cpu_hotplug.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348
  1. /*
  2. * QEMU ACPI hotplug utilities
  3. *
  4. * Copyright (C) 2013 Red Hat Inc
  5. *
  6. * Authors:
  7. * Igor Mammedov <imammedo@redhat.com>
  8. *
  9. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10. * See the COPYING file in the top-level directory.
  11. */
  12. #include "qemu/osdep.h"
  13. #include "hw/acpi/cpu_hotplug.h"
  14. #include "qapi/error.h"
  15. #include "hw/core/cpu.h"
  16. #include "hw/i386/x86.h"
  17. #include "hw/pci/pci_device.h"
  18. #include "qemu/error-report.h"
  19. #define CPU_EJECT_METHOD "CPEJ"
  20. #define CPU_MAT_METHOD "CPMA"
  21. #define CPU_ON_BITMAP "CPON"
  22. #define CPU_STATUS_METHOD "CPST"
  23. #define CPU_STATUS_MAP "PRS"
  24. #define CPU_SCAN_METHOD "PRSC"
  25. static uint64_t cpu_status_read(void *opaque, hwaddr addr, unsigned int size)
  26. {
  27. AcpiCpuHotplug *cpus = opaque;
  28. uint64_t val = cpus->sts[addr];
  29. return val;
  30. }
  31. static void cpu_status_write(void *opaque, hwaddr addr, uint64_t data,
  32. unsigned int size)
  33. {
  34. /* firmware never used to write in CPU present bitmap so use
  35. this fact as means to switch QEMU into modern CPU hotplug
  36. mode by writing 0 at the beginning of legacy CPU bitmap
  37. */
  38. if (addr == 0 && data == 0) {
  39. AcpiCpuHotplug *cpus = opaque;
  40. object_property_set_bool(cpus->device, "cpu-hotplug-legacy", false,
  41. &error_abort);
  42. }
  43. }
  44. static const MemoryRegionOps AcpiCpuHotplug_ops = {
  45. .read = cpu_status_read,
  46. .write = cpu_status_write,
  47. .endianness = DEVICE_LITTLE_ENDIAN,
  48. .valid = {
  49. .min_access_size = 1,
  50. .max_access_size = 4,
  51. },
  52. .impl = {
  53. .max_access_size = 1,
  54. },
  55. };
  56. static void acpi_set_cpu_present_bit(AcpiCpuHotplug *g, CPUState *cpu,
  57. bool *swtchd_to_modern)
  58. {
  59. int64_t cpu_id;
  60. cpu_id = cpu->cc->get_arch_id(cpu);
  61. if ((cpu_id / 8) >= ACPI_GPE_PROC_LEN) {
  62. object_property_set_bool(g->device, "cpu-hotplug-legacy", false,
  63. &error_abort);
  64. *swtchd_to_modern = true;
  65. return;
  66. }
  67. *swtchd_to_modern = false;
  68. g->sts[cpu_id / 8] |= (1 << (cpu_id % 8));
  69. }
  70. void legacy_acpi_cpu_plug_cb(HotplugHandler *hotplug_dev,
  71. AcpiCpuHotplug *g, DeviceState *dev, Error **errp)
  72. {
  73. bool swtchd_to_modern;
  74. Error *local_err = NULL;
  75. acpi_set_cpu_present_bit(g, CPU(dev), &swtchd_to_modern);
  76. if (swtchd_to_modern) {
  77. /* propagate the hotplug to the modern interface */
  78. hotplug_handler_plug(hotplug_dev, dev, &local_err);
  79. } else {
  80. acpi_send_event(DEVICE(hotplug_dev), ACPI_CPU_HOTPLUG_STATUS);
  81. }
  82. }
  83. void legacy_acpi_cpu_hotplug_init(MemoryRegion *parent, Object *owner,
  84. AcpiCpuHotplug *gpe_cpu, uint16_t base)
  85. {
  86. CPUState *cpu;
  87. bool swtchd_to_modern;
  88. memory_region_init_io(&gpe_cpu->io, owner, &AcpiCpuHotplug_ops,
  89. gpe_cpu, "acpi-cpu-hotplug", ACPI_GPE_PROC_LEN);
