2
0

riscv_aplic.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978
  1. /*
  2. * RISC-V APLIC (Advanced Platform Level Interrupt Controller)
  3. *
  4. * Copyright (c) 2021 Western Digital Corporation or its affiliates.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2 or later, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include "qemu/osdep.h"
  19. #include "qapi/error.h"
  20. #include "qemu/log.h"
  21. #include "qemu/module.h"
  22. #include "qemu/error-report.h"
  23. #include "qemu/bswap.h"
  24. #include "exec/address-spaces.h"
  25. #include "hw/sysbus.h"
  26. #include "hw/pci/msi.h"
  27. #include "hw/boards.h"
  28. #include "hw/qdev-properties.h"
  29. #include "hw/intc/riscv_aplic.h"
  30. #include "hw/irq.h"
  31. #include "target/riscv/cpu.h"
  32. #include "sysemu/sysemu.h"
  33. #include "migration/vmstate.h"
  34. #define APLIC_MAX_IDC (1UL << 14)
  35. #define APLIC_MAX_SOURCE 1024
  36. #define APLIC_MIN_IPRIO_BITS 1
  37. #define APLIC_MAX_IPRIO_BITS 8
  38. #define APLIC_MAX_CHILDREN 1024
  39. #define APLIC_DOMAINCFG 0x0000
  40. #define APLIC_DOMAINCFG_RDONLY 0x80000000
  41. #define APLIC_DOMAINCFG_IE (1 << 8)
  42. #define APLIC_DOMAINCFG_DM (1 << 2)
  43. #define APLIC_DOMAINCFG_BE (1 << 0)
  44. #define APLIC_SOURCECFG_BASE 0x0004
  45. #define APLIC_SOURCECFG_D (1 << 10)
  46. #define APLIC_SOURCECFG_CHILDIDX_MASK 0x000003ff
  47. #define APLIC_SOURCECFG_SM_MASK 0x00000007
  48. #define APLIC_SOURCECFG_SM_INACTIVE 0x0
  49. #define APLIC_SOURCECFG_SM_DETACH 0x1
  50. #define APLIC_SOURCECFG_SM_EDGE_RISE 0x4
  51. #define APLIC_SOURCECFG_SM_EDGE_FALL 0x5
  52. #define APLIC_SOURCECFG_SM_LEVEL_HIGH 0x6
  53. #define APLIC_SOURCECFG_SM_LEVEL_LOW 0x7
  54. #define APLIC_MMSICFGADDR 0x1bc0
  55. #define APLIC_MMSICFGADDRH 0x1bc4
  56. #define APLIC_SMSICFGADDR 0x1bc8
  57. #define APLIC_SMSICFGADDRH 0x1bcc
  58. #define APLIC_xMSICFGADDRH_L (1UL << 31)
  59. #define APLIC_xMSICFGADDRH_HHXS_MASK 0x1f
  60. #define APLIC_xMSICFGADDRH_HHXS_SHIFT 24
  61. #define APLIC_xMSICFGADDRH_LHXS_MASK 0x7
  62. #define APLIC_xMSICFGADDRH_LHXS_SHIFT 20
  63. #define APLIC_xMSICFGADDRH_HHXW_MASK 0x7
  64. #define APLIC_xMSICFGADDRH_HHXW_SHIFT 16
  65. #define APLIC_xMSICFGADDRH_LHXW_MASK 0xf
  66. #define APLIC_xMSICFGADDRH_LHXW_SHIFT 12
  67. #define APLIC_xMSICFGADDRH_BAPPN_MASK 0xfff
  68. #define APLIC_xMSICFGADDR_PPN_SHIFT 12
  69. #define APLIC_xMSICFGADDR_PPN_HART(__lhxs) \
  70. ((1UL << (__lhxs)) - 1)
  71. #define APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) \
  72. ((1UL << (__lhxw)) - 1)
  73. #define APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs) \
  74. ((__lhxs))
  75. #define APLIC_xMSICFGADDR_PPN_LHX(__lhxw, __lhxs) \
  76. (APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) << \
  77. APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs))
  78. #define APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) \
  79. ((1UL << (__hhxw)) - 1)
  80. #define APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs) \
  81. ((__hhxs) + APLIC_xMSICFGADDR_PPN_SHIFT)
  82. #define APLIC_xMSICFGADDR_PPN_HHX(__hhxw, __hhxs) \
  83. (APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) << \
  84. APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs))
  85. #define APLIC_xMSICFGADDRH_VALID_MASK \
  86. (APLIC_xMSICFGADDRH_L | \
  87. (APLIC_xMSICFGADDRH_HHXS_MASK << APLIC_xMSICFGADDRH_HHXS_SHIFT) | \
  88. (APLIC_xMSICFGADDRH_LHXS_MASK << APLIC_xMSICFGADDRH_LHXS_SHIFT) | \
  89. (APLIC_xMSICFGADDRH_HHXW_MASK << APLIC_xMSICFGADDRH_HHXW_SHIFT) | \
  90. (APLIC_xMSICFGADDRH_LHXW_MASK << APLIC_xMSICFGADDRH_LHXW_SHIFT) | \
  91. APLIC_xMSICFGADDRH_BAPPN_MASK)
  92. #define APLIC_SETIP_BASE 0x1c00
  93. #define APLIC_SETIPNUM 0x1cdc
  94. #define APLIC_CLRIP_BASE 0x1d00
  95. #define APLIC_CLRIPNUM 0x1ddc
  96. #define APLIC_SETIE_BASE 0x1e00
  97. #define APLIC_SETIENUM 0x1edc
  98. #define APLIC_CLRIE_BASE 0x1f00
  99. #define APLIC_CLRIENUM 0x1fdc
  100. #define APLIC_SETIPNUM_LE 0x2000
  101. #define APLIC_SETIPNUM_BE 0x2004
  102. #define APLIC_ISTATE_PENDING (1U << 0)
  103. #define APLIC_ISTATE_ENABLED (1U << 1)
