sun4m.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492
  1. /*
  2. * QEMU Sun4m & Sun4d & Sun4c System Emulator
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "qemu/osdep.h"
  25. #include "qemu/units.h"
  26. #include "qapi/error.h"
  27. #include "qemu/datadir.h"
  28. #include "cpu.h"
  29. #include "hw/sysbus.h"
  30. #include "qemu/error-report.h"
  31. #include "qemu/timer.h"
  32. #include "hw/sparc/sun4m_iommu.h"
  33. #include "hw/rtc/m48t59.h"
  34. #include "migration/vmstate.h"
  35. #include "hw/sparc/sparc32_dma.h"
  36. #include "hw/block/fdc.h"
  37. #include "system/reset.h"
  38. #include "system/runstate.h"
  39. #include "system/system.h"
  40. #include "net/net.h"
  41. #include "hw/boards.h"
  42. #include "hw/scsi/esp.h"
  43. #include "hw/nvram/sun_nvram.h"
  44. #include "hw/qdev-properties.h"
  45. #include "hw/nvram/chrp_nvram.h"
  46. #include "hw/nvram/fw_cfg.h"
  47. #include "hw/char/escc.h"
  48. #include "hw/misc/empty_slot.h"
  49. #include "hw/misc/unimp.h"
  50. #include "hw/irq.h"
  51. #include "hw/or-irq.h"
  52. #include "hw/loader.h"
  53. #include "elf.h"
  54. #include "trace.h"
  55. #include "qom/object.h"
  56. /*
  57. * Sun4m architecture was used in the following machines:
  58. *
  59. * SPARCserver 6xxMP/xx
  60. * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
  61. * SPARCclassic X (4/10)
  62. * SPARCstation LX/ZX (4/30)
  63. * SPARCstation Voyager
  64. * SPARCstation 10/xx, SPARCserver 10/xx
  65. * SPARCstation 5, SPARCserver 5
  66. * SPARCstation 20/xx, SPARCserver 20
  67. * SPARCstation 4
  68. *
  69. * See for example: http://www.sunhelp.org/faq/sunref1.html
  70. */
  71. #define KERNEL_LOAD_ADDR 0x00004000
  72. #define CMDLINE_ADDR 0x007ff000
  73. #define INITRD_LOAD_ADDR 0x00800000
  74. #define PROM_SIZE_MAX (1 * MiB)
  75. #define PROM_VADDR 0xffd00000
  76. #define PROM_FILENAME "openbios-sparc32"
  77. #define CFG_ADDR 0xd00000510ULL
  78. #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
  79. #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
  80. #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
  81. #define MAX_CPUS 16
  82. #define MAX_PILS 16
  83. #define MAX_VSIMMS 4
  84. #define ESCC_CLOCK 4915200
  85. struct sun4m_hwdef {
  86. hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
  87. hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
  88. hwaddr serial_base, fd_base;
  89. hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
  90. hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
  91. hwaddr bpp_base, dbri_base, sx_base;
  92. struct {
  93. hwaddr reg_base, vram_base;
  94. } vsimm[MAX_VSIMMS];
  95. hwaddr ecc_base;
  96. uint64_t max_mem;
  97. uint32_t ecc_version;
  98. uint32_t iommu_version;
  99. uint16_t machine_id;
  100. uint8_t nvram_machine_id;
  101. };
  102. struct Sun4mMachineClass {
  103. /*< private >*/
  104. MachineClass parent_obj;
  105. /*< public >*/
  106. const struct sun4m_hwdef *hwdef;
  107. };
  108. typedef struct Sun4mMachineClass Sun4mMachineClass;
  109. #define TYPE_SUN4M_MACHINE MACHINE_TYPE_NAME("sun4m-common")
  110. DECLARE_CLASS_CHECKERS(Sun4mMachineClass, SUN4M_MACHINE, TYPE_SUN4M_MACHINE)
  111. const char *fw_cfg_arch_key_name(uint16_t key)
  112. {
  113. static const struct {
  114. uint16_t key;
  115. const char *name;
  116. } fw_cfg_arch_wellknown_keys[] = {
  117. {FW_CFG_SUN4M_DEPTH, "depth"},
  118. {FW_CFG_SUN4M_WIDTH, "width"},
  119. {FW_CFG_SUN4M_HEIGHT, "height"},
  120. };
  121. for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
  122. if (fw_cfg_arch_wellknown_keys[i].key == key) {
  123. return fw_cfg_arch_wellknown_keys[i].name;
  124. }
  125. }
  126. return NULL;
  127. }
  128. static void fw_cfg_boot_set(void *opaque, const char *boot_device,
  129. Error **errp)
  130. {
  131. fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
  132. }
  133. static void nvram_init(Nvram *nvram, uint8_t *macaddr,
  134. const char *cmdline, const char *boot_devices,
  135. ram_addr_t RAM_size, uint32_t kernel_size,
  136. int width, int height, int depth,
  137. int nvram_machine_id, const char *arch)
  138. {
  139. unsigned int i;
  140. int sysp_end;
  141. uint8_t image[0x1ff0];
  142. NvramClass *k = NVRAM_GET_CLASS(nvram);
  143. memset(image, '\0', sizeof(image));
  144. /* OpenBIOS nvram variables partition */
  145. sysp_end = chrp_nvram_create_system_partition(image, 0, 0x1fd0);
  146. /* Free space partition */
  147. chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
  148. Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
  149. nvram_machine_id);
  150. for (i = 0; i < sizeof(image); i++) {
  151. (k->write)(nvram, i, image[i]);
  152. }
  153. }
  154. static void cpu_kick_irq(SPARCCPU *cpu)
  155. {
  156. CPUSPARCState *env = &cpu->env;
  157. CPUState *cs = CPU(cpu);
  158. cs->halted = 0;
  159. cpu_check_irqs(env);
  160. qemu_cpu_kick(cs);
  161. }
  162. static void cpu_set_irq(void *opaque, int irq, int level)
  163. {
  164. SPARCCPU *cpu = opaque;
  165. CPUSPARCState *env = &cpu->env;
  166. if (level) {
  167. trace_sun4m_cpu_set_irq_raise(irq);
  168. env->pil_in |= 1 << irq;
  169. cpu_kick_irq(cpu);
  170. } else {
  171. trace_sun4m_cpu_set_irq_lower(irq);
  172. env->pil_in &= ~(1 << irq);
  173. cpu_check_irqs(env);
  174. }
  175. }
  176. static void dummy_cpu_set_irq(void *opaque, int irq, int level)
  177. {
  178. }
  179. static void sun4m_cpu_reset(void *opaque)
  180. {
  181. SPARCCPU *cpu = opaque;
  182. CPUState *cs = CPU(cpu);
  183. cpu_reset(cs);
  184. }
  185. static void cpu_halt_signal(void *opaque, int irq, int level)
  186. {
  187. if (level && current_cpu) {
  188. cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
  189. }
  190. }
  191. static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