  90. memory_region_add_subregion(parent, base, &gpe_cpu->io);
  91. gpe_cpu->device = owner;
  92. CPU_FOREACH(cpu) {
  93. acpi_set_cpu_present_bit(gpe_cpu, cpu, &swtchd_to_modern);
  94. }
  95. }
  96. void acpi_switch_to_modern_cphp(AcpiCpuHotplug *gpe_cpu,
  97. CPUHotplugState *cpuhp_state,
  98. uint16_t io_port)
  99. {
  100. MemoryRegion *parent = pci_address_space_io(PCI_DEVICE(gpe_cpu->device));
  101. memory_region_del_subregion(parent, &gpe_cpu->io);
  102. cpu_hotplug_hw_init(parent, gpe_cpu->device, cpuhp_state, io_port);
  103. }
  104. void build_legacy_cpu_hotplug_aml(Aml *ctx, MachineState *machine,
  105. uint16_t io_base)
  106. {
  107. Aml *dev;
  108. Aml *crs;
  109. Aml *pkg;
  110. Aml *field;
  111. Aml *method;
  112. Aml *if_ctx;
  113. Aml *else_ctx;
  114. int i, apic_idx;
  115. Aml *sb_scope = aml_scope("_SB");
  116. uint8_t madt_tmpl[8] = {0x00, 0x08, 0x00, 0x00, 0x00, 0, 0, 0};
  117. Aml *cpu_id = aml_arg(1);
  118. Aml *apic_id = aml_arg(0);
  119. Aml *cpu_on = aml_local(0);
  120. Aml *madt = aml_local(1);
  121. Aml *cpus_map = aml_name(CPU_ON_BITMAP);
  122. Aml *zero = aml_int(0);
  123. Aml *one = aml_int(1);
  124. MachineClass *mc = MACHINE_GET_CLASS(machine);
  125. const CPUArchIdList *apic_ids = mc->possible_cpu_arch_ids(machine);
  126. X86MachineState *x86ms = X86_MACHINE(machine);
  127. /*
  128. * _MAT method - creates an madt apic buffer
  129. * apic_id = Arg0 = Local APIC ID
  130. * cpu_id = Arg1 = Processor ID
  131. * cpu_on = Local0 = CPON flag for this cpu
  132. * madt = Local1 = Buffer (in madt apic form) to return
  133. */
  134. method = aml_method(CPU_MAT_METHOD, 2, AML_NOTSERIALIZED);
  135. aml_append(method,
  136. aml_store(aml_derefof(aml_index(cpus_map, apic_id)), cpu_on));
  137. aml_append(method,
  138. aml_store(aml_buffer(sizeof(madt_tmpl), madt_tmpl), madt));
  139. /* Update the processor id, lapic id, and enable/disable status */
  140. aml_append(method, aml_store(cpu_id, aml_index(madt, aml_int(2))));
  141. aml_append(method, aml_store(apic_id, aml_index(madt, aml_int(3))));
  142. aml_append(method, aml_store(cpu_on, aml_index(madt, aml_int(4))));
  143. aml_append(method, aml_return(madt));
  144. aml_append(sb_scope, method);
  145. /*
  146. * _STA method - return ON status of cpu
  147. * apic_id = Arg0 = Local APIC ID
  148. * cpu_on = Local0 = CPON flag for this cpu
  149. */
  150. method = aml_method(CPU_STATUS_METHOD, 1, AML_NOTSERIALIZED);
  151. aml_append(method,
  152. aml_store(aml_derefof(aml_index(cpus_map, apic_id)), cpu_on));
  153. if_ctx = aml_if(cpu_on);
  154. {
  155. aml_append(if_ctx, aml_return(aml_int(0xF)));
  156. }
  157. aml_append(method, if_ctx);
  158. else_ctx = aml_else();
  159. {
  160. aml_append(else_ctx, aml_return(zero));
  161. }
  162. aml_append(method, else_ctx);
  163. aml_append(sb_scope, method);
  164. method = aml_method(CPU_EJECT_METHOD, 2, AML_NOTSERIALIZED);
  165. aml_append(method, aml_sleep(200));
  166. aml_append(sb_scope, method);
  167. method = aml_method(CPU_SCAN_METHOD, 0, AML_NOTSERIALIZED);