  104. #define APLIC_ISTATE_ENPEND (APLIC_ISTATE_ENABLED | \
  105. APLIC_ISTATE_PENDING)
  106. #define APLIC_ISTATE_INPUT (1U << 8)
  107. #define APLIC_GENMSI 0x3000
  108. #define APLIC_TARGET_BASE 0x3004
  109. #define APLIC_TARGET_HART_IDX_SHIFT 18
  110. #define APLIC_TARGET_HART_IDX_MASK 0x3fff
  111. #define APLIC_TARGET_GUEST_IDX_SHIFT 12
  112. #define APLIC_TARGET_GUEST_IDX_MASK 0x3f
  113. #define APLIC_TARGET_IPRIO_MASK 0xff
  114. #define APLIC_TARGET_EIID_MASK 0x7ff
  115. #define APLIC_IDC_BASE 0x4000
  116. #define APLIC_IDC_SIZE 32
  117. #define APLIC_IDC_IDELIVERY 0x00
  118. #define APLIC_IDC_IFORCE 0x04
  119. #define APLIC_IDC_ITHRESHOLD 0x08
  120. #define APLIC_IDC_TOPI 0x18
  121. #define APLIC_IDC_TOPI_ID_SHIFT 16
  122. #define APLIC_IDC_TOPI_ID_MASK 0x3ff
  123. #define APLIC_IDC_TOPI_PRIO_MASK 0xff
  124. #define APLIC_IDC_CLAIMI 0x1c
  125. static uint32_t riscv_aplic_read_input_word(RISCVAPLICState *aplic,
  126. uint32_t word)
  127. {
  128. uint32_t i, irq, ret = 0;
  129. for (i = 0; i < 32; i++) {
  130. irq = word * 32 + i;
  131. if (!irq || aplic->num_irqs <= irq) {
  132. continue;
  133. }
  134. ret |= ((aplic->state[irq] & APLIC_ISTATE_INPUT) ? 1 : 0) << i;
  135. }
  136. return ret;
  137. }
  138. static uint32_t riscv_aplic_read_pending_word(RISCVAPLICState *aplic,
  139. uint32_t word)
  140. {
  141. uint32_t i, irq, ret = 0;
  142. for (i = 0; i < 32; i++) {
  143. irq = word * 32 + i;
  144. if (!irq || aplic->num_irqs <= irq) {
  145. continue;
  146. }
  147. ret |= ((aplic->state[irq] & APLIC_ISTATE_PENDING) ? 1 : 0) << i;
  148. }
  149. return ret;
  150. }
  151. static void riscv_aplic_set_pending_raw(RISCVAPLICState *aplic,
  152. uint32_t irq, bool pending)
  153. {
  154. if (pending) {
  155. aplic->state[irq] |= APLIC_ISTATE_PENDING;
  156. } else {
  157. aplic->state[irq] &= ~APLIC_ISTATE_PENDING;
  158. }
  159. }
  160. static void riscv_aplic_set_pending(RISCVAPLICState *aplic,
  161. uint32_t irq, bool pending)
  162. {
  163. uint32_t sourcecfg, sm;
  164. if ((irq <= 0) || (aplic->num_irqs <= irq)) {
  165. return;
  166. }
  167. sourcecfg = aplic->sourcecfg[irq];
  168. if (sourcecfg & APLIC_SOURCECFG_D) {
  169. return;
  170. }
  171. sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
  172. if ((sm == APLIC_SOURCECFG_SM_INACTIVE) ||
  173. ((!aplic->msimode || (aplic->msimode && !pending)) &&
  174. ((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) ||
  175. (sm == APLIC_SOURCECFG_SM_LEVEL_LOW)))) {
  176. return;
  177. }
  178. riscv_aplic_set_pending_raw(aplic, irq, pending);
  179. }
  180. static void riscv_aplic_set_pending_word(RISCVAPLICState *aplic,
  181. uint32_t word, uint32_t value,
  182. bool pending)
  183. {
  184. uint32_t i, irq;
  185. for (i = 0; i < 32; i++) {
  186. irq = word * 32 + i;
  187. if (!irq || aplic->num_irqs <= irq) {
  188. continue;
  189. }
  190. if (value & (1U << i)) {
  191. riscv_aplic_set_pending(aplic, irq, pending);
  192. }
  193. }
  194. }
  195. static uint32_t riscv_aplic_read_enabled_word(RISCVAPLICState *aplic,
  196. int word)
  197. {
  198. uint32_t i, irq, ret = 0;
  199. for (i = 0; i < 32; i++) {
  200. irq = word * 32 + i;
  201. if (!irq || aplic->num_irqs <= irq) {
  202. continue;
  203. }
  204. ret |= ((aplic->state[irq] & APLIC_ISTATE_ENABLED) ? 1 : 0) << i;
  205. }
  206. return ret;
  207. }
  208. static void riscv_aplic_set_enabled_raw(RISCVAPLICState *aplic,
  209. uint32_t irq, bool enabled)
  210. {
  211. if (enabled) {
  212. aplic->state[irq] |= APLIC_ISTATE_ENABLED;
  213. } else {
  214. aplic->state[irq] &= ~APLIC_ISTATE_ENABLED;
  215. }
  216. }
  217. static void riscv_aplic_set_enabled(RISCVAPLICState *aplic,
  218. uint32_t irq, bool enabled)
  219. {
  220. uint32_t sourcecfg, sm;
  221. if ((irq <= 0) || (aplic->num_irqs <= irq)) {
  222. return;
  223. }
  224. sourcecfg = aplic->sourcecfg[irq];
  225. if (sourcecfg & APLIC_SOURCECFG_D) {
  226. return;
  227. }
  228. sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
  229. if (sm == APLIC_SOURCECFG_SM_INACTIVE) {
  230. return;
  231. }
