrl[(addr >> 2) - 1] = value;
  793. return;
  794. case 0x40: /* PULL_DWN_CTRL_0 */
  795. case 0x44: /* PULL_DWN_CTRL_1 */
  796. case 0x48: /* PULL_DWN_CTRL_2 */
  797. case 0x4c: /* PULL_DWN_CTRL_3 */
  798. s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
  799. return;
  800. case 0x50: /* GATE_INH_CTRL_0 */
  801. s->gate_inh_ctrl[0] = value;
  802. return;
  803. case 0x60: /* VOLTAGE_CTRL_0 */
  804. s->voltage_ctrl[0] = value;
  805. return;
  806. case 0x70: /* TEST_DBG_CTRL_0 */
  807. s->test_dbg_ctrl[0] = value;
  808. return;
  809. case 0x80: /* MOD_CONF_CTRL_0 */
  810. diff = s->mod_conf_ctrl[0] ^ value;
  811. s->mod_conf_ctrl[0] = value;
  812. omap_pin_modconf1_update(s, diff, value);
  813. return;
  814. default:
  815. OMAP_BAD_REG(addr);
  816. }
  817. }
  818. static const MemoryRegionOps omap_pin_cfg_ops = {
  819. .read = omap_pin_cfg_read,
  820. .write = omap_pin_cfg_write,
  821. .endianness = DEVICE_NATIVE_ENDIAN,
  822. };
  823. static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
  824. {
  825. /* Start in Compatibility Mode. */
  826. mpu->compat1509 = 1;
  827. omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
  828. omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
  829. omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
  830. memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
  831. memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
  832. memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
  833. memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
  834. memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
  835. memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
  836. memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
  837. }
  838. static void omap_pin_cfg_init(MemoryRegion *system_memory,
  839. hwaddr base,
  840. struct omap_mpu_state_s *mpu)
  841. {
  842. memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
  843. "omap-pin-cfg", 0x800);
  844. memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
  845. omap_pin_cfg_reset(mpu);
  846. }
  847. /* Device Identification, Die Identification */
  848. static uint64_t omap_id_read(void *opaque, hwaddr addr,
  849. unsigned size)
  850. {
  851. struct omap_mpu_state_s *s = opaque;
  852. if (size != 4) {
  853. return omap_badwidth_read32(opaque, addr);
  854. }
  855. switch (addr) {
  856. case 0xfffe1800: /* DIE_ID_LSB */
  857. return 0xc9581f0e;
  858. case 0xfffe1804: /* DIE_ID_MSB */
  859. return 0xa8858bfa;
  860. case 0xfffe2000: /* PRODUCT_ID_LSB */
  861. return 0x00aaaafc;
  862. case 0xfffe2004: /* PRODUCT_ID_MSB */
  863. return 0xcafeb574;
  864. case 0xfffed400: /* JTAG_ID_LSB */
  865. switch (s->mpu_model) {
  866. case omap310:
  867. return 0x03310315;
  868. case omap1510:
  869. return 0x03310115;
  870. default:
  871. hw_error("%s: bad mpu model\n", __func__);
  872. }
  873. break;
  874. case 0xfffed404: /* JTAG_ID_MSB */
  875. switch (s->mpu_model) {
  876. case omap310:
  877. return 0xfb57402f;
  878. case omap1510:
  879. return 0xfb47002f;
  880. default:
  881. hw_error("%s: bad mpu model\n", __func__);
  882. }
  883. break;
  884. }
  885. OMAP_BAD_REG(addr);
  886. return 0;
  887. }
  888. static void omap_id_write(void *opaque, hwaddr addr,
  889. uint64_t value, unsigned size)
  890. {
  891. if (size != 4) {
  892. omap_badwidth_write32(opaque, addr, value);
  893. return;
  894. }
  895. OMAP_BAD_REG(addr);
  896. }
  897. static const MemoryRegionOps omap_id_ops = {
  898. .read = omap_id_read,
  899. .write = omap_id_write,
  900. .endianness = DEVICE_NATIVE_ENDIAN,
  901. };
  902. static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
  903. {
  904. memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
  905. "omap-id", 0x100000000ULL);
  906. memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
  907. 0xfffe1800, 0x800);
  908. memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
  909. memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
  910. 0xfffed400, 0x100);
  911. memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
  912. if (!cpu_is_omap15xx(mpu)) {
  913. memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
  914. &mpu->id_iomem, 0xfffe2000, 0x800);
  915. memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
  916. }
  917. }
  918. /* MPUI Control (Dummy) */
  919. static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
  920. unsigned size)
  921. {
  922. struct omap_mpu_state_s *s = opaque;
  923. if (size != 4) {
  924. return omap_badwidth_read32(opaque, addr);
  925. }
  926. switch (addr) {
  927. case 0x00: /* CTRL */
  928. return s->mpui_ctrl;
  929. case 0x04: /* DEBUG_ADDR */
  930. return 0x01ffffff;
  931. case 0x08: /* DEBUG_DATA */
  932. return 0xffffffff;
  933. case 0x0c: /* DEBUG_FLAG */
  934. return 0x00000800;
  935. case 0x10: /* STATUS */
  936. return 0x00000000;
  937. /* Not in OMAP310 */
  938. case 0x14: /* DSP_STATUS */
  939. case 0x18: /* DSP_BOOT_CONFIG */
  940. return 0x00000000;
  941. case 0x1c: /* DSP_MPUI_CONFIG */
  942. return 0x0000ffff;
  943. }
  944. OMAP_BAD_REG(addr);
  945. return 0;
  946. }
  947. static void omap_mpui_write(void *opaque, hwaddr addr,
  948. uint64_t value, unsigned size)
  949. {
  950. struct omap_mpu_state_s *s = opaque;
  951. if (size != 4) {
  952. omap_badwidth_write32(opaque, addr, value);
  953. return;
  954. }
  955. switch (addr) {
  956. case 0x00: /* CTRL */
  957. s->mpui_ctrl = value & 0x007fffff;
  958. break;
  959. case 0x04: /* DEBUG_ADDR */
  960. case 0x08: /* DEBUG_DATA */
  961. case 0x0c: /* DEBUG_FLAG */
  962. case 0x10: /* STATUS */
  963. /* Not in OMAP310 */
  964. case 0x14: /* DSP_STATUS */
  965. OMAP_RO_REG(addr);
  966. break;
  967. case 0x18: /* DSP_BOOT_CONFIG */
  968. case 0x1c: /* DSP_MPUI_CONFIG */
  969. break;
  970. default:
  971. OMAP_BAD_REG(addr);
  972. }
  973. }
  974. static const MemoryRegionOps omap_mpui_ops = {
  975. .read = omap_mpui_read,
  976. .write = omap_mpui_write,
  977. .endianness = DEVICE_NATIVE_ENDIAN,
  978. };
  979. static void omap_mpui_reset(struct omap_mpu_state_s *s)
  980. {
  981. s->mpui_ctrl = 0x0003ff1b;
  982. }
  983. static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
  984. struct omap_mpu_state_s *mpu)
  985. {
  986. memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
  987. "omap-mpui", 0x100);
  988. memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
  989. omap_mpui_reset(mpu);
  990. }
  991. /* TIPB Bridges */
  992. struct omap_tipb_bridge_s {
  993. qemu_irq abort;
  994. MemoryRegion iomem;
  995. int width_intr;
  996. uint16_t control;
  997. uint16_t alloc;
  998. uint16_t buffer;
  999. uint16_t enh_control;
  1000. };
  1001. static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
  1002. unsigned size)
  1003. {
  1004. struct omap_tipb_bridge_s *s = opaque;
  1005. if (size < 2) {
  1006. return omap_badwidth_read16(opaque, addr);
  1007. }
  1008. switch (addr) {
  1009. case 0x00: /* TIPB_CNTL */
  1010. return s->control;
  1011. case 0x04: /* TIPB_BUS_ALLOC */
  1012. return s->alloc;
  1013. case 0x08: /* MPU_TIPB_CNTL */
  1014. return s->buffer;
  1015. case 0x0c: /* ENHANCED_TIPB_CNTL */
  1016. return s->enh_control;
  1017. case 0x10: /* ADDRESS_DBG */
  1018. case 0x14: /* DATA_DEBUG_LOW */
  1019. case 0x18: /* DATA_DEBUG_HIGH */
  1020. return 0xffff;
  1021. case 0x1c: /* DEBUG_CNTR_SIG */
  1022. return 0x00f8;
  1023. }
  1024. OMAP_BAD_REG(addr);
  1025. return 0;
  1026. }
  1027. static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
  1028. uint64_t value, unsigned size)
  1029. {
  1030. struct omap_tipb_bridge_s *s = opaque;
  1031. if (size < 2) {
  1032. omap_badwidth_write16(opaque, addr, value);
  1033. return;
  1034. }
  1035. switch (addr) {
  1036. case 0x00: /* TIPB_CNTL */
  1037. s->control = value & 0xffff;
  1038. break;
  1039. case 0x04: /* TIPB_BUS_ALLOC */
  1040. s->alloc = value & 0x003f;
  1041. break;
  1042. case 0x08: /* MPU_TIPB_CNTL */
  1043. s->buffer = value & 0x0003;
  1044. break;
  1045. case 0x0c: /* ENHANCED_TIPB_CNTL */
  1046. s->width_intr = !(value & 2);
  1047. s->enh_control = value & 0x000f;
  1048. break;
  1049. case 0x10: /* ADDRESS_DBG */
  1050. case 0x14: /* DATA_DEBUG_LOW */
  1051. case 0x18: /* DATA_DEBUG_HIGH */
  1052. case 0x1c: /* DEBUG_CNTR_SIG */
  1053. OMAP_RO_REG(addr);
  1054. break;
  1055. default:
  1056. OMAP_BAD_REG(addr);
  1057. }
  1058. }
  1059. static const MemoryRegionOps omap_tipb_bridge_ops = {
  1060. .read = omap_tipb_bridge_read,
  1061. .write = omap_tipb_bridge_write,
  1062. .endianness = DEVICE_NATIVE_ENDIAN,
  1063. };
  1064. static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
  1065. {
  1066. s->control = 0xffff;
  1067. s->alloc = 0x0009;
  1068. s->buffer = 0x0000;
  1069. s->enh_control = 0x000f;
  1070. }
  1071. static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
  1072. MemoryRegion *memory, hwaddr base,
  1073. qemu_irq abort_irq, omap_clk clk)
  1074. {
  1075. struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
  1076. s->abort = abort_irq;
  1077. omap_tipb_bridge_reset(s);
  1078. memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
  1079. "omap-tipb-bridge", 0x100);
  1080. memory_region_add_subregion(memory, base, &s->iomem);
  1081. return s;
  1082. }
  1083. /* Dummy Traffic Controller's Memory Interface */
  1084. static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
  1085. unsigned size)
  1086. {
  1087. struct omap_mpu_state_s *s = opaque;
  1088. uint32_t ret;
  1089. if (size != 4) {
  1090. return omap_badwidth_read32(opaque, addr);
  1091. }
  1092. switch (addr) {
  1093. case 0x00: /* IMIF_PRIO */
  1094. case 0x04: /* EMIFS_PRIO */
  1095. case 0x08: /* EMIFF_PRIO */
  1096. case 0x0c: /* EMIFS_CONFIG */
  1097. case 0x10: /* EMIFS_CS0_CONFIG */
  1098. case 0x14: /* EMIFS_CS1_CONFIG */
  1099. case 0x18: /* EMIFS_CS2_CONFIG */
  1100. case 0x1c: /* EMIFS_CS3_CONFIG */
  1101. case 0x24: /* EMIFF_MRS */
  1102. case 0x28: /* TIMEOUT1 */
  1103. case 0x2c: /* TIMEOUT2 */
  1104. case 0x30: /* TIMEOUT3 */
  1105. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1106. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1107. return s->tcmi_regs[addr >> 2];
  1108. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1109. ret = s->tcmi_regs[addr >> 2];
  1110. s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
  1111. /* XXX: We can try using the VGA_DIRTY flag for this */
  1112. return ret;
  1113. }
  1114. OMAP_BAD_REG(addr);
  1115. return 0;
  1116. }
  1117. static void omap_tcmi_write(void *opaque, hwaddr addr,
  1118. uint64_t value, unsigned size)
  1119. {