  192. {
  193. return addr - 0xf0000000ULL;
  194. }
  195. static unsigned long sun4m_load_kernel(const char *kernel_filename,
  196. const char *initrd_filename,
  197. ram_addr_t RAM_size,
  198. uint32_t *initrd_size)
  199. {
  200. int linux_boot;
  201. unsigned int i;
  202. long kernel_size;
  203. uint8_t *ptr;
  204. linux_boot = (kernel_filename != NULL);
  205. kernel_size = 0;
  206. if (linux_boot) {
  207. int bswap_needed;
  208. #ifdef BSWAP_NEEDED
  209. bswap_needed = 1;
  210. #else
  211. bswap_needed = 0;
  212. #endif
  213. kernel_size = load_elf(kernel_filename, NULL,
  214. translate_kernel_address, NULL,
  215. NULL, NULL, NULL, NULL,
  216. ELFDATA2MSB, EM_SPARC, 0, 0);
  217. if (kernel_size < 0)
  218. kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
  219. RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
  220. TARGET_PAGE_SIZE);
  221. if (kernel_size < 0)
  222. kernel_size = load_image_targphys(kernel_filename,
  223. KERNEL_LOAD_ADDR,
  224. RAM_size - KERNEL_LOAD_ADDR);
  225. if (kernel_size < 0) {
  226. error_report("could not load kernel '%s'", kernel_filename);
  227. exit(1);
  228. }
  229. /* load initrd */
  230. *initrd_size = 0;
  231. if (initrd_filename) {
  232. *initrd_size = load_image_targphys(initrd_filename,
  233. INITRD_LOAD_ADDR,
  234. RAM_size - INITRD_LOAD_ADDR);
  235. if ((int)*initrd_size < 0) {
  236. error_report("could not load initial ram disk '%s'",
  237. initrd_filename);
  238. exit(1);
  239. }
  240. }
  241. if (*initrd_size > 0) {
  242. for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
  243. ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
  244. if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
  245. stl_p(ptr + 16, INITRD_LOAD_ADDR);
  246. stl_p(ptr + 20, *initrd_size);
  247. break;
  248. }
  249. }
  250. }
  251. }
  252. return kernel_size;
  253. }
  254. static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
  255. {
  256. DeviceState *dev;
  257. SysBusDevice *s;
  258. dev = qdev_new(TYPE_SUN4M_IOMMU);
  259. qdev_prop_set_uint32(dev, "version", version);
  260. s = SYS_BUS_DEVICE(dev);
  261. sysbus_realize_and_unref(s, &error_fatal);
  262. sysbus_connect_irq(s, 0, irq);
  263. sysbus_mmio_map(s, 0, addr);
  264. return s;
  265. }
  266. static void *sparc32_dma_init(hwaddr dma_base,
  267. hwaddr esp_base, qemu_irq espdma_irq,
  268. hwaddr le_base, qemu_irq ledma_irq,
  269. MACAddr *mac)
  270. {
  271. DeviceState *dma;
  272. ESPDMADeviceState *espdma;
  273. LEDMADeviceState *ledma;
  274. SysBusESPState *esp;
  275. SysBusPCNetState *lance;
  276. NICInfo *nd = qemu_find_nic_info("lance", true, NULL);
  277. dma = qdev_new(TYPE_SPARC32_DMA);
  278. espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
  279. OBJECT(dma), "espdma"));
  280. esp = SYSBUS_ESP(object_resolve_path_component(OBJECT(espdma), "esp"));
  281. ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
  282. OBJECT(dma), "ledma"));
  283. lance = SYSBUS_PCNET(object_resolve_path_component(
  284. OBJECT(ledma), "lance"));
  285. if (nd) {
  286. qdev_set_nic_properties(DEVICE(lance), nd);
  287. memcpy(mac->a, nd->macaddr.a, sizeof(mac->a));
  288. } else {
  289. qemu_macaddr_default_if_unset(mac);
  290. qdev_prop_set_macaddr(DEVICE(lance), "mac", mac->a);
  291. }
  292. sysbus_realize_and_unref(SYS_BUS_DEVICE(dma), &error_fatal);
  293. sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
  294. sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
  295. sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
  296. sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
  297. scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
  298. sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
  299. return dma;
  300. }
  301. static DeviceState *slavio_intctl_init(hwaddr addr,
  302. hwaddr addrg,
  303. qemu_irq **parent_irq)
  304. {
  305. DeviceState *dev;
  306. SysBusDevice *s;
  307. unsigned int i, j;
  308. dev = qdev_new("slavio_intctl");
  309. s = SYS_BUS_DEVICE(dev);
  310. sysbus_realize_and_unref(s, &error_fatal);
  311. for (i = 0; i < MAX_CPUS; i++) {
  312. for (j = 0; j < MAX_PILS; j++) {
  313. sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
  314. }
  315. }
  316. sysbus_mmio_map(s, 0, addrg);
  317. for (i = 0; i < MAX_CPUS; i++) {
  318. sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
  319. }
  320. return dev;
  321. }
  322. #define SYS_TIMER_OFFSET 0x10000ULL
  323. #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
  324. static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
  325. qemu_irq *cpu_irqs, unsigned int num_cpus)
  326. {
  327. DeviceState *dev;
  328. SysBusDevice *s;
  329. unsigned int i;
  330. dev = qdev_new("slavio_timer");
  331. qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
  332. s = SYS_BUS_DEVICE(dev);
  333. sysbus_realize_and_unref(s, &error_fatal);
  334. sysbus_connect_irq(s, 0, master_irq);
  335. sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
  336. for (i = 0; i < MAX_CPUS; i++) {
  337. sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
  338. sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
  339. }
  340. }
  341. static qemu_irq slavio_system_powerdown;
  342. static void slavio_powerdown_req(Notifier *n, void *opaque)
  343. {
  344. qemu_irq_raise(slavio_system_powerdown);
  345. }
  346. static Notifier slavio_system_powerdown_notifier = {
  347. .notify = slavio_powerdown_req
  348. };
  349. #define MISC_LEDS 0x01600000
  350. #define MISC_CFG 0x01800000
  351. #define MISC_DIAG 0x01a00000
  352. #define MISC_MDM 0x01b00000
  353. #define MISC_SYS 0x01f00000
  354. static void slavio_misc_init(hwaddr base,
  355. hwaddr aux1_base,
  356. hwaddr aux2_base, qemu_irq irq,
  357. qemu_irq fdc_tc)
  358. {
  359. DeviceState *dev;