  232. riscv_aplic_set_enabled_raw(aplic, irq, enabled);
  233. }
  234. static void riscv_aplic_set_enabled_word(RISCVAPLICState *aplic,
  235. uint32_t word, uint32_t value,
  236. bool enabled)
  237. {
  238. uint32_t i, irq;
  239. for (i = 0; i < 32; i++) {
  240. irq = word * 32 + i;
  241. if (!irq || aplic->num_irqs <= irq) {
  242. continue;
  243. }
  244. if (value & (1U << i)) {
  245. riscv_aplic_set_enabled(aplic, irq, enabled);
  246. }
  247. }
  248. }
  249. static void riscv_aplic_msi_send(RISCVAPLICState *aplic,
  250. uint32_t hart_idx, uint32_t guest_idx,
  251. uint32_t eiid)
  252. {
  253. uint64_t addr;
  254. MemTxResult result;
  255. RISCVAPLICState *aplic_m;
  256. uint32_t lhxs, lhxw, hhxs, hhxw, group_idx, msicfgaddr, msicfgaddrH;
  257. aplic_m = aplic;
  258. while (aplic_m && !aplic_m->mmode) {
  259. aplic_m = aplic_m->parent;
  260. }
  261. if (!aplic_m) {
  262. qemu_log_mask(LOG_GUEST_ERROR, "%s: m-level APLIC not found\n",
  263. __func__);
  264. return;
  265. }
  266. if (aplic->mmode) {
  267. msicfgaddr = aplic_m->mmsicfgaddr;
  268. msicfgaddrH = aplic_m->mmsicfgaddrH;
  269. } else {
  270. msicfgaddr = aplic_m->smsicfgaddr;
  271. msicfgaddrH = aplic_m->smsicfgaddrH;
  272. }
  273. lhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXS_SHIFT) &
  274. APLIC_xMSICFGADDRH_LHXS_MASK;
  275. lhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXW_SHIFT) &
  276. APLIC_xMSICFGADDRH_LHXW_MASK;
  277. hhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXS_SHIFT) &
  278. APLIC_xMSICFGADDRH_HHXS_MASK;
  279. hhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXW_SHIFT) &
  280. APLIC_xMSICFGADDRH_HHXW_MASK;
  281. group_idx = hart_idx >> lhxw;
  282. hart_idx &= APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw);
  283. addr = msicfgaddr;
  284. addr |= ((uint64_t)(msicfgaddrH & APLIC_xMSICFGADDRH_BAPPN_MASK)) << 32;
  285. addr |= ((uint64_t)(group_idx & APLIC_xMSICFGADDR_PPN_HHX_MASK(hhxw))) <<
  286. APLIC_xMSICFGADDR_PPN_HHX_SHIFT(hhxs);
  287. addr |= ((uint64_t)(hart_idx & APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw))) <<
  288. APLIC_xMSICFGADDR_PPN_LHX_SHIFT(lhxs);
  289. addr |= (uint64_t)(guest_idx & APLIC_xMSICFGADDR_PPN_HART(lhxs));
  290. addr <<= APLIC_xMSICFGADDR_PPN_SHIFT;
  291. address_space_stl_le(&address_space_memory, addr,
  292. eiid, MEMTXATTRS_UNSPECIFIED, &result);
  293. if (result != MEMTX_OK) {
  294. qemu_log_mask(LOG_GUEST_ERROR, "%s: MSI write failed for "
  295. "hart_index=%d guest_index=%d eiid=%d\n",
  296. __func__, hart_idx, guest_idx, eiid);
  297. }
  298. }
  299. static void riscv_aplic_msi_irq_update(RISCVAPLICState *aplic, uint32_t irq)
  300. {
  301. uint32_t hart_idx, guest_idx, eiid;
  302. if (!aplic->msimode || (aplic->num_irqs <= irq) ||
  303. !(aplic->domaincfg & APLIC_DOMAINCFG_IE)) {
  304. return;
  305. }
  306. if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) != APLIC_ISTATE_ENPEND) {
  307. return;
  308. }
  309. riscv_aplic_set_pending_raw(aplic, irq, false);
  310. hart_idx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
  311. hart_idx &= APLIC_TARGET_HART_IDX_MASK;
  312. if (aplic->mmode) {
  313. /* M-level APLIC ignores guest_index */
  314. guest_idx = 0;
  315. } else {
  316. guest_idx = aplic->target[irq] >> APLIC_TARGET_GUEST_IDX_SHIFT;
  317. guest_idx &= APLIC_TARGET_GUEST_IDX_MASK;
  318. }
  319. eiid = aplic->target[irq] & APLIC_TARGET_EIID_MASK;
  320. riscv_aplic_msi_send(aplic, hart_idx, guest_idx, eiid);
  321. }
  322. static uint32_t riscv_aplic_idc_topi(RISCVAPLICState *aplic, uint32_t idc)
  323. {
  324. uint32_t best_irq, best_iprio;
  325. uint32_t irq, iprio, ihartidx, ithres;
  326. if (aplic->num_harts <= idc) {
  327. return 0;
  328. }
  329. ithres = aplic->ithreshold[idc];
  330. best_irq = best_iprio = UINT32_MAX;
  331. for (irq = 1; irq < aplic->num_irqs; irq++) {
  332. if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) !=
  333. APLIC_ISTATE_ENPEND) {
  334. continue;
  335. }
  336. ihartidx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
  337. ihartidx &= APLIC_TARGET_HART_IDX_MASK;
  338. if (ihartidx != idc) {