  1120. struct omap_mpu_state_s *s = opaque;
  1121. if (size != 4) {
  1122. omap_badwidth_write32(opaque, addr, value);
  1123. return;
  1124. }
  1125. switch (addr) {
  1126. case 0x00: /* IMIF_PRIO */
  1127. case 0x04: /* EMIFS_PRIO */
  1128. case 0x08: /* EMIFF_PRIO */
  1129. case 0x10: /* EMIFS_CS0_CONFIG */
  1130. case 0x14: /* EMIFS_CS1_CONFIG */
  1131. case 0x18: /* EMIFS_CS2_CONFIG */
  1132. case 0x1c: /* EMIFS_CS3_CONFIG */
  1133. case 0x20: /* EMIFF_SDRAM_CONFIG */
  1134. case 0x24: /* EMIFF_MRS */
  1135. case 0x28: /* TIMEOUT1 */
  1136. case 0x2c: /* TIMEOUT2 */
  1137. case 0x30: /* TIMEOUT3 */
  1138. case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
  1139. case 0x40: /* EMIFS_CFG_DYN_WAIT */
  1140. s->tcmi_regs[addr >> 2] = value;
  1141. break;
  1142. case 0x0c: /* EMIFS_CONFIG */
  1143. s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
  1144. break;
  1145. default:
  1146. OMAP_BAD_REG(addr);
  1147. }
  1148. }
  1149. static const MemoryRegionOps omap_tcmi_ops = {
  1150. .read = omap_tcmi_read,
  1151. .write = omap_tcmi_write,
  1152. .endianness = DEVICE_NATIVE_ENDIAN,
  1153. };
  1154. static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
  1155. {
  1156. mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
  1157. mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
  1158. mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
  1159. mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
  1160. mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
  1161. mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
  1162. mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
  1163. mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
  1164. mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
  1165. mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
  1166. mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
  1167. mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
  1168. mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
  1169. mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
  1170. mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
  1171. }
  1172. static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
  1173. struct omap_mpu_state_s *mpu)
  1174. {
  1175. memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
  1176. "omap-tcmi", 0x100);
  1177. memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
  1178. omap_tcmi_reset(mpu);
  1179. }
  1180. /* Digital phase-locked loops control */
  1181. struct dpll_ctl_s {
  1182. MemoryRegion iomem;
  1183. uint16_t mode;
  1184. omap_clk dpll;
  1185. };
  1186. static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
  1187. unsigned size)
  1188. {
  1189. struct dpll_ctl_s *s = opaque;
  1190. if (size != 2) {
  1191. return omap_badwidth_read16(opaque, addr);
  1192. }
  1193. if (addr == 0x00) /* CTL_REG */
  1194. return s->mode;
  1195. OMAP_BAD_REG(addr);
  1196. return 0;
  1197. }
  1198. static void omap_dpll_write(void *opaque, hwaddr addr,
  1199. uint64_t value, unsigned size)
  1200. {
  1201. struct dpll_ctl_s *s = opaque;
  1202. uint16_t diff;
  1203. static const int bypass_div[4] = { 1, 2, 4, 4 };
  1204. int div, mult;
  1205. if (size != 2) {
  1206. omap_badwidth_write16(opaque, addr, value);
  1207. return;
  1208. }
  1209. if (addr == 0x00) { /* CTL_REG */
  1210. /* See omap_ulpd_pm_write() too */
  1211. diff = s->mode & value;
  1212. s->mode = value & 0x2fff;
  1213. if (diff & (0x3ff << 2)) {
  1214. if (value & (1 << 4)) { /* PLL_ENABLE */
  1215. div = ((value >> 5) & 3) + 1; /* PLL_DIV */
  1216. mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
  1217. } else {
  1218. div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
  1219. mult = 1;
  1220. }
  1221. omap_clk_setrate(s->dpll, div, mult);
  1222. }
  1223. /* Enter the desired mode. */
  1224. s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
  1225. /* Act as if the lock is restored. */
  1226. s->mode |= 2;
  1227. } else {
  1228. OMAP_BAD_REG(addr);
  1229. }
  1230. }
  1231. static const MemoryRegionOps omap_dpll_ops = {
  1232. .read = omap_dpll_read,
  1233. .write = omap_dpll_write,
  1234. .endianness = DEVICE_NATIVE_ENDIAN,
  1235. };
  1236. static void omap_dpll_reset(struct dpll_ctl_s *s)
  1237. {
  1238. s->mode = 0x2002;
  1239. omap_clk_setrate(s->dpll, 1, 1);
  1240. }
  1241. static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
  1242. hwaddr base, omap_clk clk)
  1243. {
  1244. struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
  1245. memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
  1246. s->dpll = clk;
  1247. omap_dpll_reset(s);
  1248. memory_region_add_subregion(memory, base, &s->iomem);
  1249. return s;
  1250. }
  1251. /* MPU Clock/Reset/Power Mode Control */
  1252. static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
  1253. unsigned size)
  1254. {
  1255. struct omap_mpu_state_s *s = opaque;
  1256. if (size != 2) {
  1257. return omap_badwidth_read16(opaque, addr);
  1258. }
  1259. switch (addr) {
  1260. case 0x00: /* ARM_CKCTL */
  1261. return s->clkm.arm_ckctl;
  1262. case 0x04: /* ARM_IDLECT1 */
  1263. return s->clkm.arm_idlect1;
  1264. case 0x08: /* ARM_IDLECT2 */
  1265. return s->clkm.arm_idlect2;
  1266. case 0x0c: /* ARM_EWUPCT */
  1267. return s->clkm.arm_ewupct;
  1268. case 0x10: /* ARM_RSTCT1 */
  1269. return s->clkm.arm_rstct1;
  1270. case 0x14: /* ARM_RSTCT2 */
  1271. return s->clkm.arm_rstct2;
  1272. case 0x18: /* ARM_SYSST */
  1273. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
  1274. case 0x1c: /* ARM_CKOUT1 */
  1275. return s->clkm.arm_ckout1;
  1276. case 0x20: /* ARM_CKOUT2 */
  1277. break;
  1278. }
  1279. OMAP_BAD_REG(addr);
  1280. return 0;
  1281. }
  1282. static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
  1283. uint16_t diff, uint16_t value)
  1284. {
  1285. omap_clk clk;
  1286. if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
  1287. if (value & (1 << 14))
  1288. /* Reserved */;
  1289. else {
  1290. clk = omap_findclk(s, "arminth_ck");
  1291. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1292. }
  1293. }
  1294. if (diff & (1 << 12)) { /* ARM_TIMXO */
  1295. clk = omap_findclk(s, "armtim_ck");
  1296. if (value & (1 << 12))
  1297. omap_clk_reparent(clk, omap_findclk(s, "clkin"));
  1298. else
  1299. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1300. }
  1301. /* XXX: en_dspck */
  1302. if (diff & (3 << 10)) { /* DSPMMUDIV */
  1303. clk = omap_findclk(s, "dspmmu_ck");
  1304. omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
  1305. }
  1306. if (diff & (3 << 8)) { /* TCDIV */
  1307. clk = omap_findclk(s, "tc_ck");
  1308. omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
  1309. }
  1310. if (diff & (3 << 6)) { /* DSPDIV */
  1311. clk = omap_findclk(s, "dsp_ck");
  1312. omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
  1313. }
  1314. if (diff & (3 << 4)) { /* ARMDIV */
  1315. clk = omap_findclk(s, "arm_ck");
  1316. omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
  1317. }
  1318. if (diff & (3 << 2)) { /* LCDDIV */
  1319. clk = omap_findclk(s, "lcd_ck");
  1320. omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
  1321. }
  1322. if (diff & (3 << 0)) { /* PERDIV */
  1323. clk = omap_findclk(s, "armper_ck");
  1324. omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
  1325. }
  1326. }
  1327. static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
  1328. uint16_t diff, uint16_t value)
  1329. {
  1330. omap_clk clk;
  1331. if (value & (1 << 11)) { /* SETARM_IDLE */
  1332. cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
  1333. }
  1334. if (!(value & (1 << 10))) { /* WKUP_MODE */
  1335. /* XXX: disable wakeup from IRQ */
  1336. qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
  1337. }
  1338. #define SET_CANIDLE(clock, bit) \
  1339. if (diff & (1 << bit)) { \
  1340. clk = omap_findclk(s, clock); \
  1341. omap_clk_canidle(clk, (value >> bit) & 1); \
  1342. }
  1343. SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
  1344. SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
  1345. SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
  1346. SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
  1347. SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
  1348. SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
  1349. SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
  1350. SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
  1351. SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
  1352. SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
  1353. SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
  1354. SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
  1355. SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
  1356. SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
  1357. }
  1358. static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
  1359. uint16_t diff, uint16_t value)
  1360. {
  1361. omap_clk clk;
  1362. #define SET_ONOFF(clock, bit) \
  1363. if (diff & (1 << bit)) { \
  1364. clk = omap_findclk(s, clock); \
  1365. omap_clk_onoff(clk, (value >> bit) & 1); \
  1366. }
  1367. SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
  1368. SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
  1369. SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
  1370. SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
  1371. SET_ONOFF("lb_ck", 4) /* EN_LBCK */
  1372. SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
  1373. SET_ONOFF("mpui_ck", 6) /* EN_APICK */
  1374. SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
  1375. SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
  1376. SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
  1377. SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
  1378. }
  1379. static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
  1380. uint16_t diff, uint16_t value)
  1381. {
  1382. omap_clk clk;
  1383. if (diff & (3 << 4)) { /* TCLKOUT */
  1384. clk = omap_findclk(s, "tclk_out");
  1385. switch ((value >> 4) & 3) {
  1386. case 1:
  1387. omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
  1388. omap_clk_onoff(clk, 1);
  1389. break;
  1390. case 2:
  1391. omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
  1392. omap_clk_onoff(clk, 1);
  1393. break;
  1394. default:
  1395. omap_clk_onoff(clk, 0);
  1396. }
  1397. }
  1398. if (diff & (3 << 2)) { /* DCLKOUT */
  1399. clk = omap_findclk(s, "dclk_out");
  1400. switch ((value >> 2) & 3) {
  1401. case 0:
  1402. omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
  1403. break;
  1404. case 1:
