2
0

memory-device.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. /*
  2. * Memory Device Interface
  3. *
  4. * Copyright ProfitBricks GmbH 2012
  5. * Copyright (C) 2014 Red Hat Inc
  6. * Copyright (c) 2018 Red Hat Inc
  7. *
  8. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  9. * See the COPYING file in the top-level directory.
  10. */
  11. #include "qemu/osdep.h"
  12. #include "qemu/error-report.h"
  13. #include "hw/mem/memory-device.h"
  14. #include "qapi/error.h"
  15. #include "hw/boards.h"
  16. #include "qemu/range.h"
  17. #include "hw/virtio/vhost.h"
  18. #include "sysemu/kvm.h"
  19. #include "trace.h"
  20. static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
  21. {
  22. const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
  23. const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
  24. const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
  25. const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
  26. const uint64_t addr_a = mdc_a->get_addr(md_a);
  27. const uint64_t addr_b = mdc_b->get_addr(md_b);
  28. if (addr_a > addr_b) {
  29. return 1;
  30. } else if (addr_a < addr_b) {
  31. return -1;
  32. }
  33. return 0;
  34. }
  35. static int memory_device_build_list(Object *obj, void *opaque)
  36. {
  37. GSList **list = opaque;
  38. if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  39. DeviceState *dev = DEVICE(obj);
  40. if (dev->realized) { /* only realized memory devices matter */
  41. *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
  42. }
  43. }
  44. object_child_foreach(obj, memory_device_build_list, opaque);
  45. return 0;
  46. }
  47. static int memory_device_used_region_size(Object *obj, void *opaque)
  48. {
  49. uint64_t *size = opaque;
  50. if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  51. const DeviceState *dev = DEVICE(obj);
  52. const MemoryDeviceState *md = MEMORY_DEVICE(obj);
  53. if (dev->realized) {
  54. *size += memory_device_get_region_size(md, &error_abort);
  55. }
  56. }
  57. object_child_foreach(obj, memory_device_used_region_size, opaque);
  58. return 0;
  59. }
  60. static void memory_device_check_addable(MachineState *ms, uint64_t size,
  61. Error **errp)
  62. {
  63. uint64_t used_region_size = 0;
  64. /* we will need a new memory slot for kvm and vhost */
  65. if (kvm_enabled() && !kvm_has_free_slot(ms)) {
  66. error_setg(errp, "hypervisor has no free memory slots left");
  67. return;
  68. }
  69. if (!vhost_has_free_slot()) {
  70. error_setg(errp, "a used vhost backend has no free memory slots left");
  71. return;
  72. }
  73. /* will we exceed the total amount of memory specified */
  74. memory_device_used_region_size(OBJECT(ms), &used_region_size);
  75. if (used_region_size + size < used_region_size ||
  76. used_region_size + size > ms->maxram_size - ms->ram_size) {
  77. error_setg(errp, "not enough space, currently 0x%" PRIx64
  78. " in use of total space for memory devices 0x" RAM_ADDR_FMT,
  79. used_region_size, ms->maxram_size - ms->ram_size);
  80. return;
  81. }
  82. }
  83. static uint64_t memory_device_get_free_addr(MachineState *ms,
  84. const uint64_t *hint,
  85. uint64_t align, uint64_t size,
  86. Error **errp)
  87. {
  88. Error *err = NULL;
  89. GSList *list = NULL, *item;
  90. Range as, new = range_empty;
  91. if (!ms->device_memory) {
  92. error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
  93. "supported by the machine");
  94. return 0;
  95. }
  96. if (!memory_region_size(&ms->device_memory->mr)) {
  97. error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
  98. "enabled, please specify the maxmem option");
  99. return 0;
  100. }
  101. range_init_nofail(&as, ms->device_memory->base,
  102. memory_region_size(&ms->device_memory->mr));
  103. /* start of address space indicates the maximum alignment we expect */
  104. if (!QEMU_IS_ALIGNED(range_lob(&as), align)) {
  105. warn_report("the alignment (0x%" PRIx64 ") exceeds the expected"
  106. " maximum alignment, memory will get fragmented and not"
  107. " all 'maxmem' might be usable for memory devices.",
  108. align);
  109. }
  110. memory_device_check_addable(ms, size, &err);
  111. if (err) {
  112. error_propagate(errp, err);
  113. return 0;
  114. }
  115. if (hint && !QEMU_IS_ALIGNED(*hint, align)) {
  116. error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
  117. align);
  118. return 0;
  119. }
  120. if (!QEMU_IS_ALIGNED(size, align)) {
  121. error_setg(errp, "backend memory size must be multiple of 0x%"
  122. PRIx64, align);
  123. return 0;
  124. }
  125. if (hint) {
  126. if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) {
  127. error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
  128. "], usable range for memory devices [0x%" PRIx64 ":0x%"
  129. PRIx64 "]", *hint, size, range_lob(&as),
  130. range_size(&as));
  131. return 0;
  132. }
  133. } else {
  134. if (range_init(&new, QEMU_ALIGN_UP(range_lob(&as), align), size)) {
  135. error_setg(errp, "can't add memory device, device too big");
  136. return 0;
  137. }
  138. }
  139. /* find address range that will fit new memory device */
  140. object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
  141. for (item = list; item; item = g_slist_next(item)) {
  142. const MemoryDeviceState *md = item->data;
