sdhci.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983
  1. /*
  2. * SD Association Host Standard Specification v2.0 controller emulation
  3. *
  4. * Datasheet: PartA2_SD_Host_Controller_Simplified_Specification_Ver2.00.pdf
  5. *
  6. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  7. * Mitsyanko Igor <i.mitsyanko@samsung.com>
  8. * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
  9. *
  10. * Based on MMC controller for Samsung S5PC1xx-based board emulation
  11. * by Alexey Merkulov and Vladimir Monakhov.
  12. *
  13. * This program is free software; you can redistribute it and/or modify it
  14. * under the terms of the GNU General Public License as published by the
  15. * Free Software Foundation; either version 2 of the License, or (at your
  16. * option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  21. * See the GNU General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU General Public License along
  24. * with this program; if not, see <http://www.gnu.org/licenses/>.
  25. */
  26. #include "qemu/osdep.h"
  27. #include "qemu/units.h"
  28. #include "qemu/error-report.h"
  29. #include "qapi/error.h"
  30. #include "hw/irq.h"
  31. #include "hw/qdev-properties.h"
  32. #include "system/dma.h"
  33. #include "qemu/timer.h"
  34. #include "qemu/bitops.h"
  35. #include "hw/sd/sdhci.h"
  36. #include "migration/vmstate.h"
  37. #include "sdhci-internal.h"
  38. #include "qemu/log.h"
  39. #include "trace.h"
  40. #include "qom/object.h"
  41. #define TYPE_SDHCI_BUS "sdhci-bus"
  42. /* This is reusing the SDBus typedef from SD_BUS */
  43. DECLARE_INSTANCE_CHECKER(SDBus, SDHCI_BUS,
  44. TYPE_SDHCI_BUS)
  45. #define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val))
  46. static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
  47. {
  48. return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
  49. }
  50. /* return true on error */
  51. static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
  52. uint8_t freq, Error **errp)
  53. {
  54. if (s->sd_spec_version >= 3) {
  55. return false;
  56. }
  57. switch (freq) {
  58. case 0:
  59. case 10 ... 63:
  60. break;
  61. default:
  62. error_setg(errp, "SD %s clock frequency can have value"
  63. "in range 0-63 only", desc);
  64. return true;
  65. }
  66. return false;
  67. }
  68. static void sdhci_check_capareg(SDHCIState *s, Error **errp)
  69. {
  70. uint64_t msk = s->capareg;
  71. uint32_t val;
  72. bool y;
  73. switch (s->sd_spec_version) {
  74. case 4:
  75. val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4);
  76. trace_sdhci_capareg("64-bit system bus (v4)", val);
  77. msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0);
  78. val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II);
  79. trace_sdhci_capareg("UHS-II", val);
  80. msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0);
  81. val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3);
  82. trace_sdhci_capareg("ADMA3", val);
  83. msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0);
  84. /* fallthrough */
  85. case 3:
  86. val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
  87. trace_sdhci_capareg("async interrupt", val);
  88. msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);
  89. val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
  90. if (val) {
  91. error_setg(errp, "slot-type not supported");
  92. return;
  93. }
  94. trace_sdhci_capareg("slot type", val);
  95. msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);
  96. if (val != 2) {
  97. val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
  98. trace_sdhci_capareg("8-bit bus", val);
  99. }
  100. msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);
  101. val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
  102. trace_sdhci_capareg("bus speed mask", val);
  103. msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);
  104. val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
  105. trace_sdhci_capareg("driver strength mask", val);
  106. msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);
  107. val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
  108. trace_sdhci_capareg("timer re-tuning", val);
  109. msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);
  110. val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
  111. trace_sdhci_capareg("use SDR50 tuning", val);
  112. msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);
  113. val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
  114. trace_sdhci_capareg("re-tuning mode", val);
  115. msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);
  116. val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
  117. trace_sdhci_capareg("clock multiplier", val);
  118. msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);
  119. /* fallthrough */
  120. case 2: /* default version */
  121. val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
  122. trace_sdhci_capareg("ADMA2", val);
  123. msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);
  124. val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
  125. trace_sdhci_capareg("ADMA1", val);
  126. msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);
  127. val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
  128. trace_sdhci_capareg("64-bit system bus (v3)", val);
  129. msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
