hpet.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815
  1. /*
  2. * High Precision Event Timer emulation
  3. *
  4. * Copyright (c) 2007 Alexander Graf
  5. * Copyright (c) 2008 IBM Corporation
  6. *
  7. * Authors: Beth Kon <bkon@us.ibm.com>
  8. *
  9. * This library is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * This library is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  21. *
  22. * *****************************************************************
  23. *
  24. * This driver attempts to emulate an HPET device in software.
  25. */
  26. #include "qemu/osdep.h"
  27. #include "hw/i386/pc.h"
  28. #include "hw/irq.h"
  29. #include "qapi/error.h"
  30. #include "qemu/error-report.h"
  31. #include "qemu/timer.h"
  32. #include "hw/qdev-properties.h"
  33. #include "hw/timer/hpet.h"
  34. #include "hw/sysbus.h"
  35. #include "hw/rtc/mc146818rtc.h"
  36. #include "hw/rtc/mc146818rtc_regs.h"
  37. #include "migration/vmstate.h"
  38. #include "hw/timer/i8254.h"
  39. #include "exec/address-spaces.h"
  40. #include "qom/object.h"
  41. //#define HPET_DEBUG
  42. #ifdef HPET_DEBUG
  43. #define DPRINTF printf
  44. #else
  45. #define DPRINTF(...)
  46. #endif
  47. #define HPET_MSI_SUPPORT 0
  48. OBJECT_DECLARE_SIMPLE_TYPE(HPETState, HPET)
  49. struct HPETState;
  50. typedef struct HPETTimer { /* timers */
  51. uint8_t tn; /*timer number*/
  52. QEMUTimer *qemu_timer;
  53. struct HPETState *state;
  54. /* Memory-mapped, software visible timer registers */
  55. uint64_t config; /* configuration/cap */
  56. uint64_t cmp; /* comparator */
  57. uint64_t fsb; /* FSB route */
  58. /* Hidden register state */
  59. uint64_t period; /* Last value written to comparator */
  60. uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
  61. * mode. Next pop will be actual timer expiration.
  62. */
  63. } HPETTimer;
  64. struct HPETState {
  65. /*< private >*/
  66. SysBusDevice parent_obj;
  67. /*< public >*/
  68. MemoryRegion iomem;
  69. uint64_t hpet_offset;
  70. bool hpet_offset_saved;
  71. qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
  72. uint32_t flags;
  73. uint8_t rtc_irq_level;
  74. qemu_irq pit_enabled;
  75. uint8_t num_timers;
  76. uint32_t intcap;
  77. HPETTimer timer[HPET_MAX_TIMERS];
  78. /* Memory-mapped, software visible registers */
  79. uint64_t capability; /* capabilities */
  80. uint64_t config; /* configuration */
  81. uint64_t isr; /* interrupt status reg */
  82. uint64_t hpet_counter; /* main counter */
  83. uint8_t hpet_id; /* instance id */
  84. };
  85. static uint32_t hpet_in_legacy_mode(HPETState *s)
  86. {
  87. return s->config & HPET_CFG_LEGACY;
  88. }
  89. static uint32_t timer_int_route(struct HPETTimer *timer)
  90. {
  91. return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
  92. }
  93. static uint32_t timer_fsb_route(HPETTimer *t)
  94. {
  95. return t->config & HPET_TN_FSB_ENABLE;
  96. }
  97. static uint32_t hpet_enabled(HPETState *s)
  98. {
  99. return s->config & HPET_CFG_ENABLE;
  100. }
  101. static uint32_t timer_is_periodic(HPETTimer *t)
  102. {
  103. return t->config & HPET_TN_PERIODIC;
  104. }
  105. static uint32_t timer_enabled(HPETTimer *t)
  106. {
  107. return t->config & HPET_TN_ENABLE;
  108. }
  109. static uint32_t hpet_time_after(uint64_t a, uint64_t b)
  110. {
  111. return ((int32_t)(b - a) < 0);
  112. }
  113. static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
  114. {
  115. return ((int64_t)(b - a) < 0);
  116. }
  117. static uint64_t ticks_to_ns(uint64_t value)
  118. {
  119. return value * HPET_CLK_PERIOD;
  120. }
  121. static uint64_t ns_to_ticks(uint64_t value)
  122. {
  123. return value / HPET_CLK_PERIOD;
  124. }
  125. static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
  126. {
  127. new &= mask;
  128. new |= old & ~mask;
