bcm2835_cprman.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813
  1. /*
  2. * BCM2835 CPRMAN clock manager
  3. *
  4. * Copyright (c) 2020 Luc Michel <luc@lmichel.fr>
  5. *
  6. * SPDX-License-Identifier: GPL-2.0-or-later
  7. */
  8. /*
  9. * This peripheral is roughly divided into 3 main parts:
  10. * - the PLLs
  11. * - the PLL channels
  12. * - the clock muxes
  13. *
  14. * A main oscillator (xosc) feeds all the PLLs. Each PLLs has one or more
  15. * channels. Those channel are then connected to the clock muxes. Each mux has
  16. * multiples sources (usually the xosc, some of the PLL channels and some "test
  17. * debug" clocks). A mux is configured to select a given source through its
  18. * control register. Each mux has one output clock that also goes out of the
  19. * CPRMAN. This output clock usually connects to another peripheral in the SoC
  20. * (so a given mux is dedicated to a peripheral).
  21. *
  22. * At each level (PLL, channel and mux), the clock can be altered through
  23. * dividers (and multipliers in case of the PLLs), and can be disabled (in this
  24. * case, the next levels see no clock).
  25. *
  26. * This can be sum-up as follows (this is an example and not the actual BCM2835
  27. * clock tree):
  28. *
  29. * /-->[PLL]-|->[PLL channel]--... [mux]--> to peripherals
  30. * | |->[PLL channel] muxes takes [mux]
  31. * | \->[PLL channel] inputs from [mux]
  32. * | some channels [mux]
  33. * [xosc]---|-->[PLL]-|->[PLL channel] and other srcs [mux]
  34. * | \->[PLL channel] ...-->[mux]
  35. * | [mux]
  36. * \-->[PLL]--->[PLL channel] [mux]
  37. *
  38. * The page at https://elinux.org/The_Undocumented_Pi gives the actual clock
  39. * tree configuration.
  40. *
  41. * The CPRMAN exposes clock outputs with the name of the clock mux suffixed
  42. * with "-out" (e.g. "uart-out", "h264-out", ...).
  43. */
  44. #include "qemu/osdep.h"
  45. #include "qemu/log.h"
  46. #include "migration/vmstate.h"
  47. #include "hw/qdev-properties.h"
  48. #include "hw/misc/bcm2835_cprman.h"
  49. #include "hw/misc/bcm2835_cprman_internals.h"
  50. #include "trace.h"
  51. /* PLL */
  52. static void pll_reset(DeviceState *dev)
  53. {
  54. CprmanPllState *s = CPRMAN_PLL(dev);
  55. const PLLResetInfo *info = &PLL_RESET_INFO[s->id];
  56. *s->reg_cm = info->cm;
  57. *s->reg_a2w_ctrl = info->a2w_ctrl;
  58. memcpy(s->reg_a2w_ana, info->a2w_ana, sizeof(info->a2w_ana));
  59. *s->reg_a2w_frac = info->a2w_frac;
  60. }
  61. static bool pll_is_locked(const CprmanPllState *pll)
  62. {
  63. return !FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PWRDN)
  64. && !FIELD_EX32(*pll->reg_cm, CM_PLLx, ANARST);
  65. }
  66. static void pll_update(CprmanPllState *pll)
  67. {
  68. uint64_t freq, ndiv, fdiv, pdiv;
  69. if (!pll_is_locked(pll)) {
  70. clock_update(pll->out, 0);
  71. return;
  72. }
  73. pdiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PDIV);
  74. if (!pdiv) {
  75. clock_update(pll->out, 0);
  76. return;
  77. }
  78. ndiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, NDIV);
  79. fdiv = FIELD_EX32(*pll->reg_a2w_frac, A2W_PLLx_FRAC, FRAC);
  80. if (pll->reg_a2w_ana[1] & pll->prediv_mask) {
  81. /* The prescaler doubles the parent frequency */
  82. ndiv *= 2;
  83. fdiv *= 2;
  84. }
  85. /*
  86. * We have a multiplier with an integer part (ndiv) and a fractional part
  87. * (fdiv), and a divider (pdiv).