  130. /* fallthrough */
  131. case 1:
  132. y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
  133. msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
  134. val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
  135. trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
  136. if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
  137. return;
  138. }
  139. msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
  140. val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
  141. trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
  142. if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
  143. return;
  144. }
  145. msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
  146. val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
  147. if (val >= 3) {
  148. error_setg(errp, "block size can be 512, 1024 or 2048 only");
  149. return;
  150. }
  151. trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
  152. msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
  153. val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
  154. trace_sdhci_capareg("high speed", val);
  155. msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
  156. val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
  157. trace_sdhci_capareg("SDMA", val);
  158. msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
  159. val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
  160. trace_sdhci_capareg("suspend/resume", val);
  161. msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
  162. val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
  163. trace_sdhci_capareg("3.3v", val);
  164. msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
  165. val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
  166. trace_sdhci_capareg("3.0v", val);
  167. msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
  168. val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
  169. trace_sdhci_capareg("1.8v", val);
  170. msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
  171. break;
  172. default:
  173. error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
  174. }
  175. if (msk) {
  176. qemu_log_mask(LOG_UNIMP,
  177. "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
  178. }
  179. }
  180. static uint8_t sdhci_slotint(SDHCIState *s)
  181. {
  182. return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
  183. ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
  184. ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
  185. }
  186. /* Return true if IRQ was pending and delivered */
  187. static bool sdhci_update_irq(SDHCIState *s)
  188. {
  189. bool pending = sdhci_slotint(s);
  190. qemu_set_irq(s->irq, pending);
  191. return pending;
  192. }
  193. static void sdhci_raise_insertion_irq(void *opaque)
  194. {
  195. SDHCIState *s = (SDHCIState *)opaque;
  196. if (s->norintsts & SDHC_NIS_REMOVE) {
  197. timer_mod(s->insert_timer,
  198. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
  199. } else {
  200. s->prnsts = 0x1ff0000;
  201. if (s->norintstsen & SDHC_NISEN_INSERT) {
  202. s->norintsts |= SDHC_NIS_INSERT;
  203. }
  204. sdhci_update_irq(s);
  205. }
  206. }
  207. static void sdhci_set_inserted(DeviceState *dev, bool level)
  208. {
  209. SDHCIState *s = (SDHCIState *)dev;
  210. trace_sdhci_set_inserted(level ? "insert" : "eject");
  211. if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
  212. /* Give target some time to notice card ejection */
  213. timer_mod(s->insert_timer,
  214. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
  215. } else {
  216. if (level) {
  217. s->prnsts = 0x1ff0000;
  218. if (s->norintstsen & SDHC_NISEN_INSERT) {
  219. s->norintsts |= SDHC_NIS_INSERT;
  220. }
  221. } else {
  222. s->prnsts = 0x1fa0000;
  223. s->pwrcon &= ~SDHC_POWER_ON;
  224. s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
  225. if (s->norintstsen & SDHC_NISEN_REMOVE) {
  226. s->norintsts |= SDHC_NIS_REMOVE;
  227. }
  228. }
  229. sdhci_update_irq(s);
  230. }
  231. }
  232. static void sdhci_set_readonly(DeviceState *dev, bool level)
  233. {
  234. SDHCIState *s = (SDHCIState *)dev;
  235. if (s->wp_inverted) {
  236. level = !level;
  237. }
  238. if (level) {
  239. s->prnsts &= ~SDHC_WRITE_PROTECT;
  240. } else {
  241. /* Write enabled */
  242. s->prnsts |= SDHC_WRITE_PROTECT;
  243. }
  244. }
  245. static void sdhci_reset(SDHCIState *s)
  246. {
  247. DeviceState *dev = DEVICE(s);
  248. timer_del(s->insert_timer);
  249. timer_del(s->transfer_timer);
  250. /*
  251. * Set all registers to 0. Capabilities/Version registers are not cleared
  252. * and assumed to always preserve their value, given to them during
  253. * initialization
  254. */
  255. memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
  256. /* Reset other state based on current card insertion/readonly status */
  257. sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
  258. sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
  259. s->data_count = 0;
  260. s->stopped_state = sdhc_not_stopped;
  261. s->pending_insert_state = false;
  262. }
  263. static void sdhci_poweron_reset(DeviceState *dev)
  264. {
  265. /*
  266. * QOM (ie power-on) reset. This is identical to reset
  267. * commanded via device register apart from handling of the
  268. * 'pending insert on powerup' quirk.