  339. continue;
  340. }
  341. iprio = aplic->target[irq] & aplic->iprio_mask;
  342. if (ithres && iprio >= ithres) {
  343. continue;
  344. }
  345. if (iprio < best_iprio) {
  346. best_irq = irq;
  347. best_iprio = iprio;
  348. }
  349. }
  350. if (best_irq < aplic->num_irqs && best_iprio <= aplic->iprio_mask) {
  351. return (best_irq << APLIC_IDC_TOPI_ID_SHIFT) | best_iprio;
  352. }
  353. return 0;
  354. }
  355. static void riscv_aplic_idc_update(RISCVAPLICState *aplic, uint32_t idc)
  356. {
  357. uint32_t topi;
  358. if (aplic->msimode || aplic->num_harts <= idc) {
  359. return;
  360. }
  361. topi = riscv_aplic_idc_topi(aplic, idc);
  362. if ((aplic->domaincfg & APLIC_DOMAINCFG_IE) &&
  363. aplic->idelivery[idc] &&
  364. (aplic->iforce[idc] || topi)) {
  365. qemu_irq_raise(aplic->external_irqs[idc]);
  366. } else {
  367. qemu_irq_lower(aplic->external_irqs[idc]);
  368. }
  369. }
  370. static uint32_t riscv_aplic_idc_claimi(RISCVAPLICState *aplic, uint32_t idc)
  371. {
  372. uint32_t irq, state, sm, topi = riscv_aplic_idc_topi(aplic, idc);
  373. if (!topi) {
  374. aplic->iforce[idc] = 0;
  375. return 0;
  376. }
  377. irq = (topi >> APLIC_IDC_TOPI_ID_SHIFT) & APLIC_IDC_TOPI_ID_MASK;
  378. sm = aplic->sourcecfg[irq] & APLIC_SOURCECFG_SM_MASK;
  379. state = aplic->state[irq];
  380. riscv_aplic_set_pending_raw(aplic, irq, false);
  381. if ((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) &&
  382. (state & APLIC_ISTATE_INPUT)) {
  383. riscv_aplic_set_pending_raw(aplic, irq, true);
  384. } else if ((sm == APLIC_SOURCECFG_SM_LEVEL_LOW) &&
  385. !(state & APLIC_ISTATE_INPUT)) {
  386. riscv_aplic_set_pending_raw(aplic, irq, true);
  387. }
  388. riscv_aplic_idc_update(aplic, idc);
  389. return topi;
  390. }
  391. static void riscv_aplic_request(void *opaque, int irq, int level)
  392. {
  393. bool update = false;
  394. RISCVAPLICState *aplic = opaque;
  395. uint32_t sourcecfg, childidx, state, idc;
  396. assert((0 < irq) && (irq < aplic->num_irqs));
  397. sourcecfg = aplic->sourcecfg[irq];
  398. if (sourcecfg & APLIC_SOURCECFG_D) {
  399. childidx = sourcecfg & APLIC_SOURCECFG_CHILDIDX_MASK;
  400. if (childidx < aplic->num_children) {
  401. riscv_aplic_request(aplic->children[childidx], irq, level);
  402. }
  403. return;
  404. }
  405. state = aplic->state[irq];
  406. switch (sourcecfg & APLIC_SOURCECFG_SM_MASK) {
  407. case APLIC_SOURCECFG_SM_EDGE_RISE:
  408. if ((level > 0) && !(state & APLIC_ISTATE_INPUT) &&
  409. !(state & APLIC_ISTATE_PENDING)) {
  410. riscv_aplic_set_pending_raw(aplic, irq, true);
  411. update = true;
  412. }
  413. break;
  414. case APLIC_SOURCECFG_SM_EDGE_FALL:
  415. if ((level <= 0) && (state & APLIC_ISTATE_INPUT) &&
  416. !(state & APLIC_ISTATE_PENDING)) {
  417. riscv_aplic_set_pending_raw(aplic, irq, true);
  418. update = true;
  419. }
  420. break;
  421. case APLIC_SOURCECFG_SM_LEVEL_HIGH:
  422. if ((level > 0) && !(state & APLIC_ISTATE_PENDING)) {
  423. riscv_aplic_set_pending_raw(aplic, irq, true);
  424. update = true;
  425. }
  426. break;
  427. case APLIC_SOURCECFG_SM_LEVEL_LOW:
  428. if ((level <= 0) && !(state & APLIC_ISTATE_PENDING)) {
  429. riscv_aplic_set_pending_raw(aplic, irq, true);
  430. update = true;
  431. }
  432. break;
  433. default:
  434. break;
  435. }
  436. if (level <= 0) {
  437. aplic->state[irq] &= ~APLIC_ISTATE_INPUT;
  438. } else {
  439. aplic->state[irq] |= APLIC_ISTATE_INPUT;
  440. }
  441. if (update) {
  442. if (aplic->msimode) {
  443. riscv_aplic_msi_irq_update(aplic, irq);
  444. } else {
  445. idc = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
  446. idc &= APLIC_TARGET_HART_IDX_MASK;
  447. riscv_aplic_idc_update(aplic, idc);
  448. }
  449. }
  450. }
  451. static uint64_t riscv_aplic_read(void *opaque, hwaddr addr, unsigned size)
  452. {
  453. uint32_t irq, word, idc;
  454. RISCVAPLICState *aplic = opaque;
  455. /* Reads must be 4 byte words */
  456. if ((addr & 0x3) != 0) {
  457. goto err;
  458. }
  459. if (addr == APLIC_DOMAINCFG) {
  460. return APLIC_DOMAINCFG_RDONLY | aplic->domaincfg |