  1405. omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
  1406. break;
  1407. case 2:
  1408. omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
  1409. break;
  1410. case 3:
  1411. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1412. break;
  1413. }
  1414. }
  1415. if (diff & (3 << 0)) { /* ACLKOUT */
  1416. clk = omap_findclk(s, "aclk_out");
  1417. switch ((value >> 0) & 3) {
  1418. case 1:
  1419. omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
  1420. omap_clk_onoff(clk, 1);
  1421. break;
  1422. case 2:
  1423. omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
  1424. omap_clk_onoff(clk, 1);
  1425. break;
  1426. case 3:
  1427. omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
  1428. omap_clk_onoff(clk, 1);
  1429. break;
  1430. default:
  1431. omap_clk_onoff(clk, 0);
  1432. }
  1433. }
  1434. }
  1435. static void omap_clkm_write(void *opaque, hwaddr addr,
  1436. uint64_t value, unsigned size)
  1437. {
  1438. struct omap_mpu_state_s *s = opaque;
  1439. uint16_t diff;
  1440. omap_clk clk;
  1441. static const char *clkschemename[8] = {
  1442. "fully synchronous", "fully asynchronous", "synchronous scalable",
  1443. "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
  1444. };
  1445. if (size != 2) {
  1446. omap_badwidth_write16(opaque, addr, value);
  1447. return;
  1448. }
  1449. switch (addr) {
  1450. case 0x00: /* ARM_CKCTL */
  1451. diff = s->clkm.arm_ckctl ^ value;
  1452. s->clkm.arm_ckctl = value & 0x7fff;
  1453. omap_clkm_ckctl_update(s, diff, value);
  1454. return;
  1455. case 0x04: /* ARM_IDLECT1 */
  1456. diff = s->clkm.arm_idlect1 ^ value;
  1457. s->clkm.arm_idlect1 = value & 0x0fff;
  1458. omap_clkm_idlect1_update(s, diff, value);
  1459. return;
  1460. case 0x08: /* ARM_IDLECT2 */
  1461. diff = s->clkm.arm_idlect2 ^ value;
  1462. s->clkm.arm_idlect2 = value & 0x07ff;
  1463. omap_clkm_idlect2_update(s, diff, value);
  1464. return;
  1465. case 0x0c: /* ARM_EWUPCT */
  1466. s->clkm.arm_ewupct = value & 0x003f;
  1467. return;
  1468. case 0x10: /* ARM_RSTCT1 */
  1469. diff = s->clkm.arm_rstct1 ^ value;
  1470. s->clkm.arm_rstct1 = value & 0x0007;
  1471. if (value & 9) {
  1472. qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
  1473. s->clkm.cold_start = 0xa;
  1474. }
  1475. if (diff & ~value & 4) { /* DSP_RST */
  1476. omap_mpui_reset(s);
  1477. omap_tipb_bridge_reset(s->private_tipb);
  1478. omap_tipb_bridge_reset(s->public_tipb);
  1479. }
  1480. if (diff & 2) { /* DSP_EN */
  1481. clk = omap_findclk(s, "dsp_ck");
  1482. omap_clk_canidle(clk, (~value >> 1) & 1);
  1483. }
  1484. return;
  1485. case 0x14: /* ARM_RSTCT2 */
  1486. s->clkm.arm_rstct2 = value & 0x0001;
  1487. return;
  1488. case 0x18: /* ARM_SYSST */
  1489. if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
  1490. s->clkm.clocking_scheme = (value >> 11) & 7;
  1491. trace_omap1_pwl_clocking_scheme(
  1492. clkschemename[s->clkm.clocking_scheme]);
  1493. }
  1494. s->clkm.cold_start &= value & 0x3f;
  1495. return;
  1496. case 0x1c: /* ARM_CKOUT1 */
  1497. diff = s->clkm.arm_ckout1 ^ value;
  1498. s->clkm.arm_ckout1 = value & 0x003f;
  1499. omap_clkm_ckout1_update(s, diff, value);
  1500. return;
  1501. case 0x20: /* ARM_CKOUT2 */
  1502. default:
  1503. OMAP_BAD_REG(addr);
  1504. }
  1505. }
  1506. static const MemoryRegionOps omap_clkm_ops = {
  1507. .read = omap_clkm_read,
  1508. .write = omap_clkm_write,
  1509. .endianness = DEVICE_NATIVE_ENDIAN,
  1510. };
  1511. static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
  1512. unsigned size)
  1513. {
  1514. struct omap_mpu_state_s *s = opaque;
  1515. CPUState *cpu = CPU(s->cpu);
  1516. if (size != 2) {
  1517. return omap_badwidth_read16(opaque, addr);
  1518. }
  1519. switch (addr) {
  1520. case 0x04: /* DSP_IDLECT1 */
  1521. return s->clkm.dsp_idlect1;
  1522. case 0x08: /* DSP_IDLECT2 */
  1523. return s->clkm.dsp_idlect2;
  1524. case 0x14: /* DSP_RSTCT2 */
  1525. return s->clkm.dsp_rstct2;
  1526. case 0x18: /* DSP_SYSST */
  1527. return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
  1528. (cpu->halted << 6); /* Quite useless... */
  1529. }
  1530. OMAP_BAD_REG(addr);
  1531. return 0;
  1532. }
  1533. static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
  1534. uint16_t diff, uint16_t value)
  1535. {
  1536. omap_clk clk;
  1537. SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
  1538. }
  1539. static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
  1540. uint16_t diff, uint16_t value)
  1541. {
  1542. omap_clk clk;
  1543. SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
  1544. }
  1545. static void omap_clkdsp_write(void *opaque, hwaddr addr,
  1546. uint64_t value, unsigned size)
  1547. {
  1548. struct omap_mpu_state_s *s = opaque;
  1549. uint16_t diff;
  1550. if (size != 2) {
  1551. omap_badwidth_write16(opaque, addr, value);
  1552. return;
  1553. }
  1554. switch (addr) {
  1555. case 0x04: /* DSP_IDLECT1 */
  1556. diff = s->clkm.dsp_idlect1 ^ value;
  1557. s->clkm.dsp_idlect1 = value & 0x01f7;
  1558. omap_clkdsp_idlect1_update(s, diff, value);
  1559. break;
  1560. case 0x08: /* DSP_IDLECT2 */
  1561. s->clkm.dsp_idlect2 = value & 0x0037;
  1562. diff = s->clkm.dsp_idlect1 ^ value;
  1563. omap_clkdsp_idlect2_update(s, diff, value);
  1564. break;
  1565. case 0x14: /* DSP_RSTCT2 */
  1566. s->clkm.dsp_rstct2 = value & 0x0001;
  1567. break;
  1568. case 0x18: /* DSP_SYSST */
  1569. s->clkm.cold_start &= value & 0x3f;
  1570. break;
  1571. default:
  1572. OMAP_BAD_REG(addr);
  1573. }
  1574. }
  1575. static const MemoryRegionOps omap_clkdsp_ops = {
  1576. .read = omap_clkdsp_read,
  1577. .write = omap_clkdsp_write,
  1578. .endianness = DEVICE_NATIVE_ENDIAN,
  1579. };
  1580. static void omap_clkm_reset(struct omap_mpu_state_s *s)
  1581. {
  1582. if (s->wdt && s->wdt->reset)
  1583. s->clkm.cold_start = 0x6;
  1584. s->clkm.clocking_scheme = 0;
  1585. omap_clkm_ckctl_update(s, ~0, 0x3000);
  1586. s->clkm.arm_ckctl = 0x3000;
  1587. omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
  1588. s->clkm.arm_idlect1 = 0x0400;
  1589. omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
  1590. s->clkm.arm_idlect2 = 0x0100;
  1591. s->clkm.arm_ewupct = 0x003f;
  1592. s->clkm.arm_rstct1 = 0x0000;
  1593. s->clkm.arm_rstct2 = 0x0000;
  1594. s->clkm.arm_ckout1 = 0x0015;
  1595. s->clkm.dpll1_mode = 0x2002;
  1596. omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
  1597. s->clkm.dsp_idlect1 = 0x0040;
  1598. omap_clkdsp_idlect2_update(s, ~0, 0x0000);
  1599. s->clkm.dsp_idlect2 = 0x0000;
  1600. s->clkm.dsp_rstct2 = 0x0000;
  1601. }
  1602. static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
  1603. hwaddr dsp_base, struct omap_mpu_state_s *s)
  1604. {
  1605. memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
  1606. "omap-clkm", 0x100);
  1607. memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
  1608. "omap-clkdsp", 0x1000);
  1609. s->clkm.arm_idlect1 = 0x03ff;
  1610. s->clkm.arm_idlect2 = 0x0100;
  1611. s->clkm.dsp_idlect1 = 0x0002;
  1612. omap_clkm_reset(s);
  1613. s->clkm.cold_start = 0x3a;
  1614. memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
  1615. memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
  1616. }
  1617. /* MPU I/O */
  1618. struct omap_mpuio_s {
  1619. qemu_irq irq;
  1620. qemu_irq kbd_irq;
  1621. qemu_irq *in;
  1622. qemu_irq handler[16];
  1623. qemu_irq wakeup;
  1624. MemoryRegion iomem;
  1625. uint16_t inputs;
  1626. uint16_t outputs;
  1627. uint16_t dir;
  1628. uint16_t edge;
  1629. uint16_t mask;
  1630. uint16_t ints;
  1631. uint16_t debounce;
  1632. uint16_t latch;
  1633. uint8_t event;
  1634. uint8_t buttons[5];
  1635. uint8_t row_latch;
  1636. uint8_t cols;
  1637. int kbd_mask;
  1638. int clk;
  1639. };
  1640. static void omap_mpuio_set(void *opaque, int line, int level)
  1641. {
  1642. struct omap_mpuio_s *s = opaque;
  1643. uint16_t prev = s->inputs;
  1644. if (level)
  1645. s->inputs |= 1 << line;
  1646. else
  1647. s->inputs &= ~(1 << line);
  1648. if (((1 << line) & s->dir & ~s->mask) && s->clk) {
  1649. if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
  1650. s->ints |= 1 << line;
  1651. qemu_irq_raise(s->irq);
  1652. /* TODO: wakeup */
  1653. }
  1654. if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
  1655. (s->event >> 1) == line) /* PIN_SELECT */
  1656. s->latch = s->inputs;
  1657. }
  1658. }
  1659. static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
  1660. {
  1661. int i;
  1662. uint8_t *row, rows = 0, cols = ~s->cols;
  1663. for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
  1664. if (*row & cols)
  1665. rows |= i;
  1666. qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
  1667. s->row_latch = ~rows;
  1668. }
  1669. static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
  1670. unsigned size)
  1671. {
  1672. struct omap_mpuio_s *s = opaque;
  1673. int offset = addr & OMAP_MPUI_REG_MASK;
  1674. uint16_t ret;
  1675. if (size != 2) {
  1676. return omap_badwidth_read16(opaque, addr);
  1677. }
  1678. switch (offset) {
  1679. case 0x00: /* INPUT_LATCH */
  1680. return s->inputs;
  1681. case 0x04: /* OUTPUT_REG */
  1682. return s->outputs;
  1683. case 0x08: /* IO_CNTL */
  1684. return s->dir;
  1685. case 0x10: /* KBR_LATCH */
  1686. return s->row_latch;
  1687. case 0x14: /* KBC_REG */
  1688. return s->cols;
  1689. case 0x18: /* GPIO_EVENT_MODE_REG */
  1690. return s->event;
  1691. case 0x1c: /* GPIO_INT_EDGE_REG */
  1692. return s->edge;
  1693. case 0x20: /* KBD_INT */
  1694. return (~s->row_latch & 0x1f) && !s->kbd_mask;
  1695. case 0x24: /* GPIO_INT */
  1696. ret = s->ints;
  1697. s->ints &= s->mask;
  1698. if (ret)
  1699. qemu_irq_lower(s->irq);
  1700. return ret;
  1701. case 0x28: /* KBD_MASKIT */
  1702. return s->kbd_mask;
  1703. case 0x2c: /* GPIO_MASKIT */
  1704. return s->mask;
  1705. case 0x30: /* GPIO_DEBOUNCING_REG */
  1706. return s->debounce;
  1707. case 0x34: /* GPIO_LATCH_REG */
  1708. return s->latch;
  1709. }
  1710. OMAP_BAD_REG(addr);
  1711. return 0;
  1712. }
  1713. static void omap_mpuio_write(void *opaque, hwaddr addr,
  1714. uint64_t value, unsigned size)
  1715. {
  1716. struct omap_mpuio_s *s = opaque;
  1717. int offset = addr & OMAP_MPUI_REG_MASK;
  1718. uint16_t diff;
  1719. int ln;
  1720. if (size != 2) {
  1721. omap_badwidth_write16(opaque, addr, value);
  1722. return;
  1723. }
  1724. switch (offset) {
  1725. case 0x04: /* OUTPUT_REG */
  1726. diff = (s->outputs ^ value) & ~s->dir;
  1727. s->outputs = value;
  1728. while ((ln = ctz32(diff)) != 32) {
  1729. if (s->handler[ln])
  1730. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1731. diff &= ~(1 << ln);