  269. */
  270. SDHCIState *s = (SDHCIState *)dev;
  271. sdhci_reset(s);
  272. if (s->pending_insert_quirk) {
  273. s->pending_insert_state = true;
  274. }
  275. }
  276. static void sdhci_data_transfer(void *opaque);
  277. #define BLOCK_SIZE_MASK (4 * KiB - 1)
  278. static void sdhci_send_command(SDHCIState *s)
  279. {
  280. SDRequest request;
  281. uint8_t response[16];
  282. int rlen;
  283. bool timeout = false;
  284. s->errintsts = 0;
  285. s->acmd12errsts = 0;
  286. request.cmd = s->cmdreg >> 8;
  287. request.arg = s->argument;
  288. trace_sdhci_send_command(request.cmd, request.arg);
  289. rlen = sdbus_do_command(&s->sdbus, &request, response);
  290. if (s->cmdreg & SDHC_CMD_RESPONSE) {
  291. if (rlen == 4) {
  292. s->rspreg[0] = ldl_be_p(response);
  293. s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
  294. trace_sdhci_response4(s->rspreg[0]);
  295. } else if (rlen == 16) {
  296. s->rspreg[0] = ldl_be_p(&response[11]);
  297. s->rspreg[1] = ldl_be_p(&response[7]);
  298. s->rspreg[2] = ldl_be_p(&response[3]);
  299. s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
  300. response[2];
  301. trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
  302. s->rspreg[1], s->rspreg[0]);
  303. } else {
  304. timeout = true;
  305. trace_sdhci_error("timeout waiting for command response");
  306. if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
  307. s->errintsts |= SDHC_EIS_CMDTIMEOUT;
  308. s->norintsts |= SDHC_NIS_ERR;
  309. }
  310. }
  311. if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
  312. (s->norintstsen & SDHC_NISEN_TRSCMP) &&
  313. (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
  314. s->norintsts |= SDHC_NIS_TRSCMP;
  315. }
  316. }
  317. if (s->norintstsen & SDHC_NISEN_CMDCMP) {
  318. s->norintsts |= SDHC_NIS_CMDCMP;
  319. }
  320. sdhci_update_irq(s);
  321. if (!timeout && (s->blksize & BLOCK_SIZE_MASK) &&
  322. (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
  323. s->data_count = 0;
  324. sdhci_data_transfer(s);
  325. }
  326. }
  327. static void sdhci_end_transfer(SDHCIState *s)
  328. {
  329. /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
  330. if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
  331. SDRequest request;
  332. uint8_t response[16];
  333. request.cmd = 0x0C;
  334. request.arg = 0;
  335. trace_sdhci_end_transfer(request.cmd, request.arg);
  336. sdbus_do_command(&s->sdbus, &request, response);
  337. /* Auto CMD12 response goes to the upper Response register */
  338. s->rspreg[3] = ldl_be_p(response);
  339. }
  340. s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
  341. SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
  342. SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
  343. if (s->norintstsen & SDHC_NISEN_TRSCMP) {
  344. s->norintsts |= SDHC_NIS_TRSCMP;
  345. }
  346. sdhci_update_irq(s);
  347. }
  348. /*
  349. * Programmed i/o data transfer
  350. */
  351. /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
  352. static void sdhci_read_block_from_card(SDHCIState *s)
  353. {
  354. const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
  355. if ((s->trnmod & SDHC_TRNS_MULTI) &&
  356. (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
  357. return;
  358. }
  359. if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
  360. /* Device is not in tuning */
  361. sdbus_read_data(&s->sdbus, s->fifo_buffer, blk_size);
  362. }
  363. if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
  364. /* Device is in tuning */
  365. s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
  366. s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
  367. s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
  368. SDHC_DATA_INHIBIT);
  369. goto read_done;
  370. }
  371. /* New data now available for READ through Buffer Port Register */
  372. s->prnsts |= SDHC_DATA_AVAILABLE;
  373. if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
  374. s->norintsts |= SDHC_NIS_RBUFRDY;
  375. }
  376. /* Clear DAT line active status if that was the last block */
  377. if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
  378. ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
  379. s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
  380. }
  381. /*
  382. * If stop at block gap request was set and it's not the last block of
  383. * data - generate Block Event interrupt
  384. */
  385. if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
  386. s->blkcnt != 1) {
  387. s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
  388. if (s->norintstsen & SDHC_EISEN_BLKGAP) {
  389. s->norintsts |= SDHC_EIS_BLKGAP;
  390. }
  391. }
  392. read_done:
  393. sdhci_update_irq(s);
  394. }
  395. /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
  396. static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
  397. {
  398. uint32_t value = 0;
  399. int i;
  400. /* first check that a valid data exists in host controller input buffer */
  401. if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
  402. trace_sdhci_error("read from empty buffer");
  403. return 0;
  404. }
  405. for (i = 0; i < size; i++) {
  406. assert(s->data_count < s->buf_maxsz);
  407. value |= s->fifo_buffer[s->data_count] << i * 8;
  408. s->data_count++;
  409. /* check if we've read all valid data (blksize bytes) from buffer */
  410. if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
  411. trace_sdhci_read_dataport(s->data_count);
  412. s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
  413. s->data_count = 0; /* next buff read must start at position [0] */
  414. if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
  415. s->blkcnt--;
  416. }
  417. /* if that was the last block of data */
  418. if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
  419. ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
  420. /* stop at gap request */
  421. (s->stopped_state == sdhc_gap_read &&
  422. !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
  423. sdhci_end_transfer(s);
  424. } else { /* if there are more data, read next block from card */
  425. sdhci_read_block_from_card(s);
  426. }
  427. break;
  428. }
  429. }
  430. return value;
  431. }
  432. /* Write data from host controller FIFO to card */
  433. static void sdhci_write_block_to_card(SDHCIState *s)
  434. {
  435. if (s->prnsts & SDHC_SPACE_AVAILABLE) {
  436. if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
  437. s->norintsts |= SDHC_NIS_WBUFRDY;
  438. }