  461. (aplic->msimode ? APLIC_DOMAINCFG_DM : 0);
  462. } else if ((APLIC_SOURCECFG_BASE <= addr) &&
  463. (addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) {
  464. irq = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1;
  465. return aplic->sourcecfg[irq];
  466. } else if (aplic->mmode && aplic->msimode &&
  467. (addr == APLIC_MMSICFGADDR)) {
  468. return aplic->mmsicfgaddr;
  469. } else if (aplic->mmode && aplic->msimode &&
  470. (addr == APLIC_MMSICFGADDRH)) {
  471. return aplic->mmsicfgaddrH;
  472. } else if (aplic->mmode && aplic->msimode &&
  473. (addr == APLIC_SMSICFGADDR)) {
  474. /*
  475. * Registers SMSICFGADDR and SMSICFGADDRH are implemented only if:
  476. * (a) the interrupt domain is at machine level
  477. * (b) the domain's harts implement supervisor mode
  478. * (c) the domain has one or more child supervisor-level domains
  479. * that support MSI delivery mode (domaincfg.DM is not read-
  480. * only zero in at least one of the supervisor-level child
  481. * domains).
  482. */
  483. return (aplic->num_children) ? aplic->smsicfgaddr : 0;
  484. } else if (aplic->mmode && aplic->msimode &&
  485. (addr == APLIC_SMSICFGADDRH)) {
  486. return (aplic->num_children) ? aplic->smsicfgaddrH : 0;
  487. } else if ((APLIC_SETIP_BASE <= addr) &&
  488. (addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) {
  489. word = (addr - APLIC_SETIP_BASE) >> 2;
  490. return riscv_aplic_read_pending_word(aplic, word);
  491. } else if (addr == APLIC_SETIPNUM) {
  492. return 0;
  493. } else if ((APLIC_CLRIP_BASE <= addr) &&
  494. (addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) {
  495. word = (addr - APLIC_CLRIP_BASE) >> 2;
  496. return riscv_aplic_read_input_word(aplic, word);
  497. } else if (addr == APLIC_CLRIPNUM) {
  498. return 0;
  499. } else if ((APLIC_SETIE_BASE <= addr) &&
  500. (addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) {
  501. word = (addr - APLIC_SETIE_BASE) >> 2;
  502. return riscv_aplic_read_enabled_word(aplic, word);
  503. } else if (addr == APLIC_SETIENUM) {
  504. return 0;
  505. } else if ((APLIC_CLRIE_BASE <= addr) &&
  506. (addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) {
  507. return 0;
  508. } else if (addr == APLIC_CLRIENUM) {
  509. return 0;
  510. } else if (addr == APLIC_SETIPNUM_LE) {
  511. return 0;
  512. } else if (addr == APLIC_SETIPNUM_BE) {
  513. return 0;
  514. } else if (addr == APLIC_GENMSI) {
  515. return (aplic->msimode) ? aplic->genmsi : 0;
  516. } else if ((APLIC_TARGET_BASE <= addr) &&
  517. (addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) {
  518. irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1;
  519. return aplic->target[irq];
  520. } else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) &&
  521. (addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) {
  522. idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE;
  523. switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) {
  524. case APLIC_IDC_IDELIVERY:
  525. return aplic->idelivery[idc];
  526. case APLIC_IDC_IFORCE:
  527. return aplic->iforce[idc];
  528. case APLIC_IDC_ITHRESHOLD:
  529. return aplic->ithreshold[idc];
  530. case APLIC_IDC_TOPI:
  531. return riscv_aplic_idc_topi(aplic, idc);
  532. case APLIC_IDC_CLAIMI:
  533. return riscv_aplic_idc_claimi(aplic, idc);
  534. default:
  535. goto err;
  536. };
  537. }
  538. err:
  539. qemu_log_mask(LOG_GUEST_ERROR,
  540. "%s: Invalid register read 0x%" HWADDR_PRIx "\n",
  541. __func__, addr);
  542. return 0;
  543. }
  544. static void riscv_aplic_write(void *opaque, hwaddr addr, uint64_t value,
  545. unsigned size)
  546. {
  547. RISCVAPLICState *aplic = opaque;
  548. uint32_t irq, word, idc = UINT32_MAX;
  549. /* Writes must be 4 byte words */
  550. if ((addr & 0x3) != 0) {
  551. goto err;
  552. }
  553. if (addr == APLIC_DOMAINCFG) {
  554. /* Only IE bit writable at the moment */
  555. value &= APLIC_DOMAINCFG_IE;
  556. aplic->domaincfg = value;
  557. } else if ((APLIC_SOURCECFG_BASE <= addr) &&
  558. (addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) {