  129. return new;
  130. }
  131. static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
  132. {
  133. return (!(old & mask) && (new & mask));
  134. }
  135. static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
  136. {
  137. return ((old & mask) && !(new & mask));
  138. }
  139. static uint64_t hpet_get_ticks(HPETState *s)
  140. {
  141. return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
  142. }
  143. /*
  144. * calculate diff between comparator value and current ticks
  145. */
  146. static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
  147. {
  148. if (t->config & HPET_TN_32BIT) {
  149. uint32_t diff, cmp;
  150. cmp = (uint32_t)t->cmp;
  151. diff = cmp - (uint32_t)current;
  152. diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
  153. return (uint64_t)diff;
  154. } else {
  155. uint64_t diff, cmp;
  156. cmp = t->cmp;
  157. diff = cmp - current;
  158. diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
  159. return diff;
  160. }
  161. }
  162. static void update_irq(struct HPETTimer *timer, int set)
  163. {
  164. uint64_t mask;
  165. HPETState *s;
  166. int route;
  167. if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
  168. /* if LegacyReplacementRoute bit is set, HPET specification requires
  169. * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
  170. * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
  171. */
  172. route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
  173. } else {
  174. route = timer_int_route(timer);
  175. }
  176. s = timer->state;
  177. mask = 1 << timer->tn;
  178. if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
  179. s->isr &= ~mask;
  180. if (!timer_fsb_route(timer)) {
  181. qemu_irq_lower(s->irqs[route]);
  182. }
  183. } else if (timer_fsb_route(timer)) {
  184. address_space_stl_le(&address_space_memory, timer->fsb >> 32,
  185. timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
  186. NULL);
  187. } else if (timer->config & HPET_TN_TYPE_LEVEL) {
  188. s->isr |= mask;
  189. qemu_irq_raise(s->irqs[route]);
  190. } else {
  191. s->isr &= ~mask;
  192. qemu_irq_pulse(s->irqs[route]);
  193. }
  194. }
  195. static int hpet_pre_save(void *opaque)
  196. {
  197. HPETState *s = opaque;
  198. /* save current counter value */
  199. if (hpet_enabled(s)) {
  200. s->hpet_counter = hpet_get_ticks(s);
  201. }
  202. return 0;
  203. }
  204. static int hpet_pre_load(void *opaque)
  205. {
  206. HPETState *s = opaque;
  207. /* version 1 only supports 3, later versions will load the actual value */
  208. s->num_timers = HPET_MIN_TIMERS;
  209. return 0;
  210. }
  211. static bool hpet_validate_num_timers(void *opaque, int version_id)
  212. {
  213. HPETState *s = opaque;
  214. if (s->num_timers < HPET_MIN_TIMERS) {
  215. return false;
  216. } else if (s->num_timers > HPET_MAX_TIMERS) {
  217. return false;
  218. }
  219. return true;
  220. }
  221. static int hpet_post_load(void *opaque, int version_id)
  222. {
  223. HPETState *s = opaque;
  224. /* Recalculate the offset between the main counter and guest time */
  225. if (!s->hpet_offset_saved) {
  226. s->hpet_offset = ticks_to_ns(s->hpet_counter)
  227. - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  228. }
  229. /* Push number of timers into capability returned via HPET_ID */
  230. s->capability &= ~HPET_ID_NUM_TIM_MASK;
  231. s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
  232. hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
  233. /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
  234. s->flags &= ~(1 << HPET_MSI_SUPPORT);
  235. if (s->timer[0].config & HPET_TN_FSB_CAP) {
  236. s->flags |= 1 << HPET_MSI_SUPPORT;
  237. }
  238. return 0;
  239. }
  240. static bool hpet_offset_needed(void *opaque)
  241. {
  242. HPETState *s = opaque;