  88. */
  89. freq = clock_get_hz(pll->xosc_in) *
  90. ((ndiv << R_A2W_PLLx_FRAC_FRAC_LENGTH) + fdiv);
  91. freq /= pdiv;
  92. freq >>= R_A2W_PLLx_FRAC_FRAC_LENGTH;
  93. clock_update_hz(pll->out, freq);
  94. }
  95. static void pll_xosc_update(void *opaque, ClockEvent event)
  96. {
  97. pll_update(CPRMAN_PLL(opaque));
  98. }
  99. static void pll_init(Object *obj)
  100. {
  101. CprmanPllState *s = CPRMAN_PLL(obj);
  102. s->xosc_in = qdev_init_clock_in(DEVICE(s), "xosc-in", pll_xosc_update,
  103. s, ClockUpdate);
  104. s->out = qdev_init_clock_out(DEVICE(s), "out");
  105. }
  106. static const VMStateDescription pll_vmstate = {
  107. .name = TYPE_CPRMAN_PLL,
  108. .version_id = 1,
  109. .minimum_version_id = 1,
  110. .fields = (VMStateField[]) {
  111. VMSTATE_CLOCK(xosc_in, CprmanPllState),
  112. VMSTATE_END_OF_LIST()
  113. }
  114. };
  115. static void pll_class_init(ObjectClass *klass, void *data)
  116. {
  117. DeviceClass *dc = DEVICE_CLASS(klass);
  118. dc->reset = pll_reset;
  119. dc->vmsd = &pll_vmstate;
  120. }
  121. static const TypeInfo cprman_pll_info = {
  122. .name = TYPE_CPRMAN_PLL,
  123. .parent = TYPE_DEVICE,
  124. .instance_size = sizeof(CprmanPllState),
  125. .class_init = pll_class_init,
  126. .instance_init = pll_init,
  127. };
  128. /* PLL channel */
  129. static void pll_channel_reset(DeviceState *dev)
  130. {
  131. CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(dev);
  132. const PLLChannelResetInfo *info = &PLL_CHANNEL_RESET_INFO[s->id];
  133. *s->reg_a2w_ctrl = info->a2w_ctrl;
  134. }
  135. static bool pll_channel_is_enabled(CprmanPllChannelState *channel)
  136. {
  137. /*
  138. * XXX I'm not sure of the purpose of the LOAD field. The Linux driver does
  139. * not set it when enabling the channel, but does clear it when disabling
  140. * it.
  141. */
  142. return !FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DISABLE)
  143. && !(*channel->reg_cm & channel->hold_mask);
  144. }
  145. static void pll_channel_update(CprmanPllChannelState *channel)
  146. {
  147. uint64_t freq, div;
  148. if (!pll_channel_is_enabled(channel)) {
  149. clock_update(channel->out, 0);
  150. return;
  151. }
  152. div = FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DIV);
  153. if (!div) {
  154. /*
  155. * It seems that when the divider value is 0, it is considered as
  156. * being maximum by the hardware (see the Linux driver).
  157. */
  158. div = R_A2W_PLLx_CHANNELy_DIV_MASK;
  159. }
  160. /* Some channels have an additional fixed divider */
  161. freq = clock_get_hz(channel->pll_in) / (div * channel->fixed_divider);
  162. clock_update_hz(channel->out, freq);
  163. }
  164. /* Update a PLL and all its channels */
  165. static void pll_update_all_channels(BCM2835CprmanState *s,
  166. CprmanPllState *pll)
  167. {
  168. size_t i;
  169. pll_update(pll);
  170. for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
  171. CprmanPllChannelState *channel = &s->channels[i];
  172. if (channel->parent == pll->id) {
  173. pll_channel_update(channel);
  174. }
  175. }
  176. }
  177. static void pll_channel_pll_in_update(void *opaque, ClockEvent event)
  178. {
  179. pll_channel_update(CPRMAN_PLL_CHANNEL(opaque));
  180. }
  181. static void pll_channel_init(Object *obj)
  182. {
  183. CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(obj);
  184. s->pll_in = qdev_init_clock_in(DEVICE(s), "pll-in",
  185. pll_channel_pll_in_update, s,
  186. ClockUpdate);
  187. s->out = qdev_init_clock_out(DEVICE(s), "out");
  188. }