  360. SysBusDevice *s;
  361. dev = qdev_new("slavio_misc");
  362. s = SYS_BUS_DEVICE(dev);
  363. sysbus_realize_and_unref(s, &error_fatal);
  364. if (base) {
  365. /* 8 bit registers */
  366. /* Slavio control */
  367. sysbus_mmio_map(s, 0, base + MISC_CFG);
  368. /* Diagnostics */
  369. sysbus_mmio_map(s, 1, base + MISC_DIAG);
  370. /* Modem control */
  371. sysbus_mmio_map(s, 2, base + MISC_MDM);
  372. /* 16 bit registers */
  373. /* ss600mp diag LEDs */
  374. sysbus_mmio_map(s, 3, base + MISC_LEDS);
  375. /* 32 bit registers */
  376. /* System control */
  377. sysbus_mmio_map(s, 4, base + MISC_SYS);
  378. }
  379. if (aux1_base) {
  380. /* AUX 1 (Misc System Functions) */
  381. sysbus_mmio_map(s, 5, aux1_base);
  382. }
  383. if (aux2_base) {
  384. /* AUX 2 (Software Powerdown Control) */
  385. sysbus_mmio_map(s, 6, aux2_base);
  386. }
  387. sysbus_connect_irq(s, 0, irq);
  388. sysbus_connect_irq(s, 1, fdc_tc);
  389. slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
  390. qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
  391. }
  392. static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
  393. {
  394. DeviceState *dev;
  395. SysBusDevice *s;
  396. dev = qdev_new("eccmemctl");
  397. qdev_prop_set_uint32(dev, "version", version);
  398. s = SYS_BUS_DEVICE(dev);
  399. sysbus_realize_and_unref(s, &error_fatal);
  400. sysbus_connect_irq(s, 0, irq);
  401. sysbus_mmio_map(s, 0, base);
  402. if (version == 0) { // SS-600MP only
  403. sysbus_mmio_map(s, 1, base + 0x1000);
  404. }
  405. }
  406. static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
  407. {
  408. DeviceState *dev;
  409. SysBusDevice *s;
  410. dev = qdev_new("apc");
  411. s = SYS_BUS_DEVICE(dev);
  412. sysbus_realize_and_unref(s, &error_fatal);
  413. /* Power management (APC) XXX: not a Slavio device */
  414. sysbus_mmio_map(s, 0, power_base);
  415. sysbus_connect_irq(s, 0, cpu_halt);
  416. }
  417. static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  418. int height, int depth)
  419. {
  420. DeviceState *dev;
  421. SysBusDevice *s;
  422. dev = qdev_new("sun-tcx");
  423. qdev_prop_set_uint32(dev, "vram_size", vram_size);
  424. qdev_prop_set_uint16(dev, "width", width);
  425. qdev_prop_set_uint16(dev, "height", height);
  426. qdev_prop_set_uint16(dev, "depth", depth);
  427. s = SYS_BUS_DEVICE(dev);
  428. sysbus_realize_and_unref(s, &error_fatal);
  429. /* 10/ROM : FCode ROM */
  430. sysbus_mmio_map(s, 0, addr);
  431. /* 2/STIP : Stipple */
  432. sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
  433. /* 3/BLIT : Blitter */
  434. sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
  435. /* 5/RSTIP : Raw Stipple */
  436. sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
  437. /* 6/RBLIT : Raw Blitter */
  438. sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
  439. /* 7/TEC : Transform Engine */
  440. sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
  441. /* 8/CMAP : DAC */
  442. sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
  443. /* 9/THC : */
  444. if (depth == 8) {
  445. sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
  446. } else {
  447. sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
  448. }
  449. /* 11/DHC : */
  450. sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
  451. /* 12/ALT : */
  452. sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
  453. /* 0/DFB8 : 8-bit plane */
  454. sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
  455. /* 1/DFB24 : 24bit plane */
  456. sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
  457. /* 4/RDFB32: Raw framebuffer. Control plane */
  458. sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
  459. /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
  460. if (depth == 8) {
  461. sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
  462. }
  463. sysbus_connect_irq(s, 0, irq);
  464. }
  465. static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  466. int height, int depth)
  467. {
  468. DeviceState *dev;
  469. SysBusDevice *s;
  470. dev = qdev_new("cgthree");
  471. qdev_prop_set_uint32(dev, "vram-size", vram_size);
  472. qdev_prop_set_uint16(dev, "width", width);
  473. qdev_prop_set_uint16(dev, "height", height);
  474. qdev_prop_set_uint16(dev, "depth", depth);
  475. s = SYS_BUS_DEVICE(dev);
  476. sysbus_realize_and_unref(s, &error_fatal);
  477. /* FCode ROM */
  478. sysbus_mmio_map(s, 0, addr);
  479. /* DAC */
  480. sysbus_mmio_map(s, 1, addr + 0x400000ULL);
  481. /* 8-bit plane */
  482. sysbus_mmio_map(s, 2, addr + 0x800000ULL);
  483. sysbus_connect_irq(s, 0, irq);
  484. }
  485. /* NCR89C100/MACIO Internal ID register */
  486. #define TYPE_MACIO_ID_REGISTER "macio_idreg"
  487. static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
  488. static void idreg_init(hwaddr addr)
  489. {
  490. DeviceState *dev;
  491. SysBusDevice *s;
  492. dev = qdev_new(TYPE_MACIO_ID_REGISTER);
  493. s = SYS_BUS_DEVICE(dev);
  494. sysbus_realize_and_unref(s, &error_fatal);
  495. sysbus_mmio_map(s, 0, addr);
  496. address_space_write_rom(&address_space_memory, addr,
  497. MEMTXATTRS_UNSPECIFIED,
  498. idreg_data, sizeof(idreg_data));
  499. }
  500. OBJECT_DECLARE_SIMPLE_TYPE(IDRegState, MACIO_ID_REGISTER)
  501. struct IDRegState {
  502. SysBusDevice parent_obj;
  503. MemoryRegion mem;
  504. };
  505. static void idreg_realize(DeviceState *ds, Error **errp)
  506. {
  507. IDRegState *s = MACIO_ID_REGISTER(ds);
  508. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  509. if (!memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
  510. sizeof(idreg_data), errp)) {
  511. return;
  512. }
  513. vmstate_register_ram_global(&s->mem);
  514. memory_region_set_readonly(&s->mem, true);
  515. sysbus_init_mmio(dev, &s->mem);
  516. }