  243. return hpet_enabled(s) && s->hpet_offset_saved;
  244. }
  245. static bool hpet_rtc_irq_level_needed(void *opaque)
  246. {
  247. HPETState *s = opaque;
  248. return s->rtc_irq_level != 0;
  249. }
  250. static const VMStateDescription vmstate_hpet_rtc_irq_level = {
  251. .name = "hpet/rtc_irq_level",
  252. .version_id = 1,
  253. .minimum_version_id = 1,
  254. .needed = hpet_rtc_irq_level_needed,
  255. .fields = (VMStateField[]) {
  256. VMSTATE_UINT8(rtc_irq_level, HPETState),
  257. VMSTATE_END_OF_LIST()
  258. }
  259. };
  260. static const VMStateDescription vmstate_hpet_offset = {
  261. .name = "hpet/offset",
  262. .version_id = 1,
  263. .minimum_version_id = 1,
  264. .needed = hpet_offset_needed,
  265. .fields = (VMStateField[]) {
  266. VMSTATE_UINT64(hpet_offset, HPETState),
  267. VMSTATE_END_OF_LIST()
  268. }
  269. };
  270. static const VMStateDescription vmstate_hpet_timer = {
  271. .name = "hpet_timer",
  272. .version_id = 1,
  273. .minimum_version_id = 1,
  274. .fields = (VMStateField[]) {
  275. VMSTATE_UINT8(tn, HPETTimer),
  276. VMSTATE_UINT64(config, HPETTimer),
  277. VMSTATE_UINT64(cmp, HPETTimer),
  278. VMSTATE_UINT64(fsb, HPETTimer),
  279. VMSTATE_UINT64(period, HPETTimer),
  280. VMSTATE_UINT8(wrap_flag, HPETTimer),
  281. VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
  282. VMSTATE_END_OF_LIST()
  283. }
  284. };
  285. static const VMStateDescription vmstate_hpet = {
  286. .name = "hpet",
  287. .version_id = 2,
  288. .minimum_version_id = 1,
  289. .pre_save = hpet_pre_save,
  290. .pre_load = hpet_pre_load,
  291. .post_load = hpet_post_load,
  292. .fields = (VMStateField[]) {
  293. VMSTATE_UINT64(config, HPETState),
  294. VMSTATE_UINT64(isr, HPETState),
  295. VMSTATE_UINT64(hpet_counter, HPETState),
  296. VMSTATE_UINT8_V(num_timers, HPETState, 2),
  297. VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
  298. VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
  299. vmstate_hpet_timer, HPETTimer),
  300. VMSTATE_END_OF_LIST()
  301. },
  302. .subsections = (const VMStateDescription*[]) {
  303. &vmstate_hpet_rtc_irq_level,
  304. &vmstate_hpet_offset,
  305. NULL
  306. }
  307. };
  308. static void hpet_arm(HPETTimer *t, uint64_t ticks)
  309. {
  310. if (ticks < ns_to_ticks(INT64_MAX / 2)) {
  311. timer_mod(t->qemu_timer,
  312. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ticks_to_ns(ticks));
  313. } else {
  314. timer_del(t->qemu_timer);
  315. }
  316. }
  317. /*
  318. * timer expiration callback
  319. */
  320. static void hpet_timer(void *opaque)
  321. {
  322. HPETTimer *t = opaque;
  323. uint64_t diff;
  324. uint64_t period = t->period;
  325. uint64_t cur_tick = hpet_get_ticks(t->state);
  326. if (timer_is_periodic(t) && period != 0) {
  327. if (t->config & HPET_TN_32BIT) {
  328. while (hpet_time_after(cur_tick, t->cmp)) {
  329. t->cmp = (uint32_t)(t->cmp + t->period);
  330. }
  331. } else {
  332. while (hpet_time_after64(cur_tick, t->cmp)) {
  333. t->cmp += period;
  334. }
  335. }
  336. diff = hpet_calculate_diff(t, cur_tick);
  337. hpet_arm(t, diff);
  338. } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
  339. if (t->wrap_flag) {
  340. diff = hpet_calculate_diff(t, cur_tick);
  341. hpet_arm(t, diff);
  342. t->wrap_flag = 0;
  343. }
  344. }
  345. update_irq(t, 1);
  346. }
  347. static void hpet_set_timer(HPETTimer *t)
  348. {
  349. uint64_t diff;
  350. uint32_t wrap_diff; /* how many ticks until we wrap? */
  351. uint64_t cur_tick = hpet_get_ticks(t->state);
  352. /* whenever new timer is being set up, make sure wrap_flag is 0 */
  353. t->wrap_flag = 0;
  354. diff = hpet_calculate_diff(t, cur_tick);
  355. /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
  356. * counter wraps in addition to an interrupt with comparator match.