  143. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
  144. uint64_t next_addr;
  145. Range tmp;
  146. range_init_nofail(&tmp, mdc->get_addr(md),
  147. memory_device_get_region_size(md, &error_abort));
  148. if (range_overlaps_range(&tmp, &new)) {
  149. if (hint) {
  150. const DeviceState *d = DEVICE(md);
  151. error_setg(errp, "address range conflicts with memory device"
  152. " id='%s'", d->id ? d->id : "(unnamed)");
  153. goto out;
  154. }
  155. next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align);
  156. if (!next_addr || range_init(&new, next_addr, range_size(&new))) {
  157. range_make_empty(&new);
  158. break;
  159. }
  160. } else if (range_lob(&tmp) > range_upb(&new)) {
  161. break;
  162. }
  163. }
  164. if (!range_contains_range(&as, &new)) {
  165. error_setg(errp, "could not find position in guest address space for "
  166. "memory device - memory fragmented due to alignments");
  167. }
  168. out:
  169. g_slist_free(list);
  170. return range_lob(&new);
  171. }
  172. MemoryDeviceInfoList *qmp_memory_device_list(void)
  173. {
  174. GSList *devices = NULL, *item;
  175. MemoryDeviceInfoList *list = NULL, **tail = &list;
  176. object_child_foreach(qdev_get_machine(), memory_device_build_list,
  177. &devices);
  178. for (item = devices; item; item = g_slist_next(item)) {
  179. const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
  180. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
  181. MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
  182. mdc->fill_device_info(md, info);
  183. QAPI_LIST_APPEND(tail, info);
  184. }
  185. g_slist_free(devices);
  186. return list;
  187. }
  188. static int memory_device_plugged_size(Object *obj, void *opaque)
  189. {
  190. uint64_t *size = opaque;
  191. if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  192. const DeviceState *dev = DEVICE(obj);
  193. const MemoryDeviceState *md = MEMORY_DEVICE(obj);
  194. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
  195. if (dev->realized) {
  196. *size += mdc->get_plugged_size(md, &error_abort);
  197. }
  198. }
  199. object_child_foreach(obj, memory_device_plugged_size, opaque);
  200. return 0;
  201. }
  202. uint64_t get_plugged_memory_size(void)
  203. {
  204. uint64_t size = 0;
  205. memory_device_plugged_size(qdev_get_machine(), &size);
  206. return size;
  207. }
  208. void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
  209. const uint64_t *legacy_align, Error **errp)
  210. {
  211. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  212. Error *local_err = NULL;
  213. uint64_t addr, align = 0;
  214. MemoryRegion *mr;
  215. mr = mdc->get_memory_region(md, &local_err);
  216. if (local_err) {
  217. goto out;
  218. }
  219. if (legacy_align) {
  220. align = *legacy_align;
  221. } else {
  222. if (mdc->get_min_alignment) {
  223. align = mdc->get_min_alignment(md);
  224. }
  225. align = MAX(align, memory_region_get_alignment(mr));
  226. }
  227. addr = mdc->get_addr(md);
  228. addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align,
  229. memory_region_size(mr), &local_err);
  230. if (local_err) {
  231. goto out;
  232. }
  233. mdc->set_addr(md, addr, &local_err);
  234. if (!local_err) {
  235. trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "",
  236. addr);
  237. }
  238. out:
  239. error_propagate(errp, local_err);
  240. }
  241. void memory_device_plug(MemoryDeviceState *md, MachineState *ms)
  242. {
  243. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  244. const uint64_t addr = mdc->get_addr(md);
  245. MemoryRegion *mr;
  246. /*
  247. * We expect that a previous call to memory_device_pre_plug() succeeded, so
  248. * it can't fail at this point.
  249. */
  250. mr = mdc->get_memory_region(md, &error_abort);
  251. g_assert(ms->device_memory);
  252. memory_region_add_subregion(&ms->device_memory->mr,
  253. addr - ms->device_memory->base, mr);
  254. trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr);
  255. }
  256. void memory_device_unplug(MemoryDeviceState *md, MachineState *ms)
  257. {
  258. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  259. MemoryRegion *mr;
  260. /*
  261. * We expect that a previous call to memory_device_pre_plug() succeeded, so
  262. * it can't fail at this point.
  263. */
  264. mr = mdc->get_memory_region(md, &error_abort);
  265. g_assert(ms->device_memory);
  266. memory_region_del_subregion(&ms->device_memory->mr, mr);
  267. trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "",
  268. mdc->get_addr(md));
  269. }
  270. uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
  271. Error **errp)
  272. {
  273. const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
  274. MemoryRegion *mr;
  275. /* dropping const here is fine as we don't touch the memory region */
  276. mr = mdc->get_memory_region((MemoryDeviceState *)md, errp);
  277. if (!mr) {
  278. return 0;
  279. }
  280. return memory_region_size(mr);
  281. }
  282. static const TypeInfo memory_device_info = {
  283. .name = TYPE_MEMORY_DEVICE,
  284. .parent = TYPE_INTERFACE,
  285. .class_size = sizeof(MemoryDeviceClass),
  286. };
  287. static void memory_device_register_types(void)
  288. {
  289. type_register_static(&memory_device_info);
  290. }
  291. type_init(memory_device_register_types)