  439. sdhci_update_irq(s);
  440. return;
  441. }
  442. if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
  443. if (s->blkcnt == 0) {
  444. return;
  445. } else {
  446. s->blkcnt--;
  447. }
  448. }
  449. sdbus_write_data(&s->sdbus, s->fifo_buffer, s->blksize & BLOCK_SIZE_MASK);
  450. /* Next data can be written through BUFFER DATORT register */
  451. s->prnsts |= SDHC_SPACE_AVAILABLE;
  452. /* Finish transfer if that was the last block of data */
  453. if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
  454. ((s->trnmod & SDHC_TRNS_MULTI) &&
  455. (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
  456. sdhci_end_transfer(s);
  457. } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
  458. s->norintsts |= SDHC_NIS_WBUFRDY;
  459. }
  460. /* Generate Block Gap Event if requested and if not the last block */
  461. if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
  462. s->blkcnt > 0) {
  463. s->prnsts &= ~SDHC_DOING_WRITE;
  464. if (s->norintstsen & SDHC_EISEN_BLKGAP) {
  465. s->norintsts |= SDHC_EIS_BLKGAP;
  466. }
  467. sdhci_end_transfer(s);
  468. }
  469. sdhci_update_irq(s);
  470. }
  471. /*
  472. * Write @size bytes of @value data to host controller @s Buffer Data Port
  473. * register
  474. */
  475. static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
  476. {
  477. unsigned i;
  478. /* Check that there is free space left in a buffer */
  479. if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
  480. trace_sdhci_error("Can't write to data buffer: buffer full");
  481. return;
  482. }
  483. for (i = 0; i < size; i++) {
  484. assert(s->data_count < s->buf_maxsz);
  485. s->fifo_buffer[s->data_count] = value & 0xFF;
  486. s->data_count++;
  487. value >>= 8;
  488. if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
  489. trace_sdhci_write_dataport(s->data_count);
  490. s->data_count = 0;
  491. s->prnsts &= ~SDHC_SPACE_AVAILABLE;
  492. if (s->prnsts & SDHC_DOING_WRITE) {
  493. sdhci_write_block_to_card(s);
  494. }
  495. }
  496. }
  497. }
  498. /*
  499. * Single DMA data transfer
  500. */
  501. /* Multi block SDMA transfer */
  502. static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
  503. {
  504. bool page_aligned = false;
  505. unsigned int begin;
  506. const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
  507. uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
  508. uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
  509. if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
  510. qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
  511. return;
  512. }
  513. /*
  514. * XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
  515. * possible stop at page boundary if initial address is not page aligned,
  516. * allow them to work properly
  517. */
  518. if ((s->sdmasysad % boundary_chk) == 0) {
  519. page_aligned = true;
  520. }
  521. s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
  522. if (s->trnmod & SDHC_TRNS_READ) {
  523. s->prnsts |= SDHC_DOING_READ;
  524. while (s->blkcnt) {
  525. if (s->data_count == 0) {
  526. sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
  527. }
  528. begin = s->data_count;
  529. if (((boundary_count + begin) < block_size) && page_aligned) {
  530. s->data_count = boundary_count + begin;
  531. boundary_count = 0;
  532. } else {
  533. s->data_count = block_size;
  534. boundary_count -= block_size - begin;
  535. if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
  536. s->blkcnt--;
  537. }
  538. }
  539. dma_memory_write(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
  540. s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
  541. s->sdmasysad += s->data_count - begin;
  542. if (s->data_count == block_size) {
  543. s->data_count = 0;
  544. }
  545. if (page_aligned && boundary_count == 0) {
  546. break;
  547. }
  548. }
  549. } else {
  550. s->prnsts |= SDHC_DOING_WRITE;
  551. while (s->blkcnt) {
  552. begin = s->data_count;
  553. if (((boundary_count + begin) < block_size) && page_aligned) {
  554. s->data_count = boundary_count + begin;
  555. boundary_count = 0;
  556. } else {
  557. s->data_count = block_size;
  558. boundary_count -= block_size - begin;
  559. }
  560. dma_memory_read(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
  561. s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
  562. s->sdmasysad += s->data_count - begin;
  563. if (s->data_count == block_size) {
  564. sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
  565. s->data_count = 0;
  566. if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
  567. s->blkcnt--;
  568. }
  569. }
  570. if (page_aligned && boundary_count == 0) {
  571. break;
  572. }
  573. }
  574. }
  575. if (s->norintstsen & SDHC_NISEN_DMA) {
  576. s->norintsts |= SDHC_NIS_DMA;
  577. }
  578. if (s->blkcnt == 0) {
  579. sdhci_end_transfer(s);
  580. } else {
  581. sdhci_update_irq(s);
  582. }
  583. }
  584. /* single block SDMA transfer */
  585. static void sdhci_sdma_transfer_single_block(SDHCIState *s)
  586. {
  587. uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
  588. if (s->trnmod & SDHC_TRNS_READ) {
  589. sdbus_read_data(&s->sdbus, s->fifo_buffer, datacnt);
  590. dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
  591. MEMTXATTRS_UNSPECIFIED);
  592. } else {
  593. dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
  594. MEMTXATTRS_UNSPECIFIED);
  595. sdbus_write_data(&s->sdbus, s->fifo_buffer, datacnt);
  596. }
  597. s->blkcnt--;
  598. if (s->norintstsen & SDHC_NISEN_DMA) {
  599. s->norintsts |= SDHC_NIS_DMA;
  600. }
  601. sdhci_end_transfer(s);
  602. }
  603. static void sdhci_sdma_transfer(SDHCIState *s)
  604. {
  605. if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
  606. sdhci_sdma_transfer_single_block(s);
  607. } else {
  608. sdhci_sdma_transfer_multi_blocks(s);
  609. }
  610. }
  611. typedef struct ADMADescr {
  612. hwaddr addr;
  613. uint16_t length;
  614. uint8_t attr;
  615. uint8_t incr;
  616. } ADMADescr;
  617. static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
  618. {
  619. uint32_t adma1 = 0;
  620. uint64_t adma2 = 0;
  621. hwaddr entry_addr = (hwaddr)s->admasysaddr;
  622. switch (SDHC_DMA_TYPE(s->hostctl1)) {
  623. case SDHC_CTRL_ADMA2_32:
  624. dma_memory_read(s->dma_as, entry_addr, &adma2, sizeof(adma2),
  625. MEMTXATTRS_UNSPECIFIED);
  626. adma2 = le64_to_cpu(adma2);
  627. /*
  628. * The spec does not specify endianness of descriptor table.