  1732. }
  1733. break;
  1734. case 0x08: /* IO_CNTL */
  1735. diff = s->outputs & (s->dir ^ value);
  1736. s->dir = value;
  1737. value = s->outputs & ~s->dir;
  1738. while ((ln = ctz32(diff)) != 32) {
  1739. if (s->handler[ln])
  1740. qemu_set_irq(s->handler[ln], (value >> ln) & 1);
  1741. diff &= ~(1 << ln);
  1742. }
  1743. break;
  1744. case 0x14: /* KBC_REG */
  1745. s->cols = value;
  1746. omap_mpuio_kbd_update(s);
  1747. break;
  1748. case 0x18: /* GPIO_EVENT_MODE_REG */
  1749. s->event = value & 0x1f;
  1750. break;
  1751. case 0x1c: /* GPIO_INT_EDGE_REG */
  1752. s->edge = value;
  1753. break;
  1754. case 0x28: /* KBD_MASKIT */
  1755. s->kbd_mask = value & 1;
  1756. omap_mpuio_kbd_update(s);
  1757. break;
  1758. case 0x2c: /* GPIO_MASKIT */
  1759. s->mask = value;
  1760. break;
  1761. case 0x30: /* GPIO_DEBOUNCING_REG */
  1762. s->debounce = value & 0x1ff;
  1763. break;
  1764. case 0x00: /* INPUT_LATCH */
  1765. case 0x10: /* KBR_LATCH */
  1766. case 0x20: /* KBD_INT */
  1767. case 0x24: /* GPIO_INT */
  1768. case 0x34: /* GPIO_LATCH_REG */
  1769. OMAP_RO_REG(addr);
  1770. return;
  1771. default:
  1772. OMAP_BAD_REG(addr);
  1773. return;
  1774. }
  1775. }
  1776. static const MemoryRegionOps omap_mpuio_ops = {
  1777. .read = omap_mpuio_read,
  1778. .write = omap_mpuio_write,
  1779. .endianness = DEVICE_NATIVE_ENDIAN,
  1780. };
  1781. static void omap_mpuio_reset(struct omap_mpuio_s *s)
  1782. {
  1783. s->inputs = 0;
  1784. s->outputs = 0;
  1785. s->dir = ~0;
  1786. s->event = 0;
  1787. s->edge = 0;
  1788. s->kbd_mask = 0;
  1789. s->mask = 0;
  1790. s->debounce = 0;
  1791. s->latch = 0;
  1792. s->ints = 0;
  1793. s->row_latch = 0x1f;
  1794. s->clk = 1;
  1795. }
  1796. static void omap_mpuio_onoff(void *opaque, int line, int on)
  1797. {
  1798. struct omap_mpuio_s *s = opaque;
  1799. s->clk = on;
  1800. if (on)
  1801. omap_mpuio_kbd_update(s);
  1802. }
  1803. static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
  1804. hwaddr base,
  1805. qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
  1806. omap_clk clk)
  1807. {
  1808. struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
  1809. s->irq = gpio_int;
  1810. s->kbd_irq = kbd_int;
  1811. s->wakeup = wakeup;
  1812. s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
  1813. omap_mpuio_reset(s);
  1814. memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
  1815. "omap-mpuio", 0x800);
  1816. memory_region_add_subregion(memory, base, &s->iomem);
  1817. omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
  1818. return s;
  1819. }
  1820. qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
  1821. {
  1822. return s->in;
  1823. }
  1824. void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
  1825. {
  1826. if (line >= 16 || line < 0)
  1827. hw_error("%s: No GPIO line %i\n", __func__, line);
  1828. s->handler[line] = handler;
  1829. }
  1830. void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
  1831. {
  1832. if (row >= 5 || row < 0)
  1833. hw_error("%s: No key %i-%i\n", __func__, col, row);
  1834. if (down)
  1835. s->buttons[row] |= 1 << col;
  1836. else
  1837. s->buttons[row] &= ~(1 << col);
  1838. omap_mpuio_kbd_update(s);
  1839. }
  1840. /* MicroWire Interface */
  1841. struct omap_uwire_s {
  1842. MemoryRegion iomem;
  1843. qemu_irq txirq;
  1844. qemu_irq rxirq;
  1845. qemu_irq txdrq;
  1846. uint16_t txbuf;
  1847. uint16_t rxbuf;
  1848. uint16_t control;
  1849. uint16_t setup[5];
  1850. };
  1851. static void omap_uwire_transfer_start(struct omap_uwire_s *s)
  1852. {
  1853. int chipselect = (s->control >> 10) & 3; /* INDEX */
  1854. if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
  1855. if (s->control & (1 << 12)) { /* CS_CMD */
  1856. qemu_log_mask(LOG_UNIMP, "uWireSlave TX CS:%d data:0x%04x\n",
  1857. chipselect,
  1858. s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
  1859. }
  1860. s->control &= ~(1 << 14); /* CSRB */
  1861. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1862. * a DRQ. When is the level IRQ supposed to be reset? */
  1863. }
  1864. if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
  1865. if (s->control & (1 << 12)) { /* CS_CMD */
  1866. qemu_log_mask(LOG_UNIMP, "uWireSlave RX CS:%d\n", chipselect);
  1867. }
  1868. s->control |= 1 << 15; /* RDRB */
  1869. /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
  1870. * a DRQ. When is the level IRQ supposed to be reset? */
  1871. }
  1872. }
  1873. static uint64_t omap_uwire_read(void *opaque, hwaddr addr, unsigned size)
  1874. {
  1875. struct omap_uwire_s *s = opaque;
  1876. int offset = addr & OMAP_MPUI_REG_MASK;
  1877. if (size != 2) {
  1878. return omap_badwidth_read16(opaque, addr);
  1879. }
  1880. switch (offset) {
  1881. case 0x00: /* RDR */
  1882. s->control &= ~(1 << 15); /* RDRB */
  1883. return s->rxbuf;
  1884. case 0x04: /* CSR */
  1885. return s->control;
  1886. case 0x08: /* SR1 */
  1887. return s->setup[0];
  1888. case 0x0c: /* SR2 */
  1889. return s->setup[1];
  1890. case 0x10: /* SR3 */
  1891. return s->setup[2];
  1892. case 0x14: /* SR4 */
  1893. return s->setup[3];
  1894. case 0x18: /* SR5 */
  1895. return s->setup[4];
  1896. }
  1897. OMAP_BAD_REG(addr);
  1898. return 0;
  1899. }
  1900. static void omap_uwire_write(void *opaque, hwaddr addr,
  1901. uint64_t value, unsigned size)
  1902. {
  1903. struct omap_uwire_s *s = opaque;
  1904. int offset = addr & OMAP_MPUI_REG_MASK;
  1905. if (size != 2) {
  1906. omap_badwidth_write16(opaque, addr, value);
  1907. return;
  1908. }
  1909. switch (offset) {
  1910. case 0x00: /* TDR */
  1911. s->txbuf = value; /* TD */
  1912. if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
  1913. ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
  1914. (s->control & (1 << 12)))) { /* CS_CMD */
  1915. s->control |= 1 << 14; /* CSRB */
  1916. omap_uwire_transfer_start(s);
  1917. }
  1918. break;
  1919. case 0x04: /* CSR */
  1920. s->control = value & 0x1fff;
  1921. if (value & (1 << 13)) /* START */
  1922. omap_uwire_transfer_start(s);
  1923. break;
  1924. case 0x08: /* SR1 */
  1925. s->setup[0] = value & 0x003f;
  1926. break;
  1927. case 0x0c: /* SR2 */
  1928. s->setup[1] = value & 0x0fc0;
  1929. break;
  1930. case 0x10: /* SR3 */
  1931. s->setup[2] = value & 0x0003;
  1932. break;
  1933. case 0x14: /* SR4 */
  1934. s->setup[3] = value & 0x0001;
  1935. break;
  1936. case 0x18: /* SR5 */
  1937. s->setup[4] = value & 0x000f;
  1938. break;
  1939. default:
  1940. OMAP_BAD_REG(addr);
  1941. return;
  1942. }
  1943. }
  1944. static const MemoryRegionOps omap_uwire_ops = {
  1945. .read = omap_uwire_read,
  1946. .write = omap_uwire_write,
  1947. .endianness = DEVICE_NATIVE_ENDIAN,
  1948. };
  1949. static void omap_uwire_reset(struct omap_uwire_s *s)
  1950. {
  1951. s->control = 0;
  1952. s->setup[0] = 0;
  1953. s->setup[1] = 0;
  1954. s->setup[2] = 0;
  1955. s->setup[3] = 0;
  1956. s->setup[4] = 0;
  1957. }
  1958. static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
  1959. hwaddr base,
  1960. qemu_irq txirq, qemu_irq rxirq,
  1961. qemu_irq dma,
  1962. omap_clk clk)
  1963. {
  1964. struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
  1965. s->txirq = txirq;
  1966. s->rxirq = rxirq;
  1967. s->txdrq = dma;
  1968. omap_uwire_reset(s);
  1969. memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
  1970. memory_region_add_subregion(system_memory, base, &s->iomem);
  1971. return s;
  1972. }
  1973. /* Pseudonoise Pulse-Width Light Modulator */
  1974. struct omap_pwl_s {
  1975. MemoryRegion iomem;
  1976. uint8_t output;
  1977. uint8_t level;
  1978. uint8_t enable;
  1979. int clk;
  1980. };
  1981. static void omap_pwl_update(struct omap_pwl_s *s)
  1982. {
  1983. int output = (s->clk && s->enable) ? s->level : 0;
  1984. if (output != s->output) {
  1985. s->output = output;
  1986. trace_omap1_pwl_backlight(output);
  1987. }
  1988. }
  1989. static uint64_t omap_pwl_read(void *opaque, hwaddr addr, unsigned size)
  1990. {
  1991. struct omap_pwl_s *s = opaque;
  1992. int offset = addr & OMAP_MPUI_REG_MASK;
  1993. if (size != 1) {
  1994. return omap_badwidth_read8(opaque, addr);
  1995. }
  1996. switch (offset) {
  1997. case 0x00: /* PWL_LEVEL */
  1998. return s->level;
  1999. case 0x04: /* PWL_CTRL */
  2000. return s->enable;
  2001. }
  2002. OMAP_BAD_REG(addr);
  2003. return 0;
  2004. }
  2005. static void omap_pwl_write(void *opaque, hwaddr addr,
  2006. uint64_t value, unsigned size)
  2007. {
  2008. struct omap_pwl_s *s = opaque;
  2009. int offset = addr & OMAP_MPUI_REG_MASK;
  2010. if (size != 1) {
  2011. omap_badwidth_write8(opaque, addr, value);
  2012. return;
  2013. }
  2014. switch (offset) {
  2015. case 0x00: /* PWL_LEVEL */
  2016. s->level = value;
  2017. omap_pwl_update(s);
  2018. break;
  2019. case 0x04: /* PWL_CTRL */
  2020. s->enable = value & 1;
  2021. omap_pwl_update(s);
  2022. break;
  2023. default:
  2024. OMAP_BAD_REG(addr);
  2025. return;
  2026. }
  2027. }
  2028. static const MemoryRegionOps omap_pwl_ops = {
  2029. .read = omap_pwl_read,
  2030. .write = omap_pwl_write,
  2031. .endianness = DEVICE_NATIVE_ENDIAN,
  2032. };
  2033. static void omap_pwl_reset(struct omap_pwl_s *s)
  2034. {
  2035. s->output = 0;
  2036. s->level = 0;
  2037. s->enable = 0;
  2038. s->clk = 1;
  2039. omap_pwl_update(s);
  2040. }
  2041. static void omap_pwl_clk_update(void *opaque, int line, int on)
  2042. {
  2043. struct omap_pwl_s *s = opaque;
  2044. s->clk = on;
  2045. omap_pwl_update(s);
  2046. }
  2047. static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
  2048. hwaddr base,
  2049. omap_clk clk)
  2050. {
  2051. struct omap_pwl_s *s = g_malloc0(sizeof(*s));
  2052. omap_pwl_reset(s);
  2053. memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
  2054. "omap-pwl", 0x800);
  2055. memory_region_add_subregion(system_memory, base, &s->iomem);
  2056. omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
  2057. return s;
  2058. }
  2059. /* Pulse-Width Tone module */
  2060. struct omap_pwt_s {
  2061. MemoryRegion iomem;
  2062. uint8_t frc;
  2063. uint8_t vrc;
  2064. uint8_t gcr;
  2065. omap_clk clk;
  2066. };
  2067. static uint64_t omap_pwt_read(void *opaque, hwaddr addr, unsigned size)
  2068. {
  2069. struct omap_pwt_s *s = opaque;
  2070. int offset = addr & OMAP_MPUI_REG_MASK;
  2071. if (size != 1) {
  2072. return omap_badwidth_read8(opaque, addr);
  2073. }
  2074. switch (offset) {
  2075. case 0x00: /* FRC */
  2076. return s->frc;
  2077. case 0x04: /* VCR */
  2078. return s->vrc;
  2079. case 0x08: /* GCR */
  2080. return s->gcr;
  2081. }