  168. {
  169. Aml *while_ctx, *if_ctx2, *else_ctx2;
  170. Aml *bus_check_evt = aml_int(1);
  171. Aml *remove_evt = aml_int(3);
  172. Aml *status_map = aml_local(5); /* Local5 = active cpu bitmap */
  173. Aml *byte = aml_local(2); /* Local2 = last read byte from bitmap */
  174. Aml *idx = aml_local(0); /* Processor ID / APIC ID iterator */
  175. Aml *is_cpu_on = aml_local(1); /* Local1 = CPON flag for cpu */
  176. Aml *status = aml_local(3); /* Local3 = active state for cpu */
  177. aml_append(method, aml_store(aml_name(CPU_STATUS_MAP), status_map));
  178. aml_append(method, aml_store(zero, byte));
  179. aml_append(method, aml_store(zero, idx));
  180. /* While (idx < SizeOf(CPON)) */
  181. while_ctx = aml_while(aml_lless(idx, aml_sizeof(cpus_map)));
  182. aml_append(while_ctx,
  183. aml_store(aml_derefof(aml_index(cpus_map, idx)), is_cpu_on));
  184. if_ctx = aml_if(aml_and(idx, aml_int(0x07), NULL));
  185. {
  186. /* Shift down previously read bitmap byte */
  187. aml_append(if_ctx, aml_shiftright(byte, one, byte));
  188. }
  189. aml_append(while_ctx, if_ctx);
  190. else_ctx = aml_else();
  191. {
  192. /* Read next byte from cpu bitmap */
  193. aml_append(else_ctx, aml_store(aml_derefof(aml_index(status_map,
  194. aml_shiftright(idx, aml_int(3), NULL))), byte));
  195. }
  196. aml_append(while_ctx, else_ctx);
  197. aml_append(while_ctx, aml_store(aml_and(byte, one, NULL), status));
  198. if_ctx = aml_if(aml_lnot(aml_equal(is_cpu_on, status)));
  199. {
  200. /* State change - update CPON with new state */
  201. aml_append(if_ctx, aml_store(status, aml_index(cpus_map, idx)));
  202. if_ctx2 = aml_if(aml_equal(status, one));
  203. {
  204. aml_append(if_ctx2,
  205. aml_call2(AML_NOTIFY_METHOD, idx, bus_check_evt));
  206. }
  207. aml_append(if_ctx, if_ctx2);
  208. else_ctx2 = aml_else();
  209. {
  210. aml_append(else_ctx2,
  211. aml_call2(AML_NOTIFY_METHOD, idx, remove_evt));
  212. }
  213. }
  214. aml_append(if_ctx, else_ctx2);
  215. aml_append(while_ctx, if_ctx);
  216. aml_append(while_ctx, aml_increment(idx)); /* go to next cpu */
  217. aml_append(method, while_ctx);
  218. }
  219. aml_append(sb_scope, method);
  220. /* The current AML generator can cover the APIC ID range [0..255],
  221. * inclusive, for VCPU hotplug. */
  222. QEMU_BUILD_BUG_ON(ACPI_CPU_HOTPLUG_ID_LIMIT > 256);
  223. if (x86ms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
  224. error_report("max_cpus is too large. APIC ID of last CPU is %u",
  225. x86ms->apic_id_limit - 1);
  226. exit(1);
  227. }
  228. /* create PCI0.PRES device and its _CRS to reserve CPU hotplug MMIO */
  229. dev = aml_device("PCI0." stringify(CPU_HOTPLUG_RESOURCE_DEVICE));
  230. aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A06")));
  231. aml_append(dev,
  232. aml_name_decl("_UID", aml_string("CPU Hotplug resources"))
  233. );
  234. /* device present, functioning, decoding, not shown in UI */
  235. aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
  236. crs = aml_resource_template();