  629. * We currently assume that it is LE.
  630. */
  631. dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
  632. dscr->length = (uint16_t)extract64(adma2, 16, 16);
  633. dscr->attr = (uint8_t)extract64(adma2, 0, 7);
  634. dscr->incr = 8;
  635. break;
  636. case SDHC_CTRL_ADMA1_32:
  637. dma_memory_read(s->dma_as, entry_addr, &adma1, sizeof(adma1),
  638. MEMTXATTRS_UNSPECIFIED);
  639. adma1 = le32_to_cpu(adma1);
  640. dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
  641. dscr->attr = (uint8_t)extract32(adma1, 0, 7);
  642. dscr->incr = 4;
  643. if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
  644. dscr->length = (uint16_t)extract32(adma1, 12, 16);
  645. } else {
  646. dscr->length = 4 * KiB;
  647. }
  648. break;
  649. case SDHC_CTRL_ADMA2_64:
  650. dma_memory_read(s->dma_as, entry_addr, &dscr->attr, 1,
  651. MEMTXATTRS_UNSPECIFIED);
  652. dma_memory_read(s->dma_as, entry_addr + 2, &dscr->length, 2,
  653. MEMTXATTRS_UNSPECIFIED);
  654. dscr->length = le16_to_cpu(dscr->length);
  655. dma_memory_read(s->dma_as, entry_addr + 4, &dscr->addr, 8,
  656. MEMTXATTRS_UNSPECIFIED);
  657. dscr->addr = le64_to_cpu(dscr->addr);
  658. dscr->attr &= (uint8_t) ~0xC0;
  659. dscr->incr = 12;
  660. break;
  661. }
  662. }
  663. /* Advanced DMA data transfer */
  664. static void sdhci_do_adma(SDHCIState *s)
  665. {
  666. unsigned int begin, length;
  667. const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
  668. const MemTxAttrs attrs = { .memory = true };
  669. ADMADescr dscr = {};
  670. MemTxResult res = MEMTX_ERROR;
  671. int i;
  672. if (s->trnmod & SDHC_TRNS_BLK_CNT_EN && !s->blkcnt) {
  673. /* Stop Multiple Transfer */
  674. sdhci_end_transfer(s);
  675. return;
  676. }
  677. for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
  678. s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
  679. get_adma_description(s, &dscr);
  680. trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
  681. if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
  682. /* Indicate that error occurred in ST_FDS state */
  683. s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
  684. s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
  685. /* Generate ADMA error interrupt */
  686. if (s->errintstsen & SDHC_EISEN_ADMAERR) {
  687. s->errintsts |= SDHC_EIS_ADMAERR;
  688. s->norintsts |= SDHC_NIS_ERR;
  689. }
  690. sdhci_update_irq(s);
  691. return;
  692. }
  693. length = dscr.length ? dscr.length : 64 * KiB;
  694. switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
  695. case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */
  696. s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
  697. if (s->trnmod & SDHC_TRNS_READ) {
  698. s->prnsts |= SDHC_DOING_READ;
  699. while (length) {
  700. if (s->data_count == 0) {
  701. sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
  702. }
  703. begin = s->data_count;
  704. if ((length + begin) < block_size) {
  705. s->data_count = length + begin;
  706. length = 0;
  707. } else {
  708. s->data_count = block_size;
  709. length -= block_size - begin;
  710. }
  711. res = dma_memory_write(s->dma_as, dscr.addr,
  712. &s->fifo_buffer[begin],
  713. s->data_count - begin,
  714. attrs);
  715. if (res != MEMTX_OK) {
  716. break;
  717. }
  718. dscr.addr += s->data_count - begin;
  719. if (s->data_count == block_size) {
  720. s->data_count = 0;
  721. if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
  722. s->blkcnt--;
  723. if (s->blkcnt == 0) {
  724. break;
  725. }
  726. }
  727. }
  728. }
  729. } else {
  730. s->prnsts |= SDHC_DOING_WRITE;
  731. while (length) {
  732. begin = s->data_count;
  733. if ((length + begin) < block_size) {
  734. s->data_count = length + begin;
  735. length = 0;
  736. } else {
  737. s->data_count = block_size;
  738. length -= block_size - begin;
  739. }
  740. res = dma_memory_read(s->dma_as, dscr.addr,
  741. &s->fifo_buffer[begin],
  742. s->data_count - begin,
  743. attrs);
  744. if (res != MEMTX_OK) {
  745. break;
  746. }
  747. dscr.addr += s->data_count - begin;
  748. if (s->data_count == block_size) {
  749. sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
  750. s->data_count = 0;
  751. if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
  752. s->blkcnt--;
  753. if (s->blkcnt == 0) {
  754. break;
  755. }
  756. }
  757. }
  758. }
  759. }
  760. if (res != MEMTX_OK) {
  761. s->data_count = 0;
  762. if (s->errintstsen & SDHC_EISEN_ADMAERR) {