  517. static void idreg_class_init(ObjectClass *oc, void *data)
  518. {
  519. DeviceClass *dc = DEVICE_CLASS(oc);
  520. dc->realize = idreg_realize;
  521. }
  522. static const TypeInfo idreg_info = {
  523. .name = TYPE_MACIO_ID_REGISTER,
  524. .parent = TYPE_SYS_BUS_DEVICE,
  525. .instance_size = sizeof(IDRegState),
  526. .class_init = idreg_class_init,
  527. };
  528. #define TYPE_TCX_AFX "tcx_afx"
  529. OBJECT_DECLARE_SIMPLE_TYPE(AFXState, TCX_AFX)
  530. struct AFXState {
  531. SysBusDevice parent_obj;
  532. MemoryRegion mem;
  533. };
  534. /* SS-5 TCX AFX register */
  535. static void afx_init(hwaddr addr)
  536. {
  537. DeviceState *dev;
  538. SysBusDevice *s;
  539. dev = qdev_new(TYPE_TCX_AFX);
  540. s = SYS_BUS_DEVICE(dev);
  541. sysbus_realize_and_unref(s, &error_fatal);
  542. sysbus_mmio_map(s, 0, addr);
  543. }
  544. static void afx_realize(DeviceState *ds, Error **errp)
  545. {
  546. AFXState *s = TCX_AFX(ds);
  547. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  548. if (!memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx",
  549. 4, errp)) {
  550. return;
  551. }
  552. vmstate_register_ram_global(&s->mem);
  553. sysbus_init_mmio(dev, &s->mem);
  554. }
  555. static void afx_class_init(ObjectClass *oc, void *data)
  556. {
  557. DeviceClass *dc = DEVICE_CLASS(oc);
  558. dc->realize = afx_realize;
  559. }
  560. static const TypeInfo afx_info = {
  561. .name = TYPE_TCX_AFX,
  562. .parent = TYPE_SYS_BUS_DEVICE,
  563. .instance_size = sizeof(AFXState),
  564. .class_init = afx_class_init,
  565. };
  566. #define TYPE_OPENPROM "openprom"
  567. typedef struct PROMState PROMState;
  568. DECLARE_INSTANCE_CHECKER(PROMState, OPENPROM,
  569. TYPE_OPENPROM)
  570. struct PROMState {
  571. SysBusDevice parent_obj;
  572. MemoryRegion prom;
  573. };
  574. /* Boot PROM (OpenBIOS) */
  575. static uint64_t translate_prom_address(void *opaque, uint64_t addr)
  576. {
  577. hwaddr *base_addr = (hwaddr *)opaque;
  578. return addr + *base_addr - PROM_VADDR;
  579. }
  580. static void prom_init(hwaddr addr, const char *bios_name)
  581. {
  582. DeviceState *dev;
  583. SysBusDevice *s;
  584. char *filename;
  585. int ret;
  586. dev = qdev_new(TYPE_OPENPROM);
  587. s = SYS_BUS_DEVICE(dev);
  588. sysbus_realize_and_unref(s, &error_fatal);
  589. sysbus_mmio_map(s, 0, addr);
  590. /* load boot prom */
  591. if (bios_name == NULL) {
  592. bios_name = PROM_FILENAME;
  593. }
  594. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  595. if (filename) {
  596. ret = load_elf(filename, NULL,
  597. translate_prom_address, &addr, NULL,
  598. NULL, NULL, NULL, ELFDATA2MSB, EM_SPARC, 0, 0);
  599. if (ret < 0 || ret > PROM_SIZE_MAX) {
  600. ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
  601. }
  602. g_free(filename);
  603. } else {
  604. ret = -1;
  605. }
  606. if (ret < 0 || ret > PROM_SIZE_MAX) {
  607. error_report("could not load prom '%s'", bios_name);
  608. exit(1);
  609. }
  610. }
  611. static void prom_realize(DeviceState *ds, Error **errp)
  612. {
  613. PROMState *s = OPENPROM(ds);
  614. SysBusDevice *dev = SYS_BUS_DEVICE(ds);
  615. if (!memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
  616. PROM_SIZE_MAX, errp)) {
  617. return;
  618. }
  619. vmstate_register_ram_global(&s->prom);
  620. memory_region_set_readonly(&s->prom, true);
  621. sysbus_init_mmio(dev, &s->prom);
  622. }
  623. static void prom_class_init(ObjectClass *klass, void *data)
  624. {
  625. DeviceClass *dc = DEVICE_CLASS(klass);
  626. dc->realize = prom_realize;
  627. }
  628. static const TypeInfo prom_info = {
  629. .name = TYPE_OPENPROM,
  630. .parent = TYPE_SYS_BUS_DEVICE,
  631. .instance_size = sizeof(PROMState),
  632. .class_init = prom_class_init,
  633. };
  634. #define TYPE_SUN4M_MEMORY "memory"
  635. typedef struct RamDevice RamDevice;
  636. DECLARE_INSTANCE_CHECKER(RamDevice, SUN4M_RAM,
  637. TYPE_SUN4M_MEMORY)
  638. struct RamDevice {
  639. SysBusDevice parent_obj;
  640. HostMemoryBackend *memdev;
  641. };
  642. /* System RAM */
  643. static void ram_realize(DeviceState *dev, Error **errp)
  644. {
  645. RamDevice *d = SUN4M_RAM(dev);
  646. MemoryRegion *ram = host_memory_backend_get_memory(d->memdev);
  647. sysbus_init_mmio(SYS_BUS_DEVICE(dev), ram);
  648. }
  649. static void ram_initfn(Object *obj)
  650. {
  651. RamDevice *d = SUN4M_RAM(obj);
  652. object_property_add_link(obj, "memdev", TYPE_MEMORY_BACKEND,
  653. (Object **)&d->memdev,
  654. object_property_allow_set_link,
  655. OBJ_PROP_LINK_STRONG);
  656. object_property_set_description(obj, "memdev", "Set RAM backend"
  657. "Valid value is ID of a hostmem backend");
  658. }
  659. static void ram_class_init(ObjectClass *klass, void *data)
  660. {
  661. DeviceClass *dc = DEVICE_CLASS(klass);
  662. dc->realize = ram_realize;
  663. }
  664. static const TypeInfo ram_info = {
  665. .name = TYPE_SUN4M_MEMORY,
  666. .parent = TYPE_SYS_BUS_DEVICE,
  667. .instance_size = sizeof(RamDevice),
  668. .instance_init = ram_initfn,
  669. .class_init = ram_class_init,
  670. };
  671. static void cpu_devinit(const char *cpu_type, unsigned int id,
  672. uint64_t prom_addr, qemu_irq **cpu_irqs)
  673. {
  674. SPARCCPU *cpu;
  675. CPUSPARCState *env;
  676. cpu = SPARC_CPU(object_new(cpu_type));
  677. env = &cpu->env;
  678. qemu_register_reset(sun4m_cpu_reset, cpu);
  679. object_property_set_bool(OBJECT(cpu), "start-powered-off", id != 0,
  680. &error_abort);
  681. qdev_realize_and_unref(DEVICE(cpu), NULL, &error_fatal);
  682. cpu_sparc_set_id(env, id);
  683. *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
  684. env->prom_addr = prom_addr;
  685. }
  686. static void dummy_fdc_tc(void *opaque, int irq, int level)
  687. {
  688. }
  689. static void sun4m_hw_init(MachineState *machine)