  2082. OMAP_BAD_REG(addr);
  2083. return 0;
  2084. }
  2085. static void omap_pwt_write(void *opaque, hwaddr addr,
  2086. uint64_t value, unsigned size)
  2087. {
  2088. struct omap_pwt_s *s = opaque;
  2089. int offset = addr & OMAP_MPUI_REG_MASK;
  2090. if (size != 1) {
  2091. omap_badwidth_write8(opaque, addr, value);
  2092. return;
  2093. }
  2094. switch (offset) {
  2095. case 0x00: /* FRC */
  2096. s->frc = value & 0x3f;
  2097. break;
  2098. case 0x04: /* VRC */
  2099. if ((value ^ s->vrc) & 1) {
  2100. if (value & 1) {
  2101. trace_omap1_pwt_buzz(
  2102. /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
  2103. ((omap_clk_getrate(s->clk) >> 3) /
  2104. /* Pre-multiplexer divider */
  2105. ((s->gcr & 2) ? 1 : 154) /
  2106. /* Octave multiplexer */
  2107. (2 << (value & 3)) *
  2108. /* 101/107 divider */
  2109. ((value & (1 << 2)) ? 101 : 107) *
  2110. /* 49/55 divider */
  2111. ((value & (1 << 3)) ? 49 : 55) *
  2112. /* 50/63 divider */
  2113. ((value & (1 << 4)) ? 50 : 63) *
  2114. /* 80/127 divider */
  2115. ((value & (1 << 5)) ? 80 : 127) /
  2116. (107 * 55 * 63 * 127)));
  2117. } else {
  2118. trace_omap1_pwt_silence();
  2119. }
  2120. }
  2121. s->vrc = value & 0x7f;
  2122. break;
  2123. case 0x08: /* GCR */
  2124. s->gcr = value & 3;
  2125. break;
  2126. default:
  2127. OMAP_BAD_REG(addr);
  2128. return;
  2129. }
  2130. }
  2131. static const MemoryRegionOps omap_pwt_ops = {
  2132. .read =omap_pwt_read,
  2133. .write = omap_pwt_write,
  2134. .endianness = DEVICE_NATIVE_ENDIAN,
  2135. };
  2136. static void omap_pwt_reset(struct omap_pwt_s *s)
  2137. {
  2138. s->frc = 0;
  2139. s->vrc = 0;
  2140. s->gcr = 0;
  2141. }
  2142. static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
  2143. hwaddr base,
  2144. omap_clk clk)
  2145. {
  2146. struct omap_pwt_s *s = g_malloc0(sizeof(*s));
  2147. s->clk = clk;
  2148. omap_pwt_reset(s);
  2149. memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
  2150. "omap-pwt", 0x800);
  2151. memory_region_add_subregion(system_memory, base, &s->iomem);
  2152. return s;
  2153. }
  2154. /* Real-time Clock module */
  2155. struct omap_rtc_s {
  2156. MemoryRegion iomem;
  2157. qemu_irq irq;
  2158. qemu_irq alarm;
  2159. QEMUTimer *clk;
  2160. uint8_t interrupts;
  2161. uint8_t status;
  2162. int16_t comp_reg;
  2163. int running;
  2164. int pm_am;
  2165. int auto_comp;
  2166. int round;
  2167. struct tm alarm_tm;
  2168. time_t alarm_ti;
  2169. struct tm current_tm;
  2170. time_t ti;
  2171. uint64_t tick;
  2172. };
  2173. static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
  2174. {
  2175. /* s->alarm is level-triggered */
  2176. qemu_set_irq(s->alarm, (s->status >> 6) & 1);
  2177. }
  2178. static void omap_rtc_alarm_update(struct omap_rtc_s *s)
  2179. {
  2180. s->alarm_ti = mktimegm(&s->alarm_tm);
  2181. if (s->alarm_ti == -1) {
  2182. qemu_log_mask(LOG_GUEST_ERROR, "%s: conversion failed\n", __func__);
  2183. }
  2184. }
  2185. static uint64_t omap_rtc_read(void *opaque, hwaddr addr, unsigned size)
  2186. {
  2187. struct omap_rtc_s *s = opaque;
  2188. int offset = addr & OMAP_MPUI_REG_MASK;
  2189. uint8_t i;
  2190. if (size != 1) {
  2191. return omap_badwidth_read8(opaque, addr);
  2192. }
  2193. switch (offset) {
  2194. case 0x00: /* SECONDS_REG */
  2195. return to_bcd(s->current_tm.tm_sec);
  2196. case 0x04: /* MINUTES_REG */
  2197. return to_bcd(s->current_tm.tm_min);
  2198. case 0x08: /* HOURS_REG */
  2199. if (s->pm_am)
  2200. return ((s->current_tm.tm_hour > 11) << 7) |
  2201. to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
  2202. else
  2203. return to_bcd(s->current_tm.tm_hour);
  2204. case 0x0c: /* DAYS_REG */
  2205. return to_bcd(s->current_tm.tm_mday);
  2206. case 0x10: /* MONTHS_REG */
  2207. return to_bcd(s->current_tm.tm_mon + 1);
  2208. case 0x14: /* YEARS_REG */
  2209. return to_bcd(s->current_tm.tm_year % 100);
  2210. case 0x18: /* WEEK_REG */
  2211. return s->current_tm.tm_wday;
  2212. case 0x20: /* ALARM_SECONDS_REG */
  2213. return to_bcd(s->alarm_tm.tm_sec);
  2214. case 0x24: /* ALARM_MINUTES_REG */
  2215. return to_bcd(s->alarm_tm.tm_min);
  2216. case 0x28: /* ALARM_HOURS_REG */
  2217. if (s->pm_am)
  2218. return ((s->alarm_tm.tm_hour > 11) << 7) |
  2219. to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
  2220. else
  2221. return to_bcd(s->alarm_tm.tm_hour);
  2222. case 0x2c: /* ALARM_DAYS_REG */
  2223. return to_bcd(s->alarm_tm.tm_mday);
  2224. case 0x30: /* ALARM_MONTHS_REG */
  2225. return to_bcd(s->alarm_tm.tm_mon + 1);
  2226. case 0x34: /* ALARM_YEARS_REG */
  2227. return to_bcd(s->alarm_tm.tm_year % 100);
  2228. case 0x40: /* RTC_CTRL_REG */
  2229. return (s->pm_am << 3) | (s->auto_comp << 2) |
  2230. (s->round << 1) | s->running;
  2231. case 0x44: /* RTC_STATUS_REG */
  2232. i = s->status;
  2233. s->status &= ~0x3d;
  2234. return i;
  2235. case 0x48: /* RTC_INTERRUPTS_REG */
  2236. return s->interrupts;
  2237. case 0x4c: /* RTC_COMP_LSB_REG */
  2238. return ((uint16_t) s->comp_reg) & 0xff;
  2239. case 0x50: /* RTC_COMP_MSB_REG */
  2240. return ((uint16_t) s->comp_reg) >> 8;
  2241. }
  2242. OMAP_BAD_REG(addr);
  2243. return 0;
  2244. }
  2245. static void omap_rtc_write(void *opaque, hwaddr addr,
  2246. uint64_t value, unsigned size)
  2247. {
  2248. struct omap_rtc_s *s = opaque;
  2249. int offset = addr & OMAP_MPUI_REG_MASK;
  2250. struct tm new_tm;
  2251. time_t ti[2];
  2252. if (size != 1) {
  2253. omap_badwidth_write8(opaque, addr, value);
  2254. return;
  2255. }
  2256. switch (offset) {
  2257. case 0x00: /* SECONDS_REG */
  2258. s->ti -= s->current_tm.tm_sec;
  2259. s->ti += from_bcd(value);
  2260. return;
  2261. case 0x04: /* MINUTES_REG */
  2262. s->ti -= s->current_tm.tm_min * 60;
  2263. s->ti += from_bcd(value) * 60;
  2264. return;
  2265. case 0x08: /* HOURS_REG */
  2266. s->ti -= s->current_tm.tm_hour * 3600;
  2267. if (s->pm_am) {
  2268. s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
  2269. s->ti += ((value >> 7) & 1) * 43200;
  2270. } else
  2271. s->ti += from_bcd(value & 0x3f) * 3600;
  2272. return;
  2273. case 0x0c: /* DAYS_REG */
  2274. s->ti -= s->current_tm.tm_mday * 86400;
  2275. s->ti += from_bcd(value) * 86400;
  2276. return;
  2277. case 0x10: /* MONTHS_REG */
  2278. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2279. new_tm.tm_mon = from_bcd(value);
  2280. ti[0] = mktimegm(&s->current_tm);
  2281. ti[1] = mktimegm(&new_tm);
  2282. if (ti[0] != -1 && ti[1] != -1) {
  2283. s->ti -= ti[0];
  2284. s->ti += ti[1];
  2285. } else {
  2286. /* A less accurate version */
  2287. s->ti -= s->current_tm.tm_mon * 2592000;
  2288. s->ti += from_bcd(value) * 2592000;
  2289. }
  2290. return;
  2291. case 0x14: /* YEARS_REG */
  2292. memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
  2293. new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
  2294. ti[0] = mktimegm(&s->current_tm);
  2295. ti[1] = mktimegm(&new_tm);
  2296. if (ti[0] != -1 && ti[1] != -1) {
  2297. s->ti -= ti[0];
  2298. s->ti += ti[1];
  2299. } else {
  2300. /* A less accurate version */
  2301. s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
  2302. s->ti += (time_t)from_bcd(value) * 31536000;
  2303. }
  2304. return;
  2305. case 0x18: /* WEEK_REG */
  2306. return; /* Ignored */
  2307. case 0x20: /* ALARM_SECONDS_REG */
  2308. s->alarm_tm.tm_sec = from_bcd(value);
  2309. omap_rtc_alarm_update(s);
  2310. return;
  2311. case 0x24: /* ALARM_MINUTES_REG */
  2312. s->alarm_tm.tm_min = from_bcd(value);
  2313. omap_rtc_alarm_update(s);
  2314. return;
  2315. case 0x28: /* ALARM_HOURS_REG */
  2316. if (s->pm_am)
  2317. s->alarm_tm.tm_hour =
  2318. ((from_bcd(value & 0x3f)) % 12) +
  2319. ((value >> 7) & 1) * 12;
  2320. else
  2321. s->alarm_tm.tm_hour = from_bcd(value);
  2322. omap_rtc_alarm_update(s);
  2323. return;
  2324. case 0x2c: /* ALARM_DAYS_REG */
  2325. s->alarm_tm.tm_mday = from_bcd(value);
  2326. omap_rtc_alarm_update(s);
  2327. return;
  2328. case 0x30: /* ALARM_MONTHS_REG */
  2329. s->alarm_tm.tm_mon = from_bcd(value);
  2330. omap_rtc_alarm_update(s);
  2331. return;
  2332. case 0x34: /* ALARM_YEARS_REG */
  2333. s->alarm_tm.tm_year = from_bcd(value);
  2334. omap_rtc_alarm_update(s);
  2335. return;
  2336. case 0x40: /* RTC_CTRL_REG */
  2337. s->pm_am = (value >> 3) & 1;
  2338. s->auto_comp = (value >> 2) & 1;
  2339. s->round = (value >> 1) & 1;
  2340. s->running = value & 1;
  2341. s->status &= 0xfd;
  2342. s->status |= s->running << 1;
  2343. return;
  2344. case 0x44: /* RTC_STATUS_REG */
  2345. s->status &= ~((value & 0xc0) ^ 0x80);
  2346. omap_rtc_interrupts_update(s);
  2347. return;
  2348. case 0x48: /* RTC_INTERRUPTS_REG */
  2349. s->interrupts = value;
  2350. return;
  2351. case 0x4c: /* RTC_COMP_LSB_REG */
  2352. s->comp_reg &= 0xff00;
  2353. s->comp_reg |= 0x00ff & value;
  2354. return;
  2355. case 0x50: /* RTC_COMP_MSB_REG */
  2356. s->comp_reg &= 0x00ff;
  2357. s->comp_reg |= 0xff00 & (value << 8);
  2358. return;
  2359. default:
  2360. OMAP_BAD_REG(addr);
  2361. return;
  2362. }
  2363. }
  2364. static const MemoryRegionOps omap_rtc_ops = {
  2365. .read = omap_rtc_read,
  2366. .write = omap_rtc_write,
  2367. .endianness = DEVICE_NATIVE_ENDIAN,
  2368. };
  2369. static void omap_rtc_tick(void *opaque)
  2370. {
  2371. struct omap_rtc_s *s = opaque;
  2372. if (s->round) {
  2373. /* Round to nearest full minute. */
  2374. if (s->current_tm.tm_sec < 30)
  2375. s->ti -= s->current_tm.tm_sec;
  2376. else
  2377. s->ti += 60 - s->current_tm.tm_sec;
  2378. s->round = 0;
  2379. }
  2380. localtime_r(&s->ti, &s->current_tm);
  2381. if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
  2382. s->status |= 0x40;
  2383. omap_rtc_interrupts_update(s);
  2384. }
  2385. if (s->interrupts & 0x04)
  2386. switch (s->interrupts & 3) {
  2387. case 0:
  2388. s->status |= 0x04;
  2389. qemu_irq_pulse(s->irq);
  2390. break;
  2391. case 1:
  2392. if (s->current_tm.tm_sec)
  2393. break;
  2394. s->status |= 0x08;
  2395. qemu_irq_pulse(s->irq);
  2396. break;
  2397. case 2:
  2398. if (s->current_tm.tm_sec || s->current_tm.tm_min)
  2399. break;
  2400. s->status |= 0x10;
  2401. qemu_irq_pulse(s->irq);
  2402. break;
  2403. case 3:
  2404. if (s->current_tm.tm_sec ||
  2405. s->current_tm.tm_min || s->current_tm.tm_hour)
  2406. break;
  2407. s->status |= 0x20;
  2408. qemu_irq_pulse(s->irq);
  2409. break;
  2410. }
  2411. /* Move on */
  2412. if (s->running)
  2413. s->ti ++;
  2414. s->tick += 1000;
  2415. /*
  2416. * Every full hour add a rough approximation of the compensation
  2417. * register to the 32kHz Timer (which drives the RTC) value.