  357. */
  358. if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
  359. wrap_diff = 0xffffffff - (uint32_t)cur_tick;
  360. if (wrap_diff < (uint32_t)diff) {
  361. diff = wrap_diff;
  362. t->wrap_flag = 1;
  363. }
  364. }
  365. hpet_arm(t, diff);
  366. }
  367. static void hpet_del_timer(HPETTimer *t)
  368. {
  369. timer_del(t->qemu_timer);
  370. update_irq(t, 0);
  371. }
  372. static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
  373. unsigned size)
  374. {
  375. HPETState *s = opaque;
  376. uint64_t cur_tick, index;
  377. DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
  378. index = addr;
  379. /*address range of all TN regs*/
  380. if (index >= 0x100 && index <= 0x3ff) {
  381. uint8_t timer_id = (addr - 0x100) / 0x20;
  382. HPETTimer *timer = &s->timer[timer_id];
  383. if (timer_id > s->num_timers) {
  384. DPRINTF("qemu: timer id out of range\n");
  385. return 0;
  386. }
  387. switch ((addr - 0x100) % 0x20) {
  388. case HPET_TN_CFG:
  389. return timer->config;
  390. case HPET_TN_CFG + 4: // Interrupt capabilities
  391. return timer->config >> 32;
  392. case HPET_TN_CMP: // comparator register
  393. return timer->cmp;
  394. case HPET_TN_CMP + 4:
  395. return timer->cmp >> 32;
  396. case HPET_TN_ROUTE:
  397. return timer->fsb;
  398. case HPET_TN_ROUTE + 4:
  399. return timer->fsb >> 32;
  400. default:
  401. DPRINTF("qemu: invalid hpet_ram_readl\n");
  402. break;
  403. }
  404. } else {
  405. switch (index) {
  406. case HPET_ID:
  407. return s->capability;
  408. case HPET_PERIOD:
  409. return s->capability >> 32;
  410. case HPET_CFG:
  411. return s->config;
  412. case HPET_CFG + 4:
  413. DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
  414. return 0;
  415. case HPET_COUNTER:
  416. if (hpet_enabled(s)) {
  417. cur_tick = hpet_get_ticks(s);
  418. } else {
  419. cur_tick = s->hpet_counter;
  420. }
  421. DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
  422. return cur_tick;
  423. case HPET_COUNTER + 4:
  424. if (hpet_enabled(s)) {
  425. cur_tick = hpet_get_ticks(s);
  426. } else {
  427. cur_tick = s->hpet_counter;
  428. }
  429. DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
  430. return cur_tick >> 32;
  431. case HPET_STATUS:
  432. return s->isr;
  433. default:
  434. DPRINTF("qemu: invalid hpet_ram_readl\n");
  435. break;
  436. }
  437. }
  438. return 0;
  439. }
  440. static void hpet_ram_write(void *opaque, hwaddr addr,
  441. uint64_t value, unsigned size)
  442. {
  443. int i;
  444. HPETState *s = opaque;
  445. uint64_t old_val, new_val, val, index;
  446. DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = 0x%" PRIx64 "\n",
  447. addr, value);
  448. index = addr;
  449. old_val = hpet_ram_read(opaque, addr, 4);
  450. new_val = value;
  451. /*address range of all TN regs*/
  452. if (index >= 0x100 && index <= 0x3ff) {
  453. uint8_t timer_id = (addr - 0x100) / 0x20;
  454. HPETTimer *timer = &s->timer[timer_id];
  455. DPRINTF("qemu: hpet_ram_writel timer_id = 0x%x\n", timer_id);
  456. if (timer_id > s->num_timers) {
  457. DPRINTF("qemu: timer id out of range\n");
  458. return;
  459. }
  460. switch ((addr - 0x100) % 0x20) {
  461. case HPET_TN_CFG:
  462. DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
  463. if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
  464. update_irq(timer, 0);
  465. }
  466. val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
  467. timer->config = (timer->config & 0xffffffff00000000ULL) | val;
  468. if (new_val & HPET_TN_32BIT) {
  469. timer->cmp = (uint32_t)timer->cmp;
  470. timer->period = (uint32_t)timer->period;
  471. }
  472. if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
  473. hpet_enabled(s)) {
  474. hpet_set_timer(timer);
  475. } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
  476. hpet_del_timer(timer);
  477. }
  478. break;
  479. case HPET_TN_CFG + 4: // Interrupt capabilities
  480. DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
  481. break;
  482. case HPET_TN_CMP: // comparator register
  483. DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
  484. if (timer->config & HPET_TN_32BIT) {
  485. new_val = (uint32_t)new_val;
  486. }
  487. if (!timer_is_periodic(timer)
  488. || (timer->config & HPET_TN_SETVAL)) {
  489. timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
  490. }
  491. if (timer_is_periodic(timer)) {
  492. /*
  493. * FIXME: Clamp period to reasonable min value?