  763. trace_sdhci_error("Set ADMA error flag");
  764. s->errintsts |= SDHC_EIS_ADMAERR;
  765. s->norintsts |= SDHC_NIS_ERR;
  766. }
  767. sdhci_update_irq(s);
  768. } else {
  769. s->admasysaddr += dscr.incr;
  770. }
  771. break;
  772. case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */
  773. s->admasysaddr = dscr.addr;
  774. trace_sdhci_adma("link", s->admasysaddr);
  775. break;
  776. default:
  777. s->admasysaddr += dscr.incr;
  778. break;
  779. }
  780. if (dscr.attr & SDHC_ADMA_ATTR_INT) {
  781. trace_sdhci_adma("interrupt", s->admasysaddr);
  782. if (s->norintstsen & SDHC_NISEN_DMA) {
  783. s->norintsts |= SDHC_NIS_DMA;
  784. }
  785. if (sdhci_update_irq(s) && !(dscr.attr & SDHC_ADMA_ATTR_END)) {
  786. /* IRQ delivered, reschedule current transfer */
  787. break;
  788. }
  789. }
  790. /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
  791. if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
  792. (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
  793. trace_sdhci_adma_transfer_completed();
  794. if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
  795. (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
  796. s->blkcnt != 0)) {
  797. trace_sdhci_error("SD/MMC host ADMA length mismatch");
  798. s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
  799. SDHC_ADMAERR_STATE_ST_TFR;
  800. if (s->errintstsen & SDHC_EISEN_ADMAERR) {
  801. trace_sdhci_error("Set ADMA error flag");
  802. s->errintsts |= SDHC_EIS_ADMAERR;
  803. s->norintsts |= SDHC_NIS_ERR;
  804. }
  805. sdhci_update_irq(s);
  806. }
  807. sdhci_end_transfer(s);
  808. return;
  809. }
  810. }
  811. /* we have unfinished business - reschedule to continue ADMA */
  812. timer_mod(s->transfer_timer,
  813. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
  814. }
  815. /* Perform data transfer according to controller configuration */
  816. static void sdhci_data_transfer(void *opaque)
  817. {
  818. SDHCIState *s = (SDHCIState *)opaque;
  819. if (s->trnmod & SDHC_TRNS_DMA) {
  820. switch (SDHC_DMA_TYPE(s->hostctl1)) {
  821. case SDHC_CTRL_SDMA:
  822. sdhci_sdma_transfer(s);
  823. break;
  824. case SDHC_CTRL_ADMA1_32:
  825. if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
  826. trace_sdhci_error("ADMA1 not supported");
  827. break;
  828. }
  829. sdhci_do_adma(s);
  830. break;
  831. case SDHC_CTRL_ADMA2_32:
  832. if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
  833. trace_sdhci_error("ADMA2 not supported");
  834. break;
  835. }
  836. sdhci_do_adma(s);
  837. break;
  838. case SDHC_CTRL_ADMA2_64:
  839. if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
  840. !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
  841. trace_sdhci_error("64 bit ADMA not supported");
  842. break;
  843. }
  844. sdhci_do_adma(s);
  845. break;
  846. default:
  847. trace_sdhci_error("Unsupported DMA type");
  848. break;
  849. }
  850. } else {
  851. if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
  852. s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
  853. SDHC_DAT_LINE_ACTIVE;
  854. sdhci_read_block_from_card(s);
  855. } else {
  856. s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
  857. SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
  858. sdhci_write_block_to_card(s);
  859. }
  860. }
  861. }
  862. static bool sdhci_can_issue_command(SDHCIState *s)
  863. {
  864. if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
  865. (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
  866. ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
  867. ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
  868. !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
  869. return false;
  870. }
  871. return true;
  872. }
  873. /*
  874. * The Buffer Data Port register must be accessed in sequential and
  875. * continuous manner
  876. */
  877. static inline bool
  878. sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
  879. {
  880. if ((s->data_count & 0x3) != byte_num) {
  881. qemu_log_mask(LOG_GUEST_ERROR,
  882. "SDHCI: Non-sequential access to Buffer Data Port"
  883. " register is prohibited\n");
  884. return false;
  885. }
  886. return true;
  887. }
  888. static void sdhci_resume_pending_transfer(SDHCIState *s)
  889. {
  890. timer_del(s->transfer_timer);
  891. sdhci_data_transfer(s);
  892. }
  893. static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
  894. {