  690. {
  691. const struct sun4m_hwdef *hwdef = SUN4M_MACHINE_GET_CLASS(machine)->hwdef;
  692. DeviceState *slavio_intctl;
  693. unsigned int i;
  694. Nvram *nvram;
  695. qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
  696. qemu_irq fdc_tc;
  697. unsigned long kernel_size;
  698. uint32_t initrd_size;
  699. DriveInfo *fd[MAX_FD];
  700. FWCfgState *fw_cfg;
  701. DeviceState *dev, *ms_kb_orgate, *serial_orgate;
  702. SysBusDevice *s;
  703. unsigned int smp_cpus = machine->smp.cpus;
  704. unsigned int max_cpus = machine->smp.max_cpus;
  705. HostMemoryBackend *ram_memdev = machine->memdev;
  706. MACAddr hostid;
  707. if (machine->ram_size > hwdef->max_mem) {
  708. error_report("Too much memory for this machine: %" PRId64 ","
  709. " maximum %" PRId64,
  710. machine->ram_size / MiB, hwdef->max_mem / MiB);
  711. exit(1);
  712. }
  713. /* init CPUs */
  714. for(i = 0; i < smp_cpus; i++) {
  715. cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
  716. }
  717. for (i = smp_cpus; i < MAX_CPUS; i++)
  718. cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
  719. /* Create and map RAM frontend */
  720. dev = qdev_new("memory");
  721. object_property_set_link(OBJECT(dev), "memdev", OBJECT(ram_memdev), &error_fatal);
  722. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  723. sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0);
  724. /* models without ECC don't trap when missing ram is accessed */
  725. if (!hwdef->ecc_base) {
  726. empty_slot_init("ecc", machine->ram_size,
  727. hwdef->max_mem - machine->ram_size);
  728. }
  729. prom_init(hwdef->slavio_base, machine->firmware);
  730. slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
  731. hwdef->intctl_base + 0x10000ULL,
  732. cpu_irqs);
  733. for (i = 0; i < 32; i++) {
  734. slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
  735. }
  736. for (i = 0; i < MAX_CPUS; i++) {
  737. slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
  738. }
  739. if (hwdef->idreg_base) {
  740. idreg_init(hwdef->idreg_base);
  741. }
  742. if (hwdef->afx_base) {
  743. afx_init(hwdef->afx_base);
  744. }
  745. iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
  746. if (hwdef->iommu_pad_base) {
  747. /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
  748. Software shouldn't use aliased addresses, neither should it crash
  749. when does. Using empty_slot instead of aliasing can help with
  750. debugging such accesses */
  751. empty_slot_init("iommu.alias",
  752. hwdef->iommu_pad_base, hwdef->iommu_pad_len);
  753. }
  754. sparc32_dma_init(hwdef->dma_base,
  755. hwdef->esp_base, slavio_irq[18],
  756. hwdef->le_base, slavio_irq[16], &hostid);
  757. if (graphic_depth != 8 && graphic_depth != 24) {
  758. error_report("Unsupported depth: %d", graphic_depth);
  759. exit (1);
  760. }
  761. if (vga_interface_type != VGA_NONE) {
  762. if (vga_interface_type == VGA_CG3) {
  763. if (graphic_depth != 8) {
  764. error_report("Unsupported depth: %d", graphic_depth);
  765. exit(1);
  766. }
  767. if (!(graphic_width == 1024 && graphic_height == 768) &&
  768. !(graphic_width == 1152 && graphic_height == 900)) {
  769. error_report("Unsupported resolution: %d x %d", graphic_width,
  770. graphic_height);
  771. exit(1);
  772. }
  773. /* sbus irq 5 */
  774. cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  775. graphic_width, graphic_height, graphic_depth);
  776. vga_interface_created = true;
  777. } else {
  778. /* If no display specified, default to TCX */
  779. if (graphic_depth != 8 && graphic_depth != 24) {
  780. error_report("Unsupported depth: %d", graphic_depth);
  781. exit(1);
  782. }
  783. if (!(graphic_width == 1024 && graphic_height == 768)) {
  784. error_report("Unsupported resolution: %d x %d",
  785. graphic_width, graphic_height);
  786. exit(1);
  787. }
  788. tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  789. graphic_width, graphic_height, graphic_depth);
  790. vga_interface_created = true;
  791. }
  792. }
  793. for (i = 0; i < MAX_VSIMMS; i++) {
  794. /* vsimm registers probed by OBP */
  795. if (hwdef->vsimm[i].reg_base) {
  796. char *name = g_strdup_printf("vsimm[%d]", i);
  797. empty_slot_init(name, hwdef->vsimm[i].reg_base, 0x2000);
  798. g_free(name);
  799. }
  800. }
  801. if (hwdef->sx_base) {
  802. create_unimplemented_device("sun-sx", hwdef->sx_base, 0x2000);
  803. }
  804. dev = qdev_new("sysbus-m48t08");
  805. qdev_prop_set_int32(dev, "base-year", 1968);
  806. s = SYS_BUS_DEVICE(dev);
  807. sysbus_realize_and_unref(s, &error_fatal);
  808. sysbus_connect_irq(s, 0, slavio_irq[0]);
  809. sysbus_mmio_map(s, 0, hwdef->nvram_base);
  810. nvram = NVRAM(dev);
  811. slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
  812. /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
  813. Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
  814. dev = qdev_new(TYPE_ESCC);
  815. qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
  816. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  817. qdev_prop_set_uint32(dev, "it_shift", 1);
  818. qdev_prop_set_chr(dev, "chrB", NULL);
  819. qdev_prop_set_chr(dev, "chrA", NULL);
  820. qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
  821. qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
  822. s = SYS_BUS_DEVICE(dev);
  823. sysbus_realize_and_unref(s, &error_fatal);
  824. sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
  825. /* Logically OR both its IRQs together */
  826. ms_kb_orgate = qdev_new(TYPE_OR_IRQ);
  827. object_property_set_int(OBJECT(ms_kb_orgate), "num-lines", 2, &error_fatal);
  828. qdev_realize_and_unref(ms_kb_orgate, NULL, &error_fatal);
  829. sysbus_connect_irq(s, 0, qdev_get_gpio_in(ms_kb_orgate, 0));
  830. sysbus_connect_irq(s, 1, qdev_get_gpio_in(ms_kb_orgate, 1));