  559. irq = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1;
  560. if (!aplic->num_children && (value & APLIC_SOURCECFG_D)) {
  561. value = 0;
  562. }
  563. if (value & APLIC_SOURCECFG_D) {
  564. value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_CHILDIDX_MASK);
  565. } else {
  566. value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_SM_MASK);
  567. }
  568. aplic->sourcecfg[irq] = value;
  569. if ((aplic->sourcecfg[irq] & APLIC_SOURCECFG_D) ||
  570. (aplic->sourcecfg[irq] == 0)) {
  571. riscv_aplic_set_pending_raw(aplic, irq, false);
  572. riscv_aplic_set_enabled_raw(aplic, irq, false);
  573. }
  574. } else if (aplic->mmode && aplic->msimode &&
  575. (addr == APLIC_MMSICFGADDR)) {
  576. if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
  577. aplic->mmsicfgaddr = value;
  578. }
  579. } else if (aplic->mmode && aplic->msimode &&
  580. (addr == APLIC_MMSICFGADDRH)) {
  581. if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
  582. aplic->mmsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK;
  583. }
  584. } else if (aplic->mmode && aplic->msimode &&
  585. (addr == APLIC_SMSICFGADDR)) {
  586. /*
  587. * Registers SMSICFGADDR and SMSICFGADDRH are implemented only if:
  588. * (a) the interrupt domain is at machine level
  589. * (b) the domain's harts implement supervisor mode
  590. * (c) the domain has one or more child supervisor-level domains
  591. * that support MSI delivery mode (domaincfg.DM is not read-
  592. * only zero in at least one of the supervisor-level child
  593. * domains).
  594. */
  595. if (aplic->num_children &&
  596. !(aplic->smsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
  597. aplic->smsicfgaddr = value;
  598. }
  599. } else if (aplic->mmode && aplic->msimode &&
  600. (addr == APLIC_SMSICFGADDRH)) {
  601. if (aplic->num_children &&
  602. !(aplic->smsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
  603. aplic->smsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK;
  604. }
  605. } else if ((APLIC_SETIP_BASE <= addr) &&
  606. (addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) {
  607. word = (addr - APLIC_SETIP_BASE) >> 2;
  608. riscv_aplic_set_pending_word(aplic, word, value, true);
  609. } else if (addr == APLIC_SETIPNUM) {
  610. riscv_aplic_set_pending(aplic, value, true);
  611. } else if ((APLIC_CLRIP_BASE <= addr) &&
  612. (addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) {
  613. word = (addr - APLIC_CLRIP_BASE) >> 2;
  614. riscv_aplic_set_pending_word(aplic, word, value, false);
  615. } else if (addr == APLIC_CLRIPNUM) {
  616. riscv_aplic_set_pending(aplic, value, false);
  617. } else if ((APLIC_SETIE_BASE <= addr) &&
  618. (addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) {
  619. word = (addr - APLIC_SETIE_BASE) >> 2;
  620. riscv_aplic_set_enabled_word(aplic, word, value, true);
  621. } else if (addr == APLIC_SETIENUM) {
  622. riscv_aplic_set_enabled(aplic, value, true);
  623. } else if ((APLIC_CLRIE_BASE <= addr) &&
  624. (addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) {
  625. word = (addr - APLIC_CLRIE_BASE) >> 2;
  626. riscv_aplic_set_enabled_word(aplic, word, value, false);
  627. } else if (addr == APLIC_CLRIENUM) {
  628. riscv_aplic_set_enabled(aplic, value, false);
  629. } else if (addr == APLIC_SETIPNUM_LE) {
  630. riscv_aplic_set_pending(aplic, value, true);
  631. } else if (addr == APLIC_SETIPNUM_BE) {
  632. riscv_aplic_set_pending(aplic, bswap32(value), true);
  633. } else if (addr == APLIC_GENMSI) {
  634. if (aplic->msimode) {
  635. aplic->genmsi = value & ~(APLIC_TARGET_GUEST_IDX_MASK <<
  636. APLIC_TARGET_GUEST_IDX_SHIFT);
  637. riscv_aplic_msi_send(aplic,
  638. value >> APLIC_TARGET_HART_IDX_SHIFT,
  639. 0,
  640. value & APLIC_TARGET_EIID_MASK);
  641. }
  642. } else if ((APLIC_TARGET_BASE <= addr) &&
  643. (addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) {
  644. irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1;
  645. if (aplic->msimode) {
  646. aplic->target[irq] = value;
  647. } else {
  648. aplic->target[irq] = (value & ~APLIC_TARGET_IPRIO_MASK) |
  649. ((value & aplic->iprio_mask) ?