  189. static const VMStateDescription pll_channel_vmstate = {
  190. .name = TYPE_CPRMAN_PLL_CHANNEL,
  191. .version_id = 1,
  192. .minimum_version_id = 1,
  193. .fields = (VMStateField[]) {
  194. VMSTATE_CLOCK(pll_in, CprmanPllChannelState),
  195. VMSTATE_END_OF_LIST()
  196. }
  197. };
  198. static void pll_channel_class_init(ObjectClass *klass, void *data)
  199. {
  200. DeviceClass *dc = DEVICE_CLASS(klass);
  201. dc->reset = pll_channel_reset;
  202. dc->vmsd = &pll_channel_vmstate;
  203. }
  204. static const TypeInfo cprman_pll_channel_info = {
  205. .name = TYPE_CPRMAN_PLL_CHANNEL,
  206. .parent = TYPE_DEVICE,
  207. .instance_size = sizeof(CprmanPllChannelState),
  208. .class_init = pll_channel_class_init,
  209. .instance_init = pll_channel_init,
  210. };
  211. /* clock mux */
  212. static bool clock_mux_is_enabled(CprmanClockMuxState *mux)
  213. {
  214. return FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, ENABLE);
  215. }
  216. static void clock_mux_update(CprmanClockMuxState *mux)
  217. {
  218. uint64_t freq;
  219. uint32_t div, src = FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, SRC);
  220. bool enabled = clock_mux_is_enabled(mux);
  221. *mux->reg_ctl = FIELD_DP32(*mux->reg_ctl, CM_CLOCKx_CTL, BUSY, enabled);
  222. if (!enabled) {
  223. clock_update(mux->out, 0);
  224. return;
  225. }
  226. freq = clock_get_hz(mux->srcs[src]);
  227. if (mux->int_bits == 0 && mux->frac_bits == 0) {
  228. clock_update_hz(mux->out, freq);
  229. return;
  230. }
  231. /*
  232. * The divider has an integer and a fractional part. The size of each part
  233. * varies with the muxes (int_bits and frac_bits). Both parts are
  234. * concatenated, with the integer part always starting at bit 12.
  235. *
  236. * 31 12 11 0
  237. * ------------------------------
  238. * CM_DIV | | int | frac | |
  239. * ------------------------------
  240. * <-----> <------>
  241. * int_bits frac_bits
  242. */
  243. div = extract32(*mux->reg_div,
  244. R_CM_CLOCKx_DIV_FRAC_LENGTH - mux->frac_bits,
  245. mux->int_bits + mux->frac_bits);
  246. if (!div) {
  247. clock_update(mux->out, 0);
  248. return;
  249. }
  250. freq = muldiv64(freq, 1 << mux->frac_bits, div);
  251. clock_update_hz(mux->out, freq);
  252. }
  253. static void clock_mux_src_update(void *opaque, ClockEvent event)
  254. {
  255. CprmanClockMuxState **backref = opaque;
  256. CprmanClockMuxState *s = *backref;
  257. CprmanClockMuxSource src = backref - s->backref;
  258. if (FIELD_EX32(*s->reg_ctl, CM_CLOCKx_CTL, SRC) != src) {
  259. return;
  260. }
  261. clock_mux_update(s);
  262. }
  263. static void clock_mux_reset(DeviceState *dev)
  264. {
  265. CprmanClockMuxState *clock = CPRMAN_CLOCK_MUX(dev);
  266. const ClockMuxResetInfo *info = &CLOCK_MUX_RESET_INFO[clock->id];
  267. *clock->reg_ctl = info->cm_ctl;
  268. *clock->reg_div = info->cm_div;
  269. }
  270. static void clock_mux_init(Object *obj)
  271. {
  272. CprmanClockMuxState *s = CPRMAN_CLOCK_MUX(obj);
  273. size_t i;
  274. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
  275. char *name = g_strdup_printf("srcs[%zu]", i);
  276. s->backref[i] = s;
  277. s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
  278. clock_mux_src_update,
  279. &s->backref[i],
  280. ClockUpdate);
  281. g_free(name);
  282. }
  283. s->out = qdev_init_clock_out(DEVICE(s), "out");
  284. }
  285. static const VMStateDescription clock_mux_vmstate = {
  286. .name = TYPE_CPRMAN_CLOCK_MUX,
  287. .version_id = 1,
  288. .minimum_version_id = 1,
  289. .fields = (VMStateField[]) {