  237. aml_append(crs,
  238. aml_io(AML_DECODE16, io_base, io_base, 1, ACPI_GPE_PROC_LEN)
  239. );
  240. aml_append(dev, aml_name_decl("_CRS", crs));
  241. aml_append(sb_scope, dev);
  242. /* declare CPU hotplug MMIO region and PRS field to access it */
  243. aml_append(sb_scope, aml_operation_region(
  244. "PRST", AML_SYSTEM_IO, aml_int(io_base), ACPI_GPE_PROC_LEN));
  245. field = aml_field("PRST", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE);
  246. aml_append(field, aml_named_field("PRS", 256));
  247. aml_append(sb_scope, field);
  248. /* build Processor object for each processor */
  249. for (i = 0; i < apic_ids->len; i++) {
  250. int cpu_apic_id = apic_ids->cpus[i].arch_id;
  251. assert(cpu_apic_id < ACPI_CPU_HOTPLUG_ID_LIMIT);
  252. dev = aml_processor(i, 0, 0, "CP%.02X", cpu_apic_id);
  253. method = aml_method("_MAT", 0, AML_NOTSERIALIZED);
  254. aml_append(method,
  255. aml_return(aml_call2(CPU_MAT_METHOD,
  256. aml_int(cpu_apic_id), aml_int(i))
  257. ));
  258. aml_append(dev, method);
  259. method = aml_method("_STA", 0, AML_NOTSERIALIZED);
  260. aml_append(method,
  261. aml_return(aml_call1(CPU_STATUS_METHOD, aml_int(cpu_apic_id))));
  262. aml_append(dev, method);
  263. method = aml_method("_EJ0", 1, AML_NOTSERIALIZED);
  264. aml_append(method,
  265. aml_return(aml_call2(CPU_EJECT_METHOD, aml_int(cpu_apic_id),
  266. aml_arg(0)))
  267. );
  268. aml_append(dev, method);
  269. aml_append(sb_scope, dev);
  270. }
  271. /* build this code:
  272. * Method(NTFY, 2) {If (LEqual(Arg0, 0x00)) {Notify(CP00, Arg1)} ...}
  273. */
  274. /* Arg0 = APIC ID */
  275. method = aml_method(AML_NOTIFY_METHOD, 2, AML_NOTSERIALIZED);
  276. for (i = 0; i < apic_ids->len; i++) {
  277. int cpu_apic_id = apic_ids->cpus[i].arch_id;
  278. if_ctx = aml_if(aml_equal(aml_arg(0), aml_int(cpu_apic_id)));
  279. aml_append(if_ctx,
  280. aml_notify(aml_name("CP%.02X", cpu_apic_id), aml_arg(1))
  281. );
  282. aml_append(method, if_ctx);
  283. }
  284. aml_append(sb_scope, method);
  285. /* build "Name(CPON, Package() { One, One, ..., Zero, Zero, ... })"
  286. *
  287. * Note: The ability to create variable-sized packages was first
  288. * introduced in ACPI 2.0. ACPI 1.0 only allowed fixed-size packages
  289. * ith up to 255 elements. Windows guests up to win2k8 fail when
  290. * VarPackageOp is used.
  291. */
  292. pkg = x86ms->apic_id_limit <= 255 ? aml_package(x86ms->apic_id_limit) :
  293. aml_varpackage(x86ms->apic_id_limit);
  294. for (i = 0, apic_idx = 0; i < apic_ids->len; i++) {
  295. int cpu_apic_id = apic_ids->cpus[i].arch_id;
  296. for (; apic_idx < cpu_apic_id; apic_idx++) {
  297. aml_append(pkg, aml_int(0));
  298. }
  299. aml_append(pkg, aml_int(apic_ids->cpus[i].cpu ? 1 : 0));
  300. apic_idx = cpu_apic_id + 1;
  301. }
  302. aml_append(sb_scope, aml_name_decl(CPU_ON_BITMAP, pkg));
  303. aml_append(ctx, sb_scope);
  304. method = aml_method("\\_GPE._E02", 0, AML_NOTSERIALIZED);
  305. aml_append(method, aml_call0("\\_SB." CPU_SCAN_METHOD));
  306. aml_append(ctx, method);
  307. }