  650. (value & aplic->iprio_mask) : 1);
  651. }
  652. } else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) &&
  653. (addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) {
  654. idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE;
  655. switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) {
  656. case APLIC_IDC_IDELIVERY:
  657. aplic->idelivery[idc] = value & 0x1;
  658. break;
  659. case APLIC_IDC_IFORCE:
  660. aplic->iforce[idc] = value & 0x1;
  661. break;
  662. case APLIC_IDC_ITHRESHOLD:
  663. aplic->ithreshold[idc] = value & aplic->iprio_mask;
  664. break;
  665. default:
  666. goto err;
  667. };
  668. } else {
  669. goto err;
  670. }
  671. if (aplic->msimode) {
  672. for (irq = 1; irq < aplic->num_irqs; irq++) {
  673. riscv_aplic_msi_irq_update(aplic, irq);
  674. }
  675. } else {
  676. if (idc == UINT32_MAX) {
  677. for (idc = 0; idc < aplic->num_harts; idc++) {
  678. riscv_aplic_idc_update(aplic, idc);
  679. }
  680. } else {
  681. riscv_aplic_idc_update(aplic, idc);
  682. }
  683. }
  684. return;
  685. err:
  686. qemu_log_mask(LOG_GUEST_ERROR,
  687. "%s: Invalid register write 0x%" HWADDR_PRIx "\n",
  688. __func__, addr);
  689. }
  690. static const MemoryRegionOps riscv_aplic_ops = {
  691. .read = riscv_aplic_read,
  692. .write = riscv_aplic_write,
  693. .endianness = DEVICE_LITTLE_ENDIAN,
  694. .valid = {
  695. .min_access_size = 4,
  696. .max_access_size = 4
  697. }
  698. };
  699. static void riscv_aplic_realize(DeviceState *dev, Error **errp)
  700. {
  701. uint32_t i;
  702. RISCVAPLICState *aplic = RISCV_APLIC(dev);
  703. aplic->bitfield_words = (aplic->num_irqs + 31) >> 5;
  704. aplic->sourcecfg = g_new0(uint32_t, aplic->num_irqs);
  705. aplic->state = g_new(uint32_t, aplic->num_irqs);
  706. aplic->target = g_new0(uint32_t, aplic->num_irqs);
  707. if (!aplic->msimode) {
  708. for (i = 0; i < aplic->num_irqs; i++) {
  709. aplic->target[i] = 1;
  710. }
  711. }
  712. aplic->idelivery = g_new0(uint32_t, aplic->num_harts);
  713. aplic->iforce = g_new0(uint32_t, aplic->num_harts);
  714. aplic->ithreshold = g_new0(uint32_t, aplic->num_harts);
  715. memory_region_init_io(&aplic->mmio, OBJECT(dev), &riscv_aplic_ops, aplic,
  716. TYPE_RISCV_APLIC, aplic->aperture_size);
  717. sysbus_init_mmio(SYS_BUS_DEVICE(dev), &aplic->mmio);
  718. /*
  719. * Only root APLICs have hardware IRQ lines. All non-root APLICs
  720. * have IRQ lines delegated by their parent APLIC.
  721. */
  722. if (!aplic->parent) {
  723. qdev_init_gpio_in(dev, riscv_aplic_request, aplic->num_irqs);
  724. }
  725. /* Create output IRQ lines for non-MSI mode */
  726. if (!aplic->msimode) {
  727. aplic->external_irqs = g_malloc(sizeof(qemu_irq) * aplic->num_harts);
  728. qdev_init_gpio_out(dev, aplic->external_irqs, aplic->num_harts);
  729. /* Claim the CPU interrupt to be triggered by this APLIC */
  730. for (i = 0; i < aplic->num_harts; i++) {
  731. RISCVCPU *cpu = RISCV_CPU(cpu_by_arch_id(aplic->hartid_base + i));
  732. if (riscv_cpu_claim_interrupts(cpu,
  733. (aplic->mmode) ? MIP_MEIP : MIP_SEIP) < 0) {
  734. error_report("%s already claimed",
  735. (aplic->mmode) ? "MEIP" : "SEIP");
  736. exit(1);
  737. }
  738. }
  739. }
  740. msi_nonbroken = true;
  741. }
  742. static Property riscv_aplic_properties[] = {
  743. DEFINE_PROP_UINT32("aperture-size", RISCVAPLICState, aperture_size, 0),
  744. DEFINE_PROP_UINT32("hartid-base", RISCVAPLICState, hartid_base, 0),
  745. DEFINE_PROP_UINT32("num-harts", RISCVAPLICState, num_harts, 0),
  746. DEFINE_PROP_UINT32("iprio-mask", RISCVAPLICState, iprio_mask, 0),
  747. DEFINE_PROP_UINT32("num-irqs", RISCVAPLICState, num_irqs, 0),
  748. DEFINE_PROP_BOOL("msimode", RISCVAPLICState, msimode, 0),
  749. DEFINE_PROP_BOOL("mmode", RISCVAPLICState, mmode, 0),
  750. DEFINE_PROP_END_OF_LIST(),
  751. };
  752. static const VMStateDescription vmstate_riscv_aplic = {