  290. VMSTATE_ARRAY_CLOCK(srcs, CprmanClockMuxState,
  291. CPRMAN_NUM_CLOCK_MUX_SRC),
  292. VMSTATE_END_OF_LIST()
  293. }
  294. };
  295. static void clock_mux_class_init(ObjectClass *klass, void *data)
  296. {
  297. DeviceClass *dc = DEVICE_CLASS(klass);
  298. dc->reset = clock_mux_reset;
  299. dc->vmsd = &clock_mux_vmstate;
  300. }
  301. static const TypeInfo cprman_clock_mux_info = {
  302. .name = TYPE_CPRMAN_CLOCK_MUX,
  303. .parent = TYPE_DEVICE,
  304. .instance_size = sizeof(CprmanClockMuxState),
  305. .class_init = clock_mux_class_init,
  306. .instance_init = clock_mux_init,
  307. };
  308. /* DSI0HSCK mux */
  309. static void dsi0hsck_mux_update(CprmanDsi0HsckMuxState *s)
  310. {
  311. bool src_is_plld = FIELD_EX32(*s->reg_cm, CM_DSI0HSCK, SELPLLD);
  312. Clock *src = src_is_plld ? s->plld_in : s->plla_in;
  313. clock_update(s->out, clock_get(src));
  314. }
  315. static void dsi0hsck_mux_in_update(void *opaque, ClockEvent event)
  316. {
  317. dsi0hsck_mux_update(CPRMAN_DSI0HSCK_MUX(opaque));
  318. }
  319. static void dsi0hsck_mux_init(Object *obj)
  320. {
  321. CprmanDsi0HsckMuxState *s = CPRMAN_DSI0HSCK_MUX(obj);
  322. DeviceState *dev = DEVICE(obj);
  323. s->plla_in = qdev_init_clock_in(dev, "plla-in", dsi0hsck_mux_in_update,
  324. s, ClockUpdate);
  325. s->plld_in = qdev_init_clock_in(dev, "plld-in", dsi0hsck_mux_in_update,
  326. s, ClockUpdate);
  327. s->out = qdev_init_clock_out(DEVICE(s), "out");
  328. }
  329. static const VMStateDescription dsi0hsck_mux_vmstate = {
  330. .name = TYPE_CPRMAN_DSI0HSCK_MUX,
  331. .version_id = 1,
  332. .minimum_version_id = 1,
  333. .fields = (VMStateField[]) {
  334. VMSTATE_CLOCK(plla_in, CprmanDsi0HsckMuxState),
  335. VMSTATE_CLOCK(plld_in, CprmanDsi0HsckMuxState),
  336. VMSTATE_END_OF_LIST()
  337. }
  338. };
  339. static void dsi0hsck_mux_class_init(ObjectClass *klass, void *data)
  340. {
  341. DeviceClass *dc = DEVICE_CLASS(klass);
  342. dc->vmsd = &dsi0hsck_mux_vmstate;
  343. }
  344. static const TypeInfo cprman_dsi0hsck_mux_info = {
  345. .name = TYPE_CPRMAN_DSI0HSCK_MUX,
  346. .parent = TYPE_DEVICE,
  347. .instance_size = sizeof(CprmanDsi0HsckMuxState),
  348. .class_init = dsi0hsck_mux_class_init,
  349. .instance_init = dsi0hsck_mux_init,
  350. };
  351. /* CPRMAN "top level" model */
  352. static uint32_t get_cm_lock(const BCM2835CprmanState *s)
  353. {
  354. static const int CM_LOCK_MAPPING[CPRMAN_NUM_PLL] = {
  355. [CPRMAN_PLLA] = R_CM_LOCK_FLOCKA_SHIFT,
  356. [CPRMAN_PLLC] = R_CM_LOCK_FLOCKC_SHIFT,
  357. [CPRMAN_PLLD] = R_CM_LOCK_FLOCKD_SHIFT,
  358. [CPRMAN_PLLH] = R_CM_LOCK_FLOCKH_SHIFT,
  359. [CPRMAN_PLLB] = R_CM_LOCK_FLOCKB_SHIFT,
  360. };
  361. uint32_t r = 0;
  362. size_t i;
  363. for (i = 0; i < CPRMAN_NUM_PLL; i++) {
  364. r |= pll_is_locked(&s->plls[i]) << CM_LOCK_MAPPING[i];
  365. }
  366. return r;
  367. }
  368. static uint64_t cprman_read(void *opaque, hwaddr offset,
  369. unsigned size)
  370. {
  371. BCM2835CprmanState *s = CPRMAN(opaque);
  372. uint64_t r = 0;
  373. size_t idx = offset / sizeof(uint32_t);
  374. switch (idx) {
  375. case R_CM_LOCK:
  376. r = get_cm_lock(s);
  377. break;
  378. default:
  379. r = s->regs[idx];
  380. }
  381. trace_bcm2835_cprman_read(offset, r);
  382. return r;
  383. }
  384. static inline void update_pll_and_channels_from_cm(BCM2835CprmanState *s,
  385. size_t idx)
  386. {
  387. size_t i;
  388. for (i = 0; i < CPRMAN_NUM_PLL; i++) {
  389. if (PLL_INIT_INFO[i].cm_offset == idx) {
  390. pll_update_all_channels(s, &s->plls[i]);