  831. qdev_connect_gpio_out(ms_kb_orgate, 0, slavio_irq[14]);
  832. dev = qdev_new(TYPE_ESCC);
  833. qdev_prop_set_uint32(dev, "disabled", 0);
  834. qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
  835. qdev_prop_set_uint32(dev, "it_shift", 1);
  836. qdev_prop_set_chr(dev, "chrB", serial_hd(1));
  837. qdev_prop_set_chr(dev, "chrA", serial_hd(0));
  838. qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
  839. qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
  840. s = SYS_BUS_DEVICE(dev);
  841. sysbus_realize_and_unref(s, &error_fatal);
  842. sysbus_mmio_map(s, 0, hwdef->serial_base);
  843. /* Logically OR both its IRQs together */
  844. serial_orgate = qdev_new(TYPE_OR_IRQ);
  845. object_property_set_int(OBJECT(serial_orgate), "num-lines", 2,
  846. &error_fatal);
  847. qdev_realize_and_unref(serial_orgate, NULL, &error_fatal);
  848. sysbus_connect_irq(s, 0, qdev_get_gpio_in(serial_orgate, 0));
  849. sysbus_connect_irq(s, 1, qdev_get_gpio_in(serial_orgate, 1));
  850. qdev_connect_gpio_out(serial_orgate, 0, slavio_irq[15]);
  851. if (hwdef->apc_base) {
  852. apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
  853. }
  854. if (hwdef->fd_base) {
  855. /* there is zero or one floppy drive */
  856. memset(fd, 0, sizeof(fd));
  857. fd[0] = drive_get(IF_FLOPPY, 0, 0);
  858. sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
  859. &fdc_tc);
  860. } else {
  861. fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
  862. }
  863. slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
  864. slavio_irq[30], fdc_tc);
  865. if (hwdef->cs_base) {
  866. sysbus_create_simple("sun-CS4231", hwdef->cs_base,
  867. slavio_irq[5]);
  868. }
  869. if (hwdef->dbri_base) {
  870. /* ISDN chip with attached CS4215 audio codec */
  871. /* prom space */
  872. create_unimplemented_device("sun-DBRI.prom",
  873. hwdef->dbri_base + 0x1000, 0x30);
  874. /* reg space */
  875. create_unimplemented_device("sun-DBRI",
  876. hwdef->dbri_base + 0x10000, 0x100);
  877. }
  878. if (hwdef->bpp_base) {
  879. /* parallel port */
  880. create_unimplemented_device("sun-bpp", hwdef->bpp_base, 0x20);
  881. }
  882. initrd_size = 0;
  883. kernel_size = sun4m_load_kernel(machine->kernel_filename,
  884. machine->initrd_filename,
  885. machine->ram_size, &initrd_size);
  886. nvram_init(nvram, hostid.a, machine->kernel_cmdline,
  887. machine->boot_config.order, machine->ram_size, kernel_size,
  888. graphic_width, graphic_height, graphic_depth,
  889. hwdef->nvram_machine_id, "Sun4m");
  890. if (hwdef->ecc_base)
  891. ecc_init(hwdef->ecc_base, slavio_irq[28],
  892. hwdef->ecc_version);
  893. dev = qdev_new(TYPE_FW_CFG_MEM);
  894. fw_cfg = FW_CFG(dev);
  895. qdev_prop_set_uint32(dev, "data_width", 1);
  896. qdev_prop_set_bit(dev, "dma_enabled", false);
  897. object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
  898. OBJECT(fw_cfg));
  899. s = SYS_BUS_DEVICE(dev);
  900. sysbus_realize_and_unref(s, &error_fatal);
  901. sysbus_mmio_map(s, 0, CFG_ADDR);
  902. sysbus_mmio_map(s, 1, CFG_ADDR + 2);
  903. fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
  904. fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
  905. fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size);
  906. fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
  907. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
  908. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
  909. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
  910. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
  911. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
  912. if (machine->kernel_cmdline) {
  913. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
  914. pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
  915. machine->kernel_cmdline);
  916. fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
  917. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  918. strlen(machine->kernel_cmdline) + 1);
  919. } else {
  920. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
  921. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
  922. }
  923. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
  924. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
  925. fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_config.order[0]);
  926. qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
  927. }
  928. enum {
  929. ss5_id = 32,
  930. vger_id,
  931. lx_id,
  932. ss4_id,
  933. scls_id,
  934. sbook_id,
  935. ss10_id = 64,
  936. ss20_id,
  937. ss600mp_id,
  938. };
  939. static void sun4m_machine_class_init(ObjectClass *oc, void *data)
  940. {
  941. MachineClass *mc = MACHINE_CLASS(oc);
  942. mc->init = sun4m_hw_init;
  943. mc->block_default_type = IF_SCSI;
  944. mc->default_boot_order = "c";
  945. mc->default_display = "tcx";
  946. mc->default_ram_id = "sun4m.ram";
  947. }
  948. static void ss5_class_init(ObjectClass *oc, void *data)
  949. {
  950. MachineClass *mc = MACHINE_CLASS(oc);
  951. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  952. static const struct sun4m_hwdef ss5_hwdef = {
  953. .iommu_base = 0x10000000,
  954. .iommu_pad_base = 0x10004000,
  955. .iommu_pad_len = 0x0fffb000,
  956. .tcx_base = 0x50000000,
  957. .cs_base = 0x6c000000,
  958. .slavio_base = 0x70000000,
  959. .ms_kb_base = 0x71000000,
  960. .serial_base = 0x71100000,
  961. .nvram_base = 0x71200000,
  962. .fd_base = 0x71400000,
  963. .counter_base = 0x71d00000,
  964. .intctl_base = 0x71e00000,
  965. .idreg_base = 0x78000000,
  966. .dma_base = 0x78400000,
  967. .esp_base = 0x78800000,
  968. .le_base = 0x78c00000,
  969. .apc_base = 0x6a000000,
  970. .afx_base = 0x6e000000,
  971. .aux1_base = 0x71900000,
  972. .aux2_base = 0x71910000,
  973. .nvram_machine_id = 0x80,
  974. .machine_id = ss5_id,