  753. .name = "riscv_aplic",
  754. .version_id = 1,
  755. .minimum_version_id = 1,
  756. .fields = (VMStateField[]) {
  757. VMSTATE_UINT32(domaincfg, RISCVAPLICState),
  758. VMSTATE_UINT32(mmsicfgaddr, RISCVAPLICState),
  759. VMSTATE_UINT32(mmsicfgaddrH, RISCVAPLICState),
  760. VMSTATE_UINT32(smsicfgaddr, RISCVAPLICState),
  761. VMSTATE_UINT32(smsicfgaddrH, RISCVAPLICState),
  762. VMSTATE_UINT32(genmsi, RISCVAPLICState),
  763. VMSTATE_VARRAY_UINT32(sourcecfg, RISCVAPLICState,
  764. num_irqs, 0,
  765. vmstate_info_uint32, uint32_t),
  766. VMSTATE_VARRAY_UINT32(state, RISCVAPLICState,
  767. num_irqs, 0,
  768. vmstate_info_uint32, uint32_t),
  769. VMSTATE_VARRAY_UINT32(target, RISCVAPLICState,
  770. num_irqs, 0,
  771. vmstate_info_uint32, uint32_t),
  772. VMSTATE_VARRAY_UINT32(idelivery, RISCVAPLICState,
  773. num_harts, 0,
  774. vmstate_info_uint32, uint32_t),
  775. VMSTATE_VARRAY_UINT32(iforce, RISCVAPLICState,
  776. num_harts, 0,
  777. vmstate_info_uint32, uint32_t),
  778. VMSTATE_VARRAY_UINT32(ithreshold, RISCVAPLICState,
  779. num_harts, 0,
  780. vmstate_info_uint32, uint32_t),
  781. VMSTATE_END_OF_LIST()
  782. }
  783. };
  784. static void riscv_aplic_class_init(ObjectClass *klass, void *data)
  785. {
  786. DeviceClass *dc = DEVICE_CLASS(klass);
  787. device_class_set_props(dc, riscv_aplic_properties);
  788. dc->realize = riscv_aplic_realize;
  789. dc->vmsd = &vmstate_riscv_aplic;
  790. }
  791. static const TypeInfo riscv_aplic_info = {
  792. .name = TYPE_RISCV_APLIC,
  793. .parent = TYPE_SYS_BUS_DEVICE,
  794. .instance_size = sizeof(RISCVAPLICState),
  795. .class_init = riscv_aplic_class_init,
  796. };
  797. static void riscv_aplic_register_types(void)
  798. {
  799. type_register_static(&riscv_aplic_info);
  800. }
  801. type_init(riscv_aplic_register_types)
  802. /*
  803. * Add a APLIC device to another APLIC device as child for
  804. * interrupt delegation.
  805. */
  806. void riscv_aplic_add_child(DeviceState *parent, DeviceState *child)
  807. {
  808. RISCVAPLICState *caplic, *paplic;
  809. assert(parent && child);
  810. caplic = RISCV_APLIC(child);
  811. paplic = RISCV_APLIC(parent);
  812. assert(paplic->num_irqs == caplic->num_irqs);
  813. assert(paplic->num_children <= QEMU_APLIC_MAX_CHILDREN);
  814. caplic->parent = paplic;
  815. paplic->children[paplic->num_children] = caplic;
  816. paplic->num_children++;
  817. }
  818. /*
  819. * Create APLIC device.
  820. */
  821. DeviceState *riscv_aplic_create(hwaddr addr, hwaddr size,
  822. uint32_t hartid_base, uint32_t num_harts, uint32_t num_sources,
  823. uint32_t iprio_bits, bool msimode, bool mmode, DeviceState *parent)
  824. {
  825. DeviceState *dev = qdev_new(TYPE_RISCV_APLIC);
  826. uint32_t i;
  827. assert(num_harts < APLIC_MAX_IDC);
  828. assert((APLIC_IDC_BASE + (num_harts * APLIC_IDC_SIZE)) <= size);
  829. assert(num_sources < APLIC_MAX_SOURCE);
  830. assert(APLIC_MIN_IPRIO_BITS <= iprio_bits);
  831. assert(iprio_bits <= APLIC_MAX_IPRIO_BITS);
  832. qdev_prop_set_uint32(dev, "aperture-size", size);
  833. qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
  834. qdev_prop_set_uint32(dev, "num-harts", num_harts);
  835. qdev_prop_set_uint32(dev, "iprio-mask", ((1U << iprio_bits) - 1));
  836. qdev_prop_set_uint32(dev, "num-irqs", num_sources + 1);
  837. qdev_prop_set_bit(dev, "msimode", msimode);
  838. qdev_prop_set_bit(dev, "mmode", mmode);
  839. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  840. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
  841. if (parent) {
  842. riscv_aplic_add_child(parent, dev);
  843. }
  844. if (!msimode) {
  845. for (i = 0; i < num_harts; i++) {
  846. CPUState *cpu = cpu_by_arch_id(hartid_base + i);
  847. qdev_connect_gpio_out_named(dev, NULL, i,
  848. qdev_get_gpio_in(DEVICE(cpu),
  849. (mmode) ? IRQ_M_EXT : IRQ_S_EXT));
  850. }
  851. }
  852. return dev;
  853. }