  391. return;
  392. }
  393. }
  394. }
  395. static inline void update_channel_from_a2w(BCM2835CprmanState *s, size_t idx)
  396. {
  397. size_t i;
  398. for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
  399. if (PLL_CHANNEL_INIT_INFO[i].a2w_ctrl_offset == idx) {
  400. pll_channel_update(&s->channels[i]);
  401. return;
  402. }
  403. }
  404. }
  405. static inline void update_mux_from_cm(BCM2835CprmanState *s, size_t idx)
  406. {
  407. size_t i;
  408. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
  409. if ((CLOCK_MUX_INIT_INFO[i].cm_offset == idx) ||
  410. (CLOCK_MUX_INIT_INFO[i].cm_offset + 4 == idx)) {
  411. /* matches CM_CTL or CM_DIV mux register */
  412. clock_mux_update(&s->clock_muxes[i]);
  413. return;
  414. }
  415. }
  416. }
  417. #define CASE_PLL_A2W_REGS(pll_) \
  418. case R_A2W_ ## pll_ ## _CTRL: \
  419. case R_A2W_ ## pll_ ## _ANA0: \
  420. case R_A2W_ ## pll_ ## _ANA1: \
  421. case R_A2W_ ## pll_ ## _ANA2: \
  422. case R_A2W_ ## pll_ ## _ANA3: \
  423. case R_A2W_ ## pll_ ## _FRAC
  424. static void cprman_write(void *opaque, hwaddr offset,
  425. uint64_t value, unsigned size)
  426. {
  427. BCM2835CprmanState *s = CPRMAN(opaque);
  428. size_t idx = offset / sizeof(uint32_t);
  429. if (FIELD_EX32(value, CPRMAN, PASSWORD) != CPRMAN_PASSWORD) {
  430. trace_bcm2835_cprman_write_invalid_magic(offset, value);
  431. return;
  432. }
  433. value &= ~R_CPRMAN_PASSWORD_MASK;
  434. trace_bcm2835_cprman_write(offset, value);
  435. s->regs[idx] = value;
  436. switch (idx) {
  437. case R_CM_PLLA ... R_CM_PLLH:
  438. case R_CM_PLLB:
  439. /*
  440. * A given CM_PLLx register is shared by both the PLL and the channels
  441. * of this PLL.
  442. */
  443. update_pll_and_channels_from_cm(s, idx);
  444. break;
  445. CASE_PLL_A2W_REGS(PLLA) :
  446. pll_update(&s->plls[CPRMAN_PLLA]);
  447. break;
  448. CASE_PLL_A2W_REGS(PLLC) :
  449. pll_update(&s->plls[CPRMAN_PLLC]);
  450. break;
  451. CASE_PLL_A2W_REGS(PLLD) :
  452. pll_update(&s->plls[CPRMAN_PLLD]);
  453. break;
  454. CASE_PLL_A2W_REGS(PLLH) :
  455. pll_update(&s->plls[CPRMAN_PLLH]);
  456. break;
  457. CASE_PLL_A2W_REGS(PLLB) :
  458. pll_update(&s->plls[CPRMAN_PLLB]);
  459. break;
  460. case R_A2W_PLLA_DSI0:
  461. case R_A2W_PLLA_CORE:
  462. case R_A2W_PLLA_PER:
  463. case R_A2W_PLLA_CCP2:
  464. case R_A2W_PLLC_CORE2:
  465. case R_A2W_PLLC_CORE1:
  466. case R_A2W_PLLC_PER:
  467. case R_A2W_PLLC_CORE0:
  468. case R_A2W_PLLD_DSI0:
  469. case R_A2W_PLLD_CORE:
  470. case R_A2W_PLLD_PER:
  471. case R_A2W_PLLD_DSI1:
  472. case R_A2W_PLLH_AUX:
  473. case R_A2W_PLLH_RCAL:
  474. case R_A2W_PLLH_PIX:
  475. case R_A2W_PLLB_ARM:
  476. update_channel_from_a2w(s, idx);
  477. break;
  478. case R_CM_GNRICCTL ... R_CM_SMIDIV:
  479. case R_CM_TCNTCNT ... R_CM_VECDIV:
  480. case R_CM_PULSECTL ... R_CM_PULSEDIV:
  481. case R_CM_SDCCTL ... R_CM_ARMCTL:
  482. case R_CM_AVEOCTL ... R_CM_EMMCDIV:
  483. case R_CM_EMMC2CTL ... R_CM_EMMC2DIV:
  484. update_mux_from_cm(s, idx);
  485. break;
  486. case R_CM_DSI0HSCK:
  487. dsi0hsck_mux_update(&s->dsi0hsck_mux);
  488. break;
  489. }
  490. }
  491. #undef CASE_PLL_A2W_REGS
  492. static const MemoryRegionOps cprman_ops = {
  493. .read = cprman_read,
  494. .write = cprman_write,
  495. .endianness = DEVICE_LITTLE_ENDIAN,
  496. .valid = {
  497. /*
  498. * Although this hasn't been checked against real hardware, nor the
  499. * information can be found in a datasheet, it seems reasonable because
  500. * of the "PASSWORD" magic value found in every registers.