  895. SDHCIState *s = (SDHCIState *)opaque;
  896. uint32_t ret = 0;
  897. if (timer_pending(s->transfer_timer)) {
  898. sdhci_resume_pending_transfer(s);
  899. }
  900. switch (offset & ~0x3) {
  901. case SDHC_SYSAD:
  902. ret = s->sdmasysad;
  903. break;
  904. case SDHC_BLKSIZE:
  905. ret = s->blksize | (s->blkcnt << 16);
  906. break;
  907. case SDHC_ARGUMENT:
  908. ret = s->argument;
  909. break;
  910. case SDHC_TRNMOD:
  911. ret = s->trnmod | (s->cmdreg << 16);
  912. break;
  913. case SDHC_RSPREG0 ... SDHC_RSPREG3:
  914. ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
  915. break;
  916. case SDHC_BDATA:
  917. if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
  918. ret = sdhci_read_dataport(s, size);
  919. trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
  920. return ret;
  921. }
  922. break;
  923. case SDHC_PRNSTS:
  924. ret = s->prnsts;
  925. ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
  926. sdbus_get_dat_lines(&s->sdbus));
  927. ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
  928. sdbus_get_cmd_line(&s->sdbus));
  929. break;
  930. case SDHC_HOSTCTL:
  931. ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
  932. (s->wakcon << 24);
  933. break;
  934. case SDHC_CLKCON:
  935. ret = s->clkcon | (s->timeoutcon << 16);
  936. break;
  937. case SDHC_NORINTSTS:
  938. ret = s->norintsts | (s->errintsts << 16);
  939. break;
  940. case SDHC_NORINTSTSEN:
  941. ret = s->norintstsen | (s->errintstsen << 16);
  942. break;
  943. case SDHC_NORINTSIGEN:
  944. ret = s->norintsigen | (s->errintsigen << 16);
  945. break;
  946. case SDHC_ACMD12ERRSTS:
  947. ret = s->acmd12errsts | (s->hostctl2 << 16);
  948. break;
  949. case SDHC_CAPAB:
  950. ret = (uint32_t)s->capareg;
  951. break;
  952. case SDHC_CAPAB + 4:
  953. ret = (uint32_t)(s->capareg >> 32);
  954. break;
  955. case SDHC_MAXCURR:
  956. ret = (uint32_t)s->maxcurr;
  957. break;
  958. case SDHC_MAXCURR + 4:
  959. ret = (uint32_t)(s->maxcurr >> 32);
  960. break;
  961. case SDHC_ADMAERR:
  962. ret = s->admaerr;
  963. break;
  964. case SDHC_ADMASYSADDR:
  965. ret = (uint32_t)s->admasysaddr;
  966. break;
  967. case SDHC_ADMASYSADDR + 4:
  968. ret = (uint32_t)(s->admasysaddr >> 32);
  969. break;
  970. case SDHC_SLOT_INT_STATUS:
  971. ret = (s->version << 16) | sdhci_slotint(s);
  972. break;
  973. default:
  974. qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
  975. "not implemented\n", size, offset);
  976. break;
  977. }
  978. ret >>= (offset & 0x3) * 8;
  979. ret &= (1ULL << (size * 8)) - 1;
  980. trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
  981. return ret;
  982. }
  983. static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
  984. {
  985. if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
  986. return;
  987. }
  988. s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
  989. if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
  990. (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
  991. if (s->stopped_state == sdhc_gap_read) {
  992. s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
  993. sdhci_read_block_from_card(s);
  994. } else {
  995. s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
  996. sdhci_write_block_to_card(s);
  997. }
  998. s->stopped_state = sdhc_not_stopped;
  999. } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
  1000. if (s->prnsts & SDHC_DOING_READ) {
  1001. s->stopped_state = sdhc_gap_read;
  1002. } else if (s->prnsts & SDHC_DOING_WRITE) {
  1003. s->stopped_state = sdhc_gap_write;
  1004. }
  1005. }
  1006. }
  1007. static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
  1008. {
  1009. switch (value) {
  1010. case SDHC_RESET_ALL:
  1011. sdhci_reset(s);
  1012. break;
  1013. case SDHC_RESET_CMD:
  1014. s->prnsts &= ~SDHC_CMD_INHIBIT;
  1015. s->norintsts &= ~SDHC_NIS_CMDCMP;
  1016. break;
  1017. case SDHC_RESET_DATA:
  1018. s->data_count = 0;
  1019. s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
  1020. SDHC_DOING_READ | SDHC_DOING_WRITE |
  1021. SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
  1022. s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
  1023. s->stopped_state = sdhc_not_stopped;
  1024. s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
  1025. SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
  1026. break;
  1027. }
  1028. }
  1029. static void
  1030. sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
  1031. {