  975. .iommu_version = 0x05000000,
  976. .max_mem = 0x10000000,
  977. };
  978. mc->desc = "Sun4m platform, SPARCstation 5";
  979. mc->is_default = true;
  980. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  981. smc->hwdef = &ss5_hwdef;
  982. }
  983. static void ss10_class_init(ObjectClass *oc, void *data)
  984. {
  985. MachineClass *mc = MACHINE_CLASS(oc);
  986. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  987. static const struct sun4m_hwdef ss10_hwdef = {
  988. .iommu_base = 0xfe0000000ULL,
  989. .tcx_base = 0xe20000000ULL,
  990. .slavio_base = 0xff0000000ULL,
  991. .ms_kb_base = 0xff1000000ULL,
  992. .serial_base = 0xff1100000ULL,
  993. .nvram_base = 0xff1200000ULL,
  994. .fd_base = 0xff1700000ULL,
  995. .counter_base = 0xff1300000ULL,
  996. .intctl_base = 0xff1400000ULL,
  997. .idreg_base = 0xef0000000ULL,
  998. .dma_base = 0xef0400000ULL,
  999. .esp_base = 0xef0800000ULL,
  1000. .le_base = 0xef0c00000ULL,
  1001. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1002. .aux1_base = 0xff1800000ULL,
  1003. .aux2_base = 0xff1a01000ULL,
  1004. .ecc_base = 0xf00000000ULL,
  1005. .ecc_version = 0x10000000, /* version 0, implementation 1 */
  1006. .nvram_machine_id = 0x72,
  1007. .machine_id = ss10_id,
  1008. .iommu_version = 0x03000000,
  1009. .max_mem = 0xf00000000ULL,
  1010. };
  1011. mc->desc = "Sun4m platform, SPARCstation 10";
  1012. mc->max_cpus = 4;
  1013. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1014. smc->hwdef = &ss10_hwdef;
  1015. }
  1016. static void ss600mp_class_init(ObjectClass *oc, void *data)
  1017. {
  1018. MachineClass *mc = MACHINE_CLASS(oc);
  1019. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1020. static const struct sun4m_hwdef ss600mp_hwdef = {
  1021. .iommu_base = 0xfe0000000ULL,
  1022. .tcx_base = 0xe20000000ULL,
  1023. .slavio_base = 0xff0000000ULL,
  1024. .ms_kb_base = 0xff1000000ULL,
  1025. .serial_base = 0xff1100000ULL,
  1026. .nvram_base = 0xff1200000ULL,
  1027. .counter_base = 0xff1300000ULL,
  1028. .intctl_base = 0xff1400000ULL,
  1029. .dma_base = 0xef0081000ULL,
  1030. .esp_base = 0xef0080000ULL,
  1031. .le_base = 0xef0060000ULL,
  1032. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1033. .aux1_base = 0xff1800000ULL,
  1034. .aux2_base = 0xff1a01000ULL, /* XXX should not exist */
  1035. .ecc_base = 0xf00000000ULL,
  1036. .ecc_version = 0x00000000, /* version 0, implementation 0 */
  1037. .nvram_machine_id = 0x71,
  1038. .machine_id = ss600mp_id,
  1039. .iommu_version = 0x01000000,
  1040. .max_mem = 0xf00000000ULL,
  1041. };
  1042. mc->desc = "Sun4m platform, SPARCserver 600MP";
  1043. mc->max_cpus = 4;
  1044. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1045. smc->hwdef = &ss600mp_hwdef;
  1046. }
  1047. static void ss20_class_init(ObjectClass *oc, void *data)
  1048. {
  1049. MachineClass *mc = MACHINE_CLASS(oc);
  1050. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1051. static const struct sun4m_hwdef ss20_hwdef = {
  1052. .iommu_base = 0xfe0000000ULL,
  1053. .tcx_base = 0xe20000000ULL,
  1054. .slavio_base = 0xff0000000ULL,
  1055. .ms_kb_base = 0xff1000000ULL,
  1056. .serial_base = 0xff1100000ULL,
  1057. .nvram_base = 0xff1200000ULL,
  1058. .fd_base = 0xff1700000ULL,
  1059. .counter_base = 0xff1300000ULL,
  1060. .intctl_base = 0xff1400000ULL,
  1061. .idreg_base = 0xef0000000ULL,
  1062. .dma_base = 0xef0400000ULL,
  1063. .esp_base = 0xef0800000ULL,
  1064. .le_base = 0xef0c00000ULL,
  1065. .bpp_base = 0xef4800000ULL,
  1066. .apc_base = 0xefa000000ULL, /* XXX should not exist */
  1067. .aux1_base = 0xff1800000ULL,
  1068. .aux2_base = 0xff1a01000ULL,
  1069. .dbri_base = 0xee0000000ULL,
  1070. .sx_base = 0xf80000000ULL,
  1071. .vsimm = {
  1072. {
  1073. .reg_base = 0x9c000000ULL,
  1074. .vram_base = 0xfc000000ULL
  1075. }, {
  1076. .reg_base = 0x90000000ULL,
  1077. .vram_base = 0xf0000000ULL
  1078. }, {
  1079. .reg_base = 0x94000000ULL
  1080. }, {
  1081. .reg_base = 0x98000000ULL
  1082. }
  1083. },
  1084. .ecc_base = 0xf00000000ULL,
  1085. .ecc_version = 0x20000000, /* version 0, implementation 2 */
  1086. .nvram_machine_id = 0x72,
  1087. .machine_id = ss20_id,
  1088. .iommu_version = 0x13000000,
  1089. .max_mem = 0xf00000000ULL,
  1090. };
  1091. mc->desc = "Sun4m platform, SPARCstation 20";
  1092. mc->max_cpus = 4;
  1093. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
  1094. smc->hwdef = &ss20_hwdef;
  1095. }
  1096. static void voyager_class_init(ObjectClass *oc, void *data)
  1097. {
  1098. MachineClass *mc = MACHINE_CLASS(oc);
  1099. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1100. static const struct sun4m_hwdef voyager_hwdef = {
  1101. .iommu_base = 0x10000000,
  1102. .tcx_base = 0x50000000,
  1103. .slavio_base = 0x70000000,
  1104. .ms_kb_base = 0x71000000,
  1105. .serial_base = 0x71100000,
  1106. .nvram_base = 0x71200000,
  1107. .fd_base = 0x71400000,
  1108. .counter_base = 0x71d00000,
  1109. .intctl_base = 0x71e00000,
  1110. .idreg_base = 0x78000000,
  1111. .dma_base = 0x78400000,
  1112. .esp_base = 0x78800000,
  1113. .le_base = 0x78c00000,
  1114. .apc_base = 0x71300000, /* pmc */
  1115. .aux1_base = 0x71900000,
  1116. .aux2_base = 0x71910000,
  1117. .nvram_machine_id = 0x80,
  1118. .machine_id = vger_id,
  1119. .iommu_version = 0x05000000,
  1120. .max_mem = 0x10000000,
  1121. };
  1122. mc->desc = "Sun4m platform, SPARCstation Voyager";
  1123. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1124. smc->hwdef = &voyager_hwdef;
  1125. }
  1126. static void ss_lx_class_init(ObjectClass *oc, void *data)
  1127. {
  1128. MachineClass *mc = MACHINE_CLASS(oc);
  1129. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1130. static const struct sun4m_hwdef ss_lx_hwdef = {
  1131. .iommu_base = 0x10000000,
  1132. .iommu_pad_base = 0x10004000,