  501. */
  502. .min_access_size = 4,
  503. .max_access_size = 4,
  504. .unaligned = false,
  505. },
  506. .impl = {
  507. .max_access_size = 4,
  508. },
  509. };
  510. static void cprman_reset(DeviceState *dev)
  511. {
  512. BCM2835CprmanState *s = CPRMAN(dev);
  513. size_t i;
  514. memset(s->regs, 0, sizeof(s->regs));
  515. for (i = 0; i < CPRMAN_NUM_PLL; i++) {
  516. device_cold_reset(DEVICE(&s->plls[i]));
  517. }
  518. for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
  519. device_cold_reset(DEVICE(&s->channels[i]));
  520. }
  521. device_cold_reset(DEVICE(&s->dsi0hsck_mux));
  522. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
  523. device_cold_reset(DEVICE(&s->clock_muxes[i]));
  524. }
  525. clock_update_hz(s->xosc, s->xosc_freq);
  526. }
  527. static void cprman_init(Object *obj)
  528. {
  529. BCM2835CprmanState *s = CPRMAN(obj);
  530. size_t i;
  531. for (i = 0; i < CPRMAN_NUM_PLL; i++) {
  532. object_initialize_child(obj, PLL_INIT_INFO[i].name,
  533. &s->plls[i], TYPE_CPRMAN_PLL);
  534. set_pll_init_info(s, &s->plls[i], i);
  535. }
  536. for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
  537. object_initialize_child(obj, PLL_CHANNEL_INIT_INFO[i].name,
  538. &s->channels[i],
  539. TYPE_CPRMAN_PLL_CHANNEL);
  540. set_pll_channel_init_info(s, &s->channels[i], i);
  541. }
  542. object_initialize_child(obj, "dsi0hsck-mux",
  543. &s->dsi0hsck_mux, TYPE_CPRMAN_DSI0HSCK_MUX);
  544. s->dsi0hsck_mux.reg_cm = &s->regs[R_CM_DSI0HSCK];
  545. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
  546. char *alias;
  547. object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
  548. &s->clock_muxes[i],
  549. TYPE_CPRMAN_CLOCK_MUX);
  550. set_clock_mux_init_info(s, &s->clock_muxes[i], i);
  551. /* Expose muxes output as CPRMAN outputs */
  552. alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
  553. qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
  554. g_free(alias);
  555. }
  556. s->xosc = clock_new(obj, "xosc");
  557. s->gnd = clock_new(obj, "gnd");
  558. clock_set(s->gnd, 0);
  559. memory_region_init_io(&s->iomem, obj, &cprman_ops,
  560. s, "bcm2835-cprman", 0x2000);
  561. sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
  562. }
  563. static void connect_mux_sources(BCM2835CprmanState *s,
  564. CprmanClockMuxState *mux,
  565. const CprmanPllChannel *clk_mapping)
  566. {
  567. size_t i;
  568. Clock *td0 = s->clock_muxes[CPRMAN_CLOCK_TD0].out;
  569. Clock *td1 = s->clock_muxes[CPRMAN_CLOCK_TD1].out;
  570. /* For sources from 0 to 3. Source 4 to 9 are mux specific */
  571. Clock * const CLK_SRC_MAPPING[] = {
  572. [CPRMAN_CLOCK_SRC_GND] = s->gnd,
  573. [CPRMAN_CLOCK_SRC_XOSC] = s->xosc,
  574. [CPRMAN_CLOCK_SRC_TD0] = td0,
  575. [CPRMAN_CLOCK_SRC_TD1] = td1,
  576. };
  577. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
  578. CprmanPllChannel mapping = clk_mapping[i];
  579. Clock *src;
  580. if (mapping == CPRMAN_CLOCK_SRC_FORCE_GROUND) {