  494. * Clamp period to reasonable max value
  495. */
  496. new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
  497. timer->period =
  498. (timer->period & 0xffffffff00000000ULL) | new_val;
  499. }
  500. timer->config &= ~HPET_TN_SETVAL;
  501. if (hpet_enabled(s)) {
  502. hpet_set_timer(timer);
  503. }
  504. break;
  505. case HPET_TN_CMP + 4: // comparator register high order
  506. DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
  507. if (!timer_is_periodic(timer)
  508. || (timer->config & HPET_TN_SETVAL)) {
  509. timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
  510. } else {
  511. /*
  512. * FIXME: Clamp period to reasonable min value?
  513. * Clamp period to reasonable max value
  514. */
  515. new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
  516. timer->period =
  517. (timer->period & 0xffffffffULL) | new_val << 32;
  518. }
  519. timer->config &= ~HPET_TN_SETVAL;
  520. if (hpet_enabled(s)) {
  521. hpet_set_timer(timer);
  522. }
  523. break;
  524. case HPET_TN_ROUTE:
  525. timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
  526. break;
  527. case HPET_TN_ROUTE + 4:
  528. timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
  529. break;
  530. default:
  531. DPRINTF("qemu: invalid hpet_ram_writel\n");
  532. break;
  533. }
  534. return;
  535. } else {
  536. switch (index) {
  537. case HPET_ID:
  538. return;
  539. case HPET_CFG:
  540. val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
  541. s->config = (s->config & 0xffffffff00000000ULL) | val;
  542. if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
  543. /* Enable main counter and interrupt generation. */
  544. s->hpet_offset =
  545. ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  546. for (i = 0; i < s->num_timers; i++) {
  547. if ((&s->timer[i])->cmp != ~0ULL) {
  548. hpet_set_timer(&s->timer[i]);
  549. }
  550. }
  551. } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
  552. /* Halt main counter and disable interrupt generation. */
  553. s->hpet_counter = hpet_get_ticks(s);
  554. for (i = 0; i < s->num_timers; i++) {
  555. hpet_del_timer(&s->timer[i]);
  556. }
  557. }
  558. /* i8254 and RTC output pins are disabled
  559. * when HPET is in legacy mode */
  560. if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
  561. qemu_set_irq(s->pit_enabled, 0);
  562. qemu_irq_lower(s->irqs[0]);
  563. qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
  564. } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
  565. qemu_irq_lower(s->irqs[0]);
  566. qemu_set_irq(s->pit_enabled, 1);
  567. qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
  568. }
  569. break;
  570. case HPET_CFG + 4:
  571. DPRINTF("qemu: invalid HPET_CFG+4 write\n");
  572. break;
  573. case HPET_STATUS:
  574. val = new_val & s->isr;
  575. for (i = 0; i < s->num_timers; i++) {
  576. if (val & (1 << i)) {
  577. update_irq(&s->timer[i], 0);
  578. }
  579. }
  580. break;
  581. case HPET_COUNTER:
  582. if (hpet_enabled(s)) {
  583. DPRINTF("qemu: Writing counter while HPET enabled!\n");
  584. }
  585. s->hpet_counter =
  586. (s->hpet_counter & 0xffffffff00000000ULL) | value;
  587. DPRINTF("qemu: HPET counter written. ctr = 0x%" PRIx64 " -> "
  588. "%" PRIx64 "\n", value, s->hpet_counter);
  589. break;
  590. case HPET_COUNTER + 4:
  591. if (hpet_enabled(s)) {
  592. DPRINTF("qemu: Writing counter while HPET enabled!\n");
  593. }
  594. s->hpet_counter =
  595. (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
  596. DPRINTF("qemu: HPET counter + 4 written. ctr = 0x%" PRIx64 " -> "
  597. "%" PRIx64 "\n", value, s->hpet_counter);
  598. break;
  599. default:
  600. DPRINTF("qemu: invalid hpet_ram_writel\n");
  601. break;
  602. }
  603. }
  604. }
  605. static const MemoryRegionOps hpet_ram_ops = {
  606. .read = hpet_ram_read,
  607. .write = hpet_ram_write,
  608. .valid = {
  609. .min_access_size = 4,
  610. .max_access_size = 4,
  611. },
  612. .endianness = DEVICE_NATIVE_ENDIAN,
  613. };
  614. static void hpet_reset(DeviceState *d)