  1133. .iommu_pad_len = 0x0fffb000,
  1134. .tcx_base = 0x50000000,
  1135. .slavio_base = 0x70000000,
  1136. .ms_kb_base = 0x71000000,
  1137. .serial_base = 0x71100000,
  1138. .nvram_base = 0x71200000,
  1139. .fd_base = 0x71400000,
  1140. .counter_base = 0x71d00000,
  1141. .intctl_base = 0x71e00000,
  1142. .idreg_base = 0x78000000,
  1143. .dma_base = 0x78400000,
  1144. .esp_base = 0x78800000,
  1145. .le_base = 0x78c00000,
  1146. .aux1_base = 0x71900000,
  1147. .aux2_base = 0x71910000,
  1148. .nvram_machine_id = 0x80,
  1149. .machine_id = lx_id,
  1150. .iommu_version = 0x04000000,
  1151. .max_mem = 0x10000000,
  1152. };
  1153. mc->desc = "Sun4m platform, SPARCstation LX";
  1154. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1155. smc->hwdef = &ss_lx_hwdef;
  1156. }
  1157. static void ss4_class_init(ObjectClass *oc, void *data)
  1158. {
  1159. MachineClass *mc = MACHINE_CLASS(oc);
  1160. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1161. static const struct sun4m_hwdef ss4_hwdef = {
  1162. .iommu_base = 0x10000000,
  1163. .tcx_base = 0x50000000,
  1164. .cs_base = 0x6c000000,
  1165. .slavio_base = 0x70000000,
  1166. .ms_kb_base = 0x71000000,
  1167. .serial_base = 0x71100000,
  1168. .nvram_base = 0x71200000,
  1169. .fd_base = 0x71400000,
  1170. .counter_base = 0x71d00000,
  1171. .intctl_base = 0x71e00000,
  1172. .idreg_base = 0x78000000,
  1173. .dma_base = 0x78400000,
  1174. .esp_base = 0x78800000,
  1175. .le_base = 0x78c00000,
  1176. .apc_base = 0x6a000000,
  1177. .aux1_base = 0x71900000,
  1178. .aux2_base = 0x71910000,
  1179. .nvram_machine_id = 0x80,
  1180. .machine_id = ss4_id,
  1181. .iommu_version = 0x05000000,
  1182. .max_mem = 0x10000000,
  1183. };
  1184. mc->desc = "Sun4m platform, SPARCstation 4";
  1185. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
  1186. smc->hwdef = &ss4_hwdef;
  1187. }
  1188. static void scls_class_init(ObjectClass *oc, void *data)
  1189. {
  1190. MachineClass *mc = MACHINE_CLASS(oc);
  1191. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1192. static const struct sun4m_hwdef scls_hwdef = {
  1193. .iommu_base = 0x10000000,
  1194. .tcx_base = 0x50000000,
  1195. .slavio_base = 0x70000000,
  1196. .ms_kb_base = 0x71000000,
  1197. .serial_base = 0x71100000,
  1198. .nvram_base = 0x71200000,
  1199. .fd_base = 0x71400000,
  1200. .counter_base = 0x71d00000,
  1201. .intctl_base = 0x71e00000,
  1202. .idreg_base = 0x78000000,
  1203. .dma_base = 0x78400000,
  1204. .esp_base = 0x78800000,
  1205. .le_base = 0x78c00000,
  1206. .apc_base = 0x6a000000,
  1207. .aux1_base = 0x71900000,
  1208. .aux2_base = 0x71910000,
  1209. .nvram_machine_id = 0x80,
  1210. .machine_id = scls_id,
  1211. .iommu_version = 0x05000000,
  1212. .max_mem = 0x10000000,
  1213. };
  1214. mc->desc = "Sun4m platform, SPARCClassic";
  1215. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1216. smc->hwdef = &scls_hwdef;
  1217. }
  1218. static void sbook_class_init(ObjectClass *oc, void *data)
  1219. {
  1220. MachineClass *mc = MACHINE_CLASS(oc);
  1221. Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
  1222. static const struct sun4m_hwdef sbook_hwdef = {
  1223. .iommu_base = 0x10000000,
  1224. .tcx_base = 0x50000000, /* XXX */
  1225. .slavio_base = 0x70000000,
  1226. .ms_kb_base = 0x71000000,
  1227. .serial_base = 0x71100000,
  1228. .nvram_base = 0x71200000,
  1229. .fd_base = 0x71400000,
  1230. .counter_base = 0x71d00000,
  1231. .intctl_base = 0x71e00000,
  1232. .idreg_base = 0x78000000,
  1233. .dma_base = 0x78400000,
  1234. .esp_base = 0x78800000,
  1235. .le_base = 0x78c00000,
  1236. .apc_base = 0x6a000000,
  1237. .aux1_base = 0x71900000,
  1238. .aux2_base = 0x71910000,
  1239. .nvram_machine_id = 0x80,
  1240. .machine_id = sbook_id,
  1241. .iommu_version = 0x05000000,
  1242. .max_mem = 0x10000000,
  1243. };
  1244. mc->desc = "Sun4m platform, SPARCbook";
  1245. mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
  1246. smc->hwdef = &sbook_hwdef;
  1247. }
  1248. static const TypeInfo sun4m_machine_types[] = {
  1249. {
  1250. .name = MACHINE_TYPE_NAME("SS-5"),
  1251. .parent = TYPE_SUN4M_MACHINE,
  1252. .class_init = ss5_class_init,
  1253. }, {
  1254. .name = MACHINE_TYPE_NAME("SS-10"),
  1255. .parent = TYPE_SUN4M_MACHINE,
  1256. .class_init = ss10_class_init,
  1257. }, {
  1258. .name = MACHINE_TYPE_NAME("SS-600MP"),
  1259. .parent = TYPE_SUN4M_MACHINE,
  1260. .class_init = ss600mp_class_init,
  1261. }, {
  1262. .name = MACHINE_TYPE_NAME("SS-20"),
  1263. .parent = TYPE_SUN4M_MACHINE,
  1264. .class_init = ss20_class_init,
  1265. }, {
  1266. .name = MACHINE_TYPE_NAME("Voyager"),
  1267. .parent = TYPE_SUN4M_MACHINE,
  1268. .class_init = voyager_class_init,
  1269. }, {
  1270. .name = MACHINE_TYPE_NAME("LX"),
  1271. .parent = TYPE_SUN4M_MACHINE,
  1272. .class_init = ss_lx_class_init,
  1273. }, {
  1274. .name = MACHINE_TYPE_NAME("SS-4"),
  1275. .parent = TYPE_SUN4M_MACHINE,
  1276. .class_init = ss4_class_init,
  1277. }, {
  1278. .name = MACHINE_TYPE_NAME("SPARCClassic"),
  1279. .parent = TYPE_SUN4M_MACHINE,
  1280. .class_init = scls_class_init,
  1281. }, {
  1282. .name = MACHINE_TYPE_NAME("SPARCbook"),
  1283. .parent = TYPE_SUN4M_MACHINE,
  1284. .class_init = sbook_class_init,
  1285. }, {
  1286. .name = TYPE_SUN4M_MACHINE,
  1287. .parent = TYPE_MACHINE,
  1288. .class_size = sizeof(Sun4mMachineClass),
  1289. .class_init = sun4m_machine_class_init,
  1290. .abstract = true,
  1291. }
  1292. };
  1293. DEFINE_TYPES(sun4m_machine_types)
  1294. static void sun4m_register_types(void)
  1295. {
  1296. type_register_static(&idreg_info);
  1297. type_register_static(&afx_info);
  1298. type_register_static(&prom_info);
  1299. type_register_static(&ram_info);
  1300. }
  1301. type_init(sun4m_register_types)