  581. src = s->gnd;
  582. } else if (mapping == CPRMAN_CLOCK_SRC_DSI0HSCK) {
  583. src = s->dsi0hsck_mux.out;
  584. } else if (i < CPRMAN_CLOCK_SRC_PLLA) {
  585. src = CLK_SRC_MAPPING[i];
  586. } else {
  587. src = s->channels[mapping].out;
  588. }
  589. clock_set_source(mux->srcs[i], src);
  590. }
  591. }
  592. static void cprman_realize(DeviceState *dev, Error **errp)
  593. {
  594. BCM2835CprmanState *s = CPRMAN(dev);
  595. size_t i;
  596. for (i = 0; i < CPRMAN_NUM_PLL; i++) {
  597. CprmanPllState *pll = &s->plls[i];
  598. clock_set_source(pll->xosc_in, s->xosc);
  599. if (!qdev_realize(DEVICE(pll), NULL, errp)) {
  600. return;
  601. }
  602. }
  603. for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
  604. CprmanPllChannelState *channel = &s->channels[i];
  605. CprmanPll parent = PLL_CHANNEL_INIT_INFO[i].parent;
  606. Clock *parent_clk = s->plls[parent].out;
  607. clock_set_source(channel->pll_in, parent_clk);
  608. if (!qdev_realize(DEVICE(channel), NULL, errp)) {
  609. return;
  610. }
  611. }
  612. clock_set_source(s->dsi0hsck_mux.plla_in,
  613. s->channels[CPRMAN_PLLA_CHANNEL_DSI0].out);
  614. clock_set_source(s->dsi0hsck_mux.plld_in,
  615. s->channels[CPRMAN_PLLD_CHANNEL_DSI0].out);
  616. if (!qdev_realize(DEVICE(&s->dsi0hsck_mux), NULL, errp)) {
  617. return;
  618. }
  619. for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
  620. CprmanClockMuxState *clock_mux = &s->clock_muxes[i];
  621. connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
  622. if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
  623. return;
  624. }
  625. }
  626. }
  627. static const VMStateDescription cprman_vmstate = {
  628. .name = TYPE_BCM2835_CPRMAN,
  629. .version_id = 1,
  630. .minimum_version_id = 1,
  631. .fields = (VMStateField[]) {
  632. VMSTATE_UINT32_ARRAY(regs, BCM2835CprmanState, CPRMAN_NUM_REGS),
  633. VMSTATE_END_OF_LIST()
  634. }
  635. };
  636. static Property cprman_properties[] = {
  637. DEFINE_PROP_UINT32("xosc-freq-hz", BCM2835CprmanState, xosc_freq, 19200000),
  638. DEFINE_PROP_END_OF_LIST()
  639. };
  640. static void cprman_class_init(ObjectClass *klass, void *data)
  641. {
  642. DeviceClass *dc = DEVICE_CLASS(klass);
  643. dc->realize = cprman_realize;
  644. dc->reset = cprman_reset;
  645. dc->vmsd = &cprman_vmstate;
  646. device_class_set_props(dc, cprman_properties);
  647. }
  648. static const TypeInfo cprman_info = {
  649. .name = TYPE_BCM2835_CPRMAN,
  650. .parent = TYPE_SYS_BUS_DEVICE,
  651. .instance_size = sizeof(BCM2835CprmanState),
  652. .class_init = cprman_class_init,
  653. .instance_init = cprman_init,
  654. };
  655. static void cprman_register_types(void)
  656. {
  657. type_register_static(&cprman_info);
  658. type_register_static(&cprman_pll_info);
  659. type_register_static(&cprman_pll_channel_info);
  660. type_register_static(&cprman_clock_mux_info);
  661. type_register_static(&cprman_dsi0hsck_mux_info);
  662. }
  663. type_init(cprman_register_types);