  2418. */
  2419. if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
  2420. s->tick += s->comp_reg * 1000 / 32768;
  2421. timer_mod(s->clk, s->tick);
  2422. }
  2423. static void omap_rtc_reset(struct omap_rtc_s *s)
  2424. {
  2425. struct tm tm;
  2426. s->interrupts = 0;
  2427. s->comp_reg = 0;
  2428. s->running = 0;
  2429. s->pm_am = 0;
  2430. s->auto_comp = 0;
  2431. s->round = 0;
  2432. s->tick = qemu_clock_get_ms(rtc_clock);
  2433. memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
  2434. s->alarm_tm.tm_mday = 0x01;
  2435. s->status = 1 << 7;
  2436. qemu_get_timedate(&tm, 0);
  2437. s->ti = mktimegm(&tm);
  2438. omap_rtc_alarm_update(s);
  2439. omap_rtc_tick(s);
  2440. }
  2441. static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
  2442. hwaddr base,
  2443. qemu_irq timerirq, qemu_irq alarmirq,
  2444. omap_clk clk)
  2445. {
  2446. struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
  2447. s->irq = timerirq;
  2448. s->alarm = alarmirq;
  2449. s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
  2450. omap_rtc_reset(s);
  2451. memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
  2452. "omap-rtc", 0x800);
  2453. memory_region_add_subregion(system_memory, base, &s->iomem);
  2454. return s;
  2455. }
  2456. /* Multi-channel Buffered Serial Port interfaces */
  2457. struct omap_mcbsp_s {
  2458. MemoryRegion iomem;
  2459. qemu_irq txirq;
  2460. qemu_irq rxirq;
  2461. qemu_irq txdrq;
  2462. qemu_irq rxdrq;
  2463. uint16_t spcr[2];
  2464. uint16_t rcr[2];
  2465. uint16_t xcr[2];
  2466. uint16_t srgr[2];
  2467. uint16_t mcr[2];
  2468. uint16_t pcr;
  2469. uint16_t rcer[8];
  2470. uint16_t xcer[8];
  2471. int tx_rate;
  2472. int rx_rate;
  2473. int tx_req;
  2474. int rx_req;
  2475. I2SCodec *codec;
  2476. QEMUTimer *source_timer;
  2477. QEMUTimer *sink_timer;
  2478. };
  2479. static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
  2480. {
  2481. int irq;
  2482. switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
  2483. case 0:
  2484. irq = (s->spcr[0] >> 1) & 1; /* RRDY */
  2485. break;
  2486. case 3:
  2487. irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
  2488. break;
  2489. default:
  2490. irq = 0;
  2491. break;
  2492. }
  2493. if (irq)
  2494. qemu_irq_pulse(s->rxirq);
  2495. switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
  2496. case 0:
  2497. irq = (s->spcr[1] >> 1) & 1; /* XRDY */
  2498. break;
  2499. case 3:
  2500. irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
  2501. break;
  2502. default:
  2503. irq = 0;
  2504. break;
  2505. }
  2506. if (irq)
  2507. qemu_irq_pulse(s->txirq);
  2508. }
  2509. static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
  2510. {
  2511. if ((s->spcr[0] >> 1) & 1) /* RRDY */
  2512. s->spcr[0] |= 1 << 2; /* RFULL */
  2513. s->spcr[0] |= 1 << 1; /* RRDY */
  2514. qemu_irq_raise(s->rxdrq);
  2515. omap_mcbsp_intr_update(s);
  2516. }
  2517. static void omap_mcbsp_source_tick(void *opaque)
  2518. {
  2519. struct omap_mcbsp_s *s = opaque;
  2520. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2521. if (!s->rx_rate)
  2522. return;
  2523. if (s->rx_req) {
  2524. qemu_log_mask(LOG_GUEST_ERROR, "%s: Rx FIFO overrun\n", __func__);
  2525. }
  2526. s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
  2527. omap_mcbsp_rx_newdata(s);
  2528. timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  2529. NANOSECONDS_PER_SECOND);
  2530. }
  2531. static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
  2532. {
  2533. if (!s->codec || !s->codec->rts)
  2534. omap_mcbsp_source_tick(s);
  2535. else if (s->codec->in.len) {
  2536. s->rx_req = s->codec->in.len;
  2537. omap_mcbsp_rx_newdata(s);
  2538. }
  2539. }
  2540. static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
  2541. {
  2542. timer_del(s->source_timer);
  2543. }
  2544. static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
  2545. {
  2546. s->spcr[0] &= ~(1 << 1); /* RRDY */
  2547. qemu_irq_lower(s->rxdrq);
  2548. omap_mcbsp_intr_update(s);
  2549. }
  2550. static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
  2551. {
  2552. s->spcr[1] |= 1 << 1; /* XRDY */
  2553. qemu_irq_raise(s->txdrq);
  2554. omap_mcbsp_intr_update(s);
  2555. }
  2556. static void omap_mcbsp_sink_tick(void *opaque)
  2557. {
  2558. struct omap_mcbsp_s *s = opaque;
  2559. static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
  2560. if (!s->tx_rate)
  2561. return;
  2562. if (s->tx_req) {
  2563. qemu_log_mask(LOG_GUEST_ERROR, "%s: Tx FIFO underrun\n", __func__);
  2564. }
  2565. s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
  2566. omap_mcbsp_tx_newdata(s);
  2567. timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  2568. NANOSECONDS_PER_SECOND);
  2569. }
  2570. static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
  2571. {
  2572. if (!s->codec || !s->codec->cts)
  2573. omap_mcbsp_sink_tick(s);
  2574. else if (s->codec->out.size) {
  2575. s->tx_req = s->codec->out.size;
  2576. omap_mcbsp_tx_newdata(s);
  2577. }
  2578. }
  2579. static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
  2580. {
  2581. s->spcr[1] &= ~(1 << 1); /* XRDY */
  2582. qemu_irq_lower(s->txdrq);
  2583. omap_mcbsp_intr_update(s);
  2584. if (s->codec && s->codec->cts)
  2585. s->codec->tx_swallow(s->codec->opaque);
  2586. }
  2587. static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
  2588. {
  2589. s->tx_req = 0;
  2590. omap_mcbsp_tx_done(s);
  2591. timer_del(s->sink_timer);
  2592. }
  2593. static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
  2594. {
  2595. int prev_rx_rate, prev_tx_rate;
  2596. int rx_rate = 0, tx_rate = 0;
  2597. int cpu_rate = 1500000; /* XXX */
  2598. /* TODO: check CLKSTP bit */
  2599. if (s->spcr[1] & (1 << 6)) { /* GRST */
  2600. if (s->spcr[0] & (1 << 0)) { /* RRST */
  2601. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2602. (s->pcr & (1 << 8))) { /* CLKRM */
  2603. if (~s->pcr & (1 << 7)) /* SCLKME */
  2604. rx_rate = cpu_rate /
  2605. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2606. } else
  2607. if (s->codec)
  2608. rx_rate = s->codec->rx_rate;
  2609. }
  2610. if (s->spcr[1] & (1 << 0)) { /* XRST */
  2611. if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
  2612. (s->pcr & (1 << 9))) { /* CLKXM */
  2613. if (~s->pcr & (1 << 7)) /* SCLKME */
  2614. tx_rate = cpu_rate /
  2615. ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
  2616. } else
  2617. if (s->codec)
  2618. tx_rate = s->codec->tx_rate;
  2619. }
  2620. }
  2621. prev_tx_rate = s->tx_rate;
  2622. prev_rx_rate = s->rx_rate;
  2623. s->tx_rate = tx_rate;
  2624. s->rx_rate = rx_rate;
  2625. if (s->codec)
  2626. s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
  2627. if (!prev_tx_rate && tx_rate)
  2628. omap_mcbsp_tx_start(s);
  2629. else if (s->tx_rate && !tx_rate)
  2630. omap_mcbsp_tx_stop(s);
  2631. if (!prev_rx_rate && rx_rate)
  2632. omap_mcbsp_rx_start(s);
  2633. else if (prev_tx_rate && !tx_rate)
  2634. omap_mcbsp_rx_stop(s);
  2635. }
  2636. static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
  2637. unsigned size)
  2638. {
  2639. struct omap_mcbsp_s *s = opaque;
  2640. int offset = addr & OMAP_MPUI_REG_MASK;
  2641. uint16_t ret;
  2642. if (size != 2) {
  2643. return omap_badwidth_read16(opaque, addr);
  2644. }
  2645. switch (offset) {
  2646. case 0x00: /* DRR2 */
  2647. if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
  2648. return 0x0000;
  2649. /* Fall through. */
  2650. case 0x02: /* DRR1 */
  2651. if (s->rx_req < 2) {
  2652. qemu_log_mask(LOG_GUEST_ERROR, "%s: Rx FIFO underrun\n", __func__);
  2653. omap_mcbsp_rx_done(s);
  2654. } else {
  2655. s->tx_req -= 2;
  2656. if (s->codec && s->codec->in.len >= 2) {
  2657. ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
  2658. ret |= s->codec->in.fifo[s->codec->in.start ++];
  2659. s->codec->in.len -= 2;
  2660. } else
  2661. ret = 0x0000;
  2662. if (!s->tx_req)
  2663. omap_mcbsp_rx_done(s);
  2664. return ret;
  2665. }
  2666. return 0x0000;
  2667. case 0x04: /* DXR2 */
  2668. case 0x06: /* DXR1 */
  2669. return 0x0000;
  2670. case 0x08: /* SPCR2 */
  2671. return s->spcr[1];
  2672. case 0x0a: /* SPCR1 */
  2673. return s->spcr[0];
  2674. case 0x0c: /* RCR2 */
  2675. return s->rcr[1];
  2676. case 0x0e: /* RCR1 */
  2677. return s->rcr[0];
  2678. case 0x10: /* XCR2 */
  2679. return s->xcr[1];
  2680. case 0x12: /* XCR1 */
  2681. return s->xcr[0];
  2682. case 0x14: /* SRGR2 */
  2683. return s->srgr[1];
  2684. case 0x16: /* SRGR1 */
  2685. return s->srgr[0];
  2686. case 0x18: /* MCR2 */
  2687. return s->mcr[1];
  2688. case 0x1a: /* MCR1 */
  2689. return s->mcr[0];
  2690. case 0x1c: /* RCERA */
  2691. return s->rcer[0];
  2692. case 0x1e: /* RCERB */
  2693. return s->rcer[1];
  2694. case 0x20: /* XCERA */
  2695. return s->xcer[0];
  2696. case 0x22: /* XCERB */
  2697. return s->xcer[1];
  2698. case 0x24: /* PCR0 */
  2699. return s->pcr;
  2700. case 0x26: /* RCERC */
  2701. return s->rcer[2];
  2702. case 0x28: /* RCERD */
  2703. return s->rcer[3];
  2704. case 0x2a: /* XCERC */
  2705. return s->xcer[2];
  2706. case 0x2c: /* XCERD */
  2707. return s->xcer[3];
  2708. case 0x2e: /* RCERE */
  2709. return s->rcer[4];
  2710. case 0x30: /* RCERF */
  2711. return s->rcer[5];
  2712. case 0x32: /* XCERE */
  2713. return s->xcer[4];
  2714. case 0x34: /* XCERF */
  2715. return s->xcer[5];
  2716. case 0x36: /* RCERG */
  2717. return s->rcer[6];
  2718. case 0x38: /* RCERH */
  2719. return s->rcer[7];
  2720. case 0x3a: /* XCERG */
  2721. return s->xcer[6];
  2722. case 0x3c: /* XCERH */
  2723. return s->xcer[7];
  2724. }
  2725. OMAP_BAD_REG(addr);
  2726. return 0;
  2727. }
  2728. static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
  2729. uint32_t value)
  2730. {
  2731. struct omap_mcbsp_s *s = opaque;
  2732. int offset = addr & OMAP_MPUI_REG_MASK;
  2733. switch (offset) {
  2734. case 0x00: /* DRR2 */
  2735. case 0x02: /* DRR1 */
  2736. OMAP_RO_REG(addr);
  2737. return;
  2738. case 0x04: /* DXR2 */
  2739. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2740. return;
  2741. /* Fall through. */
  2742. case 0x06: /* DXR1 */
  2743. if (s->tx_req > 1) {
  2744. s->tx_req -= 2;
  2745. if (s->codec && s->codec->cts) {
  2746. s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
  2747. s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
  2748. }
  2749. if (s->tx_req < 2)
  2750. omap_mcbsp_tx_done(s);
  2751. } else {
  2752. qemu_log_mask(LOG_GUEST_ERROR, "%s: Tx FIFO overrun\n", __func__);
  2753. }
  2754. return;
  2755. case 0x08: /* SPCR2 */
  2756. s->spcr[1] &= 0x0002;
  2757. s->spcr[1] |= 0x03f9 & value;
  2758. s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
  2759. if (~value & 1) /* XRST */
  2760. s->spcr[1] &= ~6;
  2761. omap_mcbsp_req_update(s);
  2762. return;
  2763. case 0x0a: /* SPCR1 */
  2764. s->spcr[0] &= 0x0006;
  2765. s->spcr[0] |= 0xf8f9 & value;
  2766. if (value & (1 << 15)) { /* DLB */
  2767. qemu_log_mask(LOG_UNIMP,
  2768. "%s: Digital Loopback mode enable attempt\n",
  2769. __func__);
  2770. }
  2771. if (~value & 1) { /* RRST */
  2772. s->spcr[0] &= ~6;
  2773. s->rx_req = 0;
  2774. omap_mcbsp_rx_done(s);
  2775. }
  2776. omap_mcbsp_req_update(s);
  2777. return;
  2778. case 0x0c: /* RCR2 */
  2779. s->rcr[1] = value & 0xffff;
  2780. return;
  2781. case 0x0e: /* RCR1 */
  2782. s->rcr[0] = value & 0x7fe0;
  2783. return;
  2784. case 0x10: /* XCR2 */
  2785. s->xcr[1] = value & 0xffff;
  2786. return;
  2787. case 0x12: /* XCR1 */
  2788. s->xcr[0] = value & 0x7fe0;
  2789. return;
  2790. case 0x14: /* SRGR2 */
  2791. s->srgr[1] = value & 0xffff;
  2792. omap_mcbsp_req_update(s);
  2793. return;
  2794. case 0x16: /* SRGR1 */
  2795. s->srgr[0] = value & 0xffff;
  2796. omap_mcbsp_req_update(s);
  2797. return;
  2798. case 0x18: /* MCR2 */
  2799. s->mcr[1] = value & 0x03e3;
  2800. if (value & 3) { /* XMCM */
  2801. qemu_log_mask(LOG_UNIMP,
  2802. "%s: Tx channel selection mode enable attempt\n",
  2803. __func__);
  2804. }
  2805. return;
  2806. case 0x1a: /* MCR1 */
  2807. s->mcr[0] = value & 0x03e1;
  2808. if (value & 1) { /* RMCM */
  2809. qemu_log_mask(LOG_UNIMP,
  2810. "%s: Rx channel selection mode enable attempt\n",
  2811. __func__);
  2812. }
  2813. return;
  2814. case 0x1c: /* RCERA */
  2815. s->rcer[0] = value & 0xffff;
  2816. return;
  2817. case 0x1e: /* RCERB */