  615. {
  616. HPETState *s = HPET(d);
  617. SysBusDevice *sbd = SYS_BUS_DEVICE(d);
  618. int i;
  619. for (i = 0; i < s->num_timers; i++) {
  620. HPETTimer *timer = &s->timer[i];
  621. hpet_del_timer(timer);
  622. timer->cmp = ~0ULL;
  623. timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
  624. if (s->flags & (1 << HPET_MSI_SUPPORT)) {
  625. timer->config |= HPET_TN_FSB_CAP;
  626. }
  627. /* advertise availability of ioapic int */
  628. timer->config |= (uint64_t)s->intcap << 32;
  629. timer->period = 0ULL;
  630. timer->wrap_flag = 0;
  631. }
  632. qemu_set_irq(s->pit_enabled, 1);
  633. s->hpet_counter = 0ULL;
  634. s->hpet_offset = 0ULL;
  635. s->config = 0ULL;
  636. hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
  637. hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
  638. /* to document that the RTC lowers its output on reset as well */
  639. s->rtc_irq_level = 0;
  640. }
  641. static void hpet_handle_legacy_irq(void *opaque, int n, int level)
  642. {
  643. HPETState *s = HPET(opaque);
  644. if (n == HPET_LEGACY_PIT_INT) {
  645. if (!hpet_in_legacy_mode(s)) {
  646. qemu_set_irq(s->irqs[0], level);
  647. }
  648. } else {
  649. s->rtc_irq_level = level;
  650. if (!hpet_in_legacy_mode(s)) {
  651. qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
  652. }
  653. }
  654. }
  655. static void hpet_init(Object *obj)
  656. {
  657. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  658. HPETState *s = HPET(obj);
  659. /* HPET Area */
  660. memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
  661. sysbus_init_mmio(sbd, &s->iomem);
  662. }
  663. static void hpet_realize(DeviceState *dev, Error **errp)
  664. {
  665. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  666. HPETState *s = HPET(dev);
  667. int i;
  668. HPETTimer *timer;
  669. if (!s->intcap) {
  670. warn_report("Hpet's intcap not initialized");
  671. }
  672. if (hpet_cfg.count == UINT8_MAX) {
  673. /* first instance */
  674. hpet_cfg.count = 0;
  675. }
  676. if (hpet_cfg.count == 8) {
  677. error_setg(errp, "Only 8 instances of HPET is allowed");
  678. return;
  679. }
  680. s->hpet_id = hpet_cfg.count++;
  681. for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
  682. sysbus_init_irq(sbd, &s->irqs[i]);
  683. }
  684. if (s->num_timers < HPET_MIN_TIMERS) {
  685. s->num_timers = HPET_MIN_TIMERS;
  686. } else if (s->num_timers > HPET_MAX_TIMERS) {
  687. s->num_timers = HPET_MAX_TIMERS;
  688. }
  689. for (i = 0; i < HPET_MAX_TIMERS; i++) {
  690. timer = &s->timer[i];
  691. timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
  692. timer->tn = i;
  693. timer->state = s;
  694. }
  695. /* 64-bit main counter; LegacyReplacementRoute. */
  696. s->capability = 0x8086a001ULL;
  697. s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
  698. s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
  699. qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
  700. qdev_init_gpio_out(dev, &s->pit_enabled, 1);
  701. }
  702. static Property hpet_device_properties[] = {
  703. DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
  704. DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
  705. DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
  706. DEFINE_PROP_BOOL("hpet-offset-saved", HPETState, hpet_offset_saved, true),
  707. DEFINE_PROP_END_OF_LIST(),
  708. };
  709. static void hpet_device_class_init(ObjectClass *klass, void *data)
  710. {
  711. DeviceClass *dc = DEVICE_CLASS(klass);
  712. dc->realize = hpet_realize;
  713. dc->reset = hpet_reset;
  714. dc->vmsd = &vmstate_hpet;
  715. device_class_set_props(dc, hpet_device_properties);
  716. }
  717. static const TypeInfo hpet_device_info = {
  718. .name = TYPE_HPET,
  719. .parent = TYPE_SYS_BUS_DEVICE,
  720. .instance_size = sizeof(HPETState),
  721. .instance_init = hpet_init,
  722. .class_init = hpet_device_class_init,
  723. };
  724. static void hpet_register_types(void)
  725. {
  726. type_register_static(&hpet_device_info);
  727. }
  728. type_init(hpet_register_types)