  2818. s->rcer[1] = value & 0xffff;
  2819. return;
  2820. case 0x20: /* XCERA */
  2821. s->xcer[0] = value & 0xffff;
  2822. return;
  2823. case 0x22: /* XCERB */
  2824. s->xcer[1] = value & 0xffff;
  2825. return;
  2826. case 0x24: /* PCR0 */
  2827. s->pcr = value & 0x7faf;
  2828. return;
  2829. case 0x26: /* RCERC */
  2830. s->rcer[2] = value & 0xffff;
  2831. return;
  2832. case 0x28: /* RCERD */
  2833. s->rcer[3] = value & 0xffff;
  2834. return;
  2835. case 0x2a: /* XCERC */
  2836. s->xcer[2] = value & 0xffff;
  2837. return;
  2838. case 0x2c: /* XCERD */
  2839. s->xcer[3] = value & 0xffff;
  2840. return;
  2841. case 0x2e: /* RCERE */
  2842. s->rcer[4] = value & 0xffff;
  2843. return;
  2844. case 0x30: /* RCERF */
  2845. s->rcer[5] = value & 0xffff;
  2846. return;
  2847. case 0x32: /* XCERE */
  2848. s->xcer[4] = value & 0xffff;
  2849. return;
  2850. case 0x34: /* XCERF */
  2851. s->xcer[5] = value & 0xffff;
  2852. return;
  2853. case 0x36: /* RCERG */
  2854. s->rcer[6] = value & 0xffff;
  2855. return;
  2856. case 0x38: /* RCERH */
  2857. s->rcer[7] = value & 0xffff;
  2858. return;
  2859. case 0x3a: /* XCERG */
  2860. s->xcer[6] = value & 0xffff;
  2861. return;
  2862. case 0x3c: /* XCERH */
  2863. s->xcer[7] = value & 0xffff;
  2864. return;
  2865. }
  2866. OMAP_BAD_REG(addr);
  2867. }
  2868. static void omap_mcbsp_writew(void *opaque, hwaddr addr,
  2869. uint32_t value)
  2870. {
  2871. struct omap_mcbsp_s *s = opaque;
  2872. int offset = addr & OMAP_MPUI_REG_MASK;
  2873. if (offset == 0x04) { /* DXR */
  2874. if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
  2875. return;
  2876. if (s->tx_req > 3) {
  2877. s->tx_req -= 4;
  2878. if (s->codec && s->codec->cts) {
  2879. s->codec->out.fifo[s->codec->out.len ++] =
  2880. (value >> 24) & 0xff;
  2881. s->codec->out.fifo[s->codec->out.len ++] =
  2882. (value >> 16) & 0xff;
  2883. s->codec->out.fifo[s->codec->out.len ++] =
  2884. (value >> 8) & 0xff;
  2885. s->codec->out.fifo[s->codec->out.len ++] =
  2886. (value >> 0) & 0xff;
  2887. }
  2888. if (s->tx_req < 4)
  2889. omap_mcbsp_tx_done(s);
  2890. } else {
  2891. qemu_log_mask(LOG_GUEST_ERROR, "%s: Tx FIFO overrun\n", __func__);
  2892. }
  2893. return;
  2894. }
  2895. omap_badwidth_write16(opaque, addr, value);
  2896. }
  2897. static void omap_mcbsp_write(void *opaque, hwaddr addr,
  2898. uint64_t value, unsigned size)
  2899. {
  2900. switch (size) {
  2901. case 2:
  2902. omap_mcbsp_writeh(opaque, addr, value);
  2903. break;
  2904. case 4:
  2905. omap_mcbsp_writew(opaque, addr, value);
  2906. break;
  2907. default:
  2908. omap_badwidth_write16(opaque, addr, value);
  2909. }
  2910. }
  2911. static const MemoryRegionOps omap_mcbsp_ops = {
  2912. .read = omap_mcbsp_read,
  2913. .write = omap_mcbsp_write,
  2914. .endianness = DEVICE_NATIVE_ENDIAN,
  2915. };
  2916. static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
  2917. {
  2918. memset(&s->spcr, 0, sizeof(s->spcr));
  2919. memset(&s->rcr, 0, sizeof(s->rcr));
  2920. memset(&s->xcr, 0, sizeof(s->xcr));
  2921. s->srgr[0] = 0x0001;
  2922. s->srgr[1] = 0x2000;
  2923. memset(&s->mcr, 0, sizeof(s->mcr));
  2924. memset(&s->pcr, 0, sizeof(s->pcr));
  2925. memset(&s->rcer, 0, sizeof(s->rcer));
  2926. memset(&s->xcer, 0, sizeof(s->xcer));
  2927. s->tx_req = 0;
  2928. s->rx_req = 0;
  2929. s->tx_rate = 0;
  2930. s->rx_rate = 0;
  2931. timer_del(s->source_timer);
  2932. timer_del(s->sink_timer);
  2933. }
  2934. static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
  2935. hwaddr base,
  2936. qemu_irq txirq, qemu_irq rxirq,
  2937. qemu_irq *dma, omap_clk clk)
  2938. {
  2939. struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
  2940. s->txirq = txirq;
  2941. s->rxirq = rxirq;
  2942. s->txdrq = dma[0];
  2943. s->rxdrq = dma[1];
  2944. s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
  2945. s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
  2946. omap_mcbsp_reset(s);
  2947. memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
  2948. memory_region_add_subregion(system_memory, base, &s->iomem);
  2949. return s;
  2950. }
  2951. static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
  2952. {
  2953. struct omap_mcbsp_s *s = opaque;
  2954. if (s->rx_rate) {
  2955. s->rx_req = s->codec->in.len;
  2956. omap_mcbsp_rx_newdata(s);
  2957. }
  2958. }
  2959. static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
  2960. {
  2961. struct omap_mcbsp_s *s = opaque;
  2962. if (s->tx_rate) {
  2963. s->tx_req = s->codec->out.size;
  2964. omap_mcbsp_tx_newdata(s);
  2965. }
  2966. }
  2967. void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
  2968. {
  2969. s->codec = slave;
  2970. slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
  2971. slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
  2972. }
  2973. /* LED Pulse Generators */
  2974. struct omap_lpg_s {
  2975. MemoryRegion iomem;
  2976. QEMUTimer *tm;
  2977. uint8_t control;
  2978. uint8_t power;
  2979. int64_t on;
  2980. int64_t period;
  2981. int clk;
  2982. int cycle;
  2983. };
  2984. static void omap_lpg_tick(void *opaque)
  2985. {
  2986. struct omap_lpg_s *s = opaque;
  2987. if (s->cycle)
  2988. timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
  2989. else
  2990. timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
  2991. s->cycle = !s->cycle;
  2992. trace_omap1_lpg_led(s->cycle ? "on" : "off");
  2993. }
  2994. static void omap_lpg_update(struct omap_lpg_s *s)
  2995. {
  2996. int64_t on, period = 1, ticks = 1000;
  2997. static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
  2998. if (~s->control & (1 << 6)) /* LPGRES */
  2999. on = 0;
  3000. else if (s->control & (1 << 7)) /* PERM_ON */
  3001. on = period;
  3002. else {
  3003. period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
  3004. 256 / 32);
  3005. on = (s->clk && s->power) ? muldiv64(ticks,
  3006. per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
  3007. }
  3008. timer_del(s->tm);
  3009. if (on == period && s->on < s->period) {
  3010. trace_omap1_lpg_led("on");
  3011. } else if (on == 0 && s->on) {
  3012. trace_omap1_lpg_led("off");
  3013. } else if (on && (on != s->on || period != s->period)) {
  3014. s->cycle = 0;
  3015. s->on = on;
  3016. s->period = period;
  3017. omap_lpg_tick(s);
  3018. return;
  3019. }
  3020. s->on = on;
  3021. s->period = period;
  3022. }
  3023. static void omap_lpg_reset(struct omap_lpg_s *s)
  3024. {
  3025. s->control = 0x00;
  3026. s->power = 0x00;
  3027. s->clk = 1;
  3028. omap_lpg_update(s);
  3029. }
  3030. static uint64_t omap_lpg_read(void *opaque, hwaddr addr, unsigned size)
  3031. {
  3032. struct omap_lpg_s *s = opaque;
  3033. int offset = addr & OMAP_MPUI_REG_MASK;
  3034. if (size != 1) {
  3035. return omap_badwidth_read8(opaque, addr);
  3036. }
  3037. switch (offset) {
  3038. case 0x00: /* LCR */
  3039. return s->control;
  3040. case 0x04: /* PMR */
  3041. return s->power;
  3042. }
  3043. OMAP_BAD_REG(addr);
  3044. return 0;
  3045. }
  3046. static void omap_lpg_write(void *opaque, hwaddr addr,
  3047. uint64_t value, unsigned size)
  3048. {
  3049. struct omap_lpg_s *s = opaque;
  3050. int offset = addr & OMAP_MPUI_REG_MASK;
  3051. if (size != 1) {
  3052. omap_badwidth_write8(opaque, addr, value);
  3053. return;
  3054. }
  3055. switch (offset) {
  3056. case 0x00: /* LCR */
  3057. if (~value & (1 << 6)) /* LPGRES */
  3058. omap_lpg_reset(s);
  3059. s->control = value & 0xff;
  3060. omap_lpg_update(s);
  3061. return;
  3062. case 0x04: /* PMR */
  3063. s->power = value & 0x01;
  3064. omap_lpg_update(s);
  3065. return;
  3066. default:
  3067. OMAP_BAD_REG(addr);
  3068. return;
  3069. }
  3070. }
  3071. static const MemoryRegionOps omap_lpg_ops = {
  3072. .read = omap_lpg_read,
  3073. .write = omap_lpg_write,
  3074. .endianness = DEVICE_NATIVE_ENDIAN,
  3075. };
  3076. static void omap_lpg_clk_update(void *opaque, int line, int on)
  3077. {
  3078. struct omap_lpg_s *s = opaque;
  3079. s->clk = on;
  3080. omap_lpg_update(s);
  3081. }
  3082. static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
  3083. hwaddr base, omap_clk clk)
  3084. {
  3085. struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
  3086. s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
  3087. omap_lpg_reset(s);
  3088. memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
  3089. memory_region_add_subregion(system_memory, base, &s->iomem);
  3090. omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
  3091. return s;
  3092. }
  3093. /* MPUI Peripheral Bridge configuration */
  3094. static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
  3095. unsigned size)
  3096. {
  3097. if (size != 2) {
  3098. return omap_badwidth_read16(opaque, addr);
  3099. }
  3100. if (addr == OMAP_MPUI_BASE) /* CMR */
  3101. return 0xfe4d;
  3102. OMAP_BAD_REG(addr);
  3103. return 0;
  3104. }
  3105. static void omap_mpui_io_write(void *opaque, hwaddr addr,
  3106. uint64_t value, unsigned size)
  3107. {
  3108. /* FIXME: infinite loop */
  3109. omap_badwidth_write16(opaque, addr, value);
  3110. }
  3111. static const MemoryRegionOps omap_mpui_io_ops = {
  3112. .read = omap_mpui_io_read,
  3113. .write = omap_mpui_io_write,
  3114. .endianness = DEVICE_NATIVE_ENDIAN,
  3115. };
  3116. static void omap_setup_mpui_io(MemoryRegion *system_memory,
  3117. struct omap_mpu_state_s *mpu)
  3118. {
  3119. memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
  3120. "omap-mpui-io", 0x7fff);
  3121. memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
  3122. &mpu->mpui_io_iomem);
  3123. }
  3124. /* General chip reset */
  3125. static void omap1_mpu_reset(void *opaque)
  3126. {
  3127. struct omap_mpu_state_s *mpu = opaque;
  3128. omap_dma_reset(mpu->dma);
  3129. omap_mpu_timer_reset(mpu->timer[0]);
  3130. omap_mpu_timer_reset(mpu->timer[1]);
  3131. omap_mpu_timer_reset(mpu->timer[2]);
  3132. omap_wd_timer_reset(mpu->wdt);
  3133. omap_os_timer_reset(mpu->os_timer);
  3134. omap_lcdc_reset(mpu->lcd);
  3135. omap_ulpd_pm_reset(mpu);
  3136. omap_pin_cfg_reset(mpu);
  3137. omap_mpui_reset(mpu);
  3138. omap_tipb_bridge_reset(mpu->private_tipb);
  3139. omap_tipb_bridge_reset(mpu->public_tipb);
  3140. omap_dpll_reset(mpu->dpll[0]);
  3141. omap_dpll_reset(mpu->dpll[1]);
  3142. omap_dpll_reset(mpu->dpll[2]);
  3143. omap_uart_reset(mpu->uart[0]);
  3144. omap_uart_reset(mpu->uart[1]);
  3145. omap_uart_reset(mpu->uart[2]);
  3146. omap_mpuio_reset(mpu->mpuio);
  3147. omap_uwire_reset(mpu->microwire);
  3148. omap_pwl_reset(mpu->pwl);
  3149. omap_pwt_reset(mpu->pwt);
  3150. omap_rtc_reset(mpu->rtc);
  3151. omap_mcbsp_reset(mpu->mcbsp1);
  3152. omap_mcbsp_reset(mpu->mcbsp2);
  3153. omap_mcbsp_reset(mpu->mcbsp3);
  3154. omap_lpg_reset(mpu->led[0]);
  3155. omap_lpg_reset(mpu->led[1]);
  3156. omap_clkm_reset(mpu);
  3157. cpu_reset(CPU(mpu->cpu));
  3158. }
  3159. static const struct omap_map_s {
  3160. hwaddr phys_dsp;
  3161. hwaddr phys_mpu;
  3162. uint32_t size;
  3163. const char *name;
  3164. } omap15xx_dsp_mm[] = {
  3165. /* Strobe 0 */
  3166. { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
  3167. { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
  3168. { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
  3169. { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
  3170. { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
  3171. { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
  3172. { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
  3173. { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
  3174. { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
  3175. { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
  3176. { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
  3177. { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
  3178. { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
  3179. { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
  3180. { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
  3181. { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
  3182. { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
  3183. /* Strobe 1 */
  3184. { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
  3185. { 0 }
  3186. };
  3187. static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
  3188. const struct omap_map_s *map)
  3189. {
  3190. MemoryRegion *io;
  3191. for (; map->phys_dsp; map ++) {
  3192. io = g_new(MemoryRegion, 1);
  3193. memory_region_init_alias(io, NULL, map->name,
  3194. system_memory, map->phys_mpu, map->size);
  3195. memory_region_add_subregion(system_memory, map->phys_dsp, io);
  3196. }
  3197. }
  3198. void omap_mpu_wakeup(void *opaque, int irq, int req)
  3199. {
  3200. struct omap_mpu_state_s *mpu = opaque;
  3201. CPUState *cpu = CPU(mpu->cpu);
  3202. if (cpu->halted) {
  3203. cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
  3204. }
  3205. }
  3206. static const struct dma_irq_map omap1_dma_irq_map[] = {
  3207. { 0, OMAP_INT_DMA_CH0_6 },
  3208. { 0, OMAP_INT_DMA_CH1_7 },
  3209. { 0, OMAP_INT_DMA_CH2_8 },
  3210. { 0, OMAP_INT_DMA_CH3 },
  3211. { 0, OMAP_INT_DMA_CH4 },
  3212. { 0, OMAP_INT_DMA_CH5 },
  3213. { 1, OMAP_INT_1610_DMA_CH6 },
  3214. { 1, OMAP_INT_1610_DMA_CH7 },
  3215. { 1, OMAP_INT_1610_DMA_CH8 },
  3216. { 1, OMAP_INT_1610_DMA_CH9 },
  3217. { 1, OMAP_INT_1610_DMA_CH10 },
  3218. { 1, OMAP_INT_1610_DMA_CH11 },
  3219. { 1, OMAP_INT_1610_DMA_CH12 },
  3220. { 1, OMAP_INT_1610_DMA_CH13 },
  3221. { 1, OMAP_INT_1610_DMA_CH14 },
  3222. { 1, OMAP_INT_1610_DMA_CH15 }
  3223. };
  3224. /* DMA ports for OMAP1 */
  3225. static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
  3226. hwaddr addr)
  3227. {
  3228. return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
  3229. }
  3230. static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
  3231. hwaddr addr)
  3232. {
  3233. return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
  3234. addr);
  3235. }
  3236. static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
  3237. hwaddr addr)
  3238. {
  3239. return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
  3240. }
  3241. static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
  3242. hwaddr addr)
  3243. {
  3244. return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
  3245. }
  3246. static int omap_validate_local_addr(struct omap_mpu_state_s *s,
  3247. hwaddr addr)
  3248. {
  3249. return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
  3250. }
  3251. static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
  3252. hwaddr addr)
  3253. {
  3254. return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
  3255. }
  3256. struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
  3257. const char *cpu_type)
  3258. {
  3259. int i;
  3260. struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
  3261. qemu_irq dma_irqs[6];
  3262. DriveInfo *dinfo;
  3263. SysBusDevice *busdev;
  3264. MemoryRegion *system_memory = get_system_memory();
  3265. /* Core */
  3266. s->mpu_model = omap310;
  3267. s->cpu = ARM_CPU(cpu_create(cpu_type));
  3268. s->sdram_size = memory_region_size(dram);
  3269. s->sram_size = OMAP15XX_SRAM_SIZE;
  3270. s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
  3271. /* Clocks */
  3272. omap_clk_init(s);
  3273. /* Memory-mapped stuff */
  3274. memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
  3275. &error_fatal);
  3276. memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
  3277. omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
  3278. s->ih[0] = qdev_new("omap-intc");
  3279. qdev_prop_set_uint32(s->ih[0], "size", 0x100);
  3280. omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck"));
  3281. busdev = SYS_BUS_DEVICE(s->ih[0]);
  3282. sysbus_realize_and_unref(busdev, &error_fatal);
  3283. sysbus_connect_irq(busdev, 0,
  3284. qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
  3285. sysbus_connect_irq(busdev, 1,
  3286. qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
  3287. sysbus_mmio_map(busdev, 0, 0xfffecb00);
  3288. s->ih[1] = qdev_new("omap-intc");
  3289. qdev_prop_set_uint32(s->ih[1], "size", 0x800);
  3290. omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck"));
  3291. busdev = SYS_BUS_DEVICE(s->ih[1]);
  3292. sysbus_realize_and_unref(busdev, &error_fatal);
  3293. sysbus_connect_irq(busdev, 0,
  3294. qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
  3295. /* The second interrupt controller's FIQ output is not wired up */
  3296. sysbus_mmio_map(busdev, 0, 0xfffe0000);
  3297. for (i = 0; i < 6; i++) {
  3298. dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
  3299. omap1_dma_irq_map[i].intr);
  3300. }
  3301. s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
  3302. qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
  3303. s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
  3304. s->port[emiff ].addr_valid = omap_validate_emiff_addr;
  3305. s->port[emifs ].addr_valid = omap_validate_emifs_addr;
  3306. s->port[imif ].addr_valid = omap_validate_imif_addr;
  3307. s->port[tipb ].addr_valid = omap_validate_tipb_addr;
  3308. s->port[local ].addr_valid = omap_validate_local_addr;
  3309. s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
  3310. /* Register SDRAM and SRAM DMA ports for fast transfers. */
  3311. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
  3312. OMAP_EMIFF_BASE, s->sdram_size);
  3313. soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
  3314. OMAP_IMIF_BASE, s->sram_size);
  3315. s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
  3316. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
  3317. omap_findclk(s, "mputim_ck"));
  3318. s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
  3319. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
  3320. omap_findclk(s, "mputim_ck"));
  3321. s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
  3322. qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
  3323. omap_findclk(s, "mputim_ck"));
  3324. s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
  3325. qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
  3326. omap_findclk(s, "armwdt_ck"));
  3327. s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
  3328. qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
  3329. omap_findclk(s, "clk32-kHz"));
  3330. s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
  3331. qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
  3332. omap_dma_get_lcdch(s->dma),
  3333. omap_findclk(s, "lcd_ck"));
  3334. omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
  3335. omap_pin_cfg_init(system_memory, 0xfffe1000, s);
  3336. omap_id_init(system_memory, s);
  3337. omap_mpui_init(system_memory, 0xfffec900, s);
  3338. s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
  3339. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
  3340. omap_findclk(s, "tipb_ck"));
  3341. s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
  3342. qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
  3343. omap_findclk(s, "tipb_ck"));
  3344. omap_tcmi_init(system_memory, 0xfffecc00, s);
  3345. s->uart[0] = omap_uart_init(0xfffb0000,
  3346. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
  3347. omap_findclk(s, "uart1_ck"),
  3348. omap_findclk(s, "uart1_ck"),
  3349. s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
  3350. "uart1",
  3351. serial_hd(0));
  3352. s->uart[1] = omap_uart_init(0xfffb0800,
  3353. qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
  3354. omap_findclk(s, "uart2_ck"),
  3355. omap_findclk(s, "uart2_ck"),
  3356. s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
  3357. "uart2",
  3358. serial_hd(0) ? serial_hd(1) : NULL);
  3359. s->uart[2] = omap_uart_init(0xfffb9800,
  3360. qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
  3361. omap_findclk(s, "uart3_ck"),
  3362. omap_findclk(s, "uart3_ck"),
  3363. s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
  3364. "uart3",
  3365. serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
  3366. s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
  3367. omap_findclk(s, "dpll1"));
  3368. s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
  3369. omap_findclk(s, "dpll2"));
  3370. s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
  3371. omap_findclk(s, "dpll3"));
  3372. dinfo = drive_get(IF_SD, 0, 0);
  3373. if (!dinfo && !qtest_enabled()) {
  3374. warn_report("missing SecureDigital device");
  3375. }
  3376. s->mmc = qdev_new(TYPE_OMAP_MMC);
  3377. sysbus_realize_and_unref(SYS_BUS_DEVICE(s->mmc), &error_fatal);
  3378. omap_mmc_set_clk(s->mmc, omap_findclk(s, "mmc_ck"));
  3379. memory_region_add_subregion(system_memory, 0xfffb7800,
  3380. sysbus_mmio_get_region(SYS_BUS_DEVICE(s->mmc), 0));
  3381. qdev_connect_gpio_out_named(s->mmc, "dma-tx", 0, s->drq[OMAP_DMA_MMC_TX]);
  3382. qdev_connect_gpio_out_named(s->mmc, "dma-rx", 0, s->drq[OMAP_DMA_MMC_RX]);
  3383. sysbus_connect_irq(SYS_BUS_DEVICE(s->mmc), 0,
  3384. qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN));
  3385. if (dinfo) {
  3386. DeviceState *card = qdev_new(TYPE_SD_CARD);
  3387. qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
  3388. &error_fatal);
  3389. qdev_realize_and_unref(card, qdev_get_child_bus(s->mmc, "sd-bus"),
  3390. &error_fatal);
  3391. }
  3392. s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
  3393. qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
  3394. qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
  3395. s->wakeup, omap_findclk(s, "clk32-kHz"));
  3396. s->gpio = qdev_new("omap-gpio");
  3397. qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
  3398. omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck"));
  3399. sysbus_realize_and_unref(SYS_BUS_DEVICE(s->gpio), &error_fatal);
  3400. sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
  3401. qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
  3402. sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
  3403. s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
  3404. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
  3405. qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
  3406. s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
  3407. s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
  3408. omap_findclk(s, "armxor_ck"));
  3409. s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
  3410. omap_findclk(s, "armxor_ck"));
  3411. s->i2c[0] = qdev_new("omap_i2c");
  3412. qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
  3413. omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck"));
  3414. busdev = SYS_BUS_DEVICE(s->i2c[0]);
  3415. sysbus_realize_and_unref(busdev, &error_fatal);
  3416. sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
  3417. sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
  3418. sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
  3419. sysbus_mmio_map(busdev, 0, 0xfffb3800);
  3420. s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
  3421. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
  3422. qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
  3423. omap_findclk(s, "clk32-kHz"));
  3424. s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
  3425. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
  3426. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
  3427. &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
  3428. s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
  3429. qdev_get_gpio_in(s->ih[0],
  3430. OMAP_INT_310_McBSP2_TX),
  3431. qdev_get_gpio_in(s->ih[0],
  3432. OMAP_INT_310_McBSP2_RX),
  3433. &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
  3434. s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
  3435. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
  3436. qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
  3437. &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
  3438. s->led[0] = omap_lpg_init(system_memory,
  3439. 0xfffbd000, omap_findclk(s, "clk32-kHz"));
  3440. s->led[1] = omap_lpg_init(system_memory,
  3441. 0xfffbd800, omap_findclk(s, "clk32-kHz"));
  3442. /* Register mappings not currently implemented:
  3443. * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
  3444. * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
  3445. * USB W2FC fffb4000 - fffb47ff
  3446. * Camera Interface fffb6800 - fffb6fff
  3447. * USB Host fffba000 - fffba7ff
  3448. * FAC fffba800 - fffbafff
  3449. * HDQ/1-Wire fffbc000 - fffbc7ff
  3450. * TIPB switches fffbc800 - fffbcfff
  3451. * Mailbox fffcf000 - fffcf7ff
  3452. * Local bus IF fffec100 - fffec1ff
  3453. * Local bus MMU fffec200 - fffec2ff
  3454. * DSP MMU fffed200 - fffed2ff
  3455. */
  3456. omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
  3457. omap_setup_mpui_io(system_memory, s);
  3458. qemu_register_reset(omap1_mpu_reset, s);
  3459. return s;
  3460. }