  1032. SDHCIState *s = (SDHCIState *)opaque;
  1033. unsigned shift = 8 * (offset & 0x3);
  1034. uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
  1035. uint32_t value = val;
  1036. value <<= shift;
  1037. if (timer_pending(s->transfer_timer)) {
  1038. sdhci_resume_pending_transfer(s);
  1039. }
  1040. switch (offset & ~0x3) {
  1041. case SDHC_SYSAD:
  1042. if (!TRANSFERRING_DATA(s->prnsts)) {
  1043. s->sdmasysad = (s->sdmasysad & mask) | value;
  1044. MASKED_WRITE(s->sdmasysad, mask, value);
  1045. /* Writing to last byte of sdmasysad might trigger transfer */
  1046. if (!(mask & 0xFF000000) && s->blkcnt &&
  1047. (s->blksize & BLOCK_SIZE_MASK) &&
  1048. SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
  1049. sdhci_sdma_transfer(s);
  1050. }
  1051. }
  1052. break;
  1053. case SDHC_BLKSIZE:
  1054. if (!TRANSFERRING_DATA(s->prnsts)) {
  1055. uint16_t blksize = s->blksize;
  1056. /*
  1057. * [14:12] SDMA Buffer Boundary
  1058. * [11:00] Transfer Block Size
  1059. */
  1060. MASKED_WRITE(s->blksize, mask, extract32(value, 0, 15));
  1061. MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
  1062. /* Limit block size to the maximum buffer size */
  1063. if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
  1064. qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than "
  1065. "the maximum buffer 0x%x\n", __func__, s->blksize,
  1066. s->buf_maxsz);
  1067. s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
  1068. }
  1069. /*
  1070. * If the block size is programmed to a different value from
  1071. * the previous one, reset the data pointer of s->fifo_buffer[]
  1072. * so that s->fifo_buffer[] can be filled in using the new block
  1073. * size in the next transfer.
  1074. */
  1075. if (blksize != s->blksize) {
  1076. s->data_count = 0;
  1077. }
  1078. }
  1079. break;
  1080. case SDHC_ARGUMENT:
  1081. MASKED_WRITE(s->argument, mask, value);
  1082. break;
  1083. case SDHC_TRNMOD:
  1084. /*
  1085. * DMA can be enabled only if it is supported as indicated by
  1086. * capabilities register
  1087. */
  1088. if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
  1089. value &= ~SDHC_TRNS_DMA;
  1090. }
  1091. /* TRNMOD writes are inhibited while Command Inhibit (DAT) is true */
  1092. if (s->prnsts & SDHC_DATA_INHIBIT) {
  1093. mask |= 0xffff;
  1094. }
  1095. MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
  1096. MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
  1097. /* Writing to the upper byte of CMDREG triggers SD command generation */
  1098. if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
  1099. break;
  1100. }
  1101. sdhci_send_command(s);
  1102. break;
  1103. case SDHC_BDATA:
  1104. if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
  1105. sdhci_write_dataport(s, value >> shift, size);
  1106. }
  1107. break;
  1108. case SDHC_HOSTCTL:
  1109. if (!(mask & 0xFF0000)) {
  1110. sdhci_blkgap_write(s, value >> 16);
  1111. }
  1112. MASKED_WRITE(s->hostctl1, mask, value);
  1113. MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
  1114. MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
  1115. if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
  1116. !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
  1117. s->pwrcon &= ~SDHC_POWER_ON;
  1118. }
  1119. break;
  1120. case SDHC_CLKCON:
  1121. if (!(mask & 0xFF000000)) {
  1122. sdhci_reset_write(s, value >> 24);
  1123. }
  1124. MASKED_WRITE(s->clkcon, mask, value);
  1125. MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
  1126. if (s->clkcon & SDHC_CLOCK_INT_EN) {
  1127. s->clkcon |= SDHC_CLOCK_INT_STABLE;
  1128. } else {
  1129. s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
  1130. }
  1131. break;
  1132. case SDHC_NORINTSTS:
  1133. if (s->norintstsen & SDHC_NISEN_CARDINT) {
  1134. value &= ~SDHC_NIS_CARDINT;
  1135. }
  1136. s->norintsts &= mask | ~value;
  1137. s->errintsts &= (mask >> 16) | ~(value >> 16);
  1138. if (s->errintsts) {
  1139. s->norintsts |= SDHC_NIS_ERR;
  1140. } else {
  1141. s->norintsts &= ~SDHC_NIS_ERR;
  1142. }
  1143. sdhci_update_irq(s);
  1144. break;
  1145. case SDHC_NORINTSTSEN:
  1146. MASKED_WRITE(s->norintstsen, mask, value);
  1147. MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
  1148. s->norintsts &= s->norintstsen;
  1149. s->errintsts &= s->errintstsen;
  1150. if (s->errintsts) {
  1151. s->norintsts |= SDHC_NIS_ERR;
  1152. } else {
  1153. s->norintsts &= ~SDHC_NIS_ERR;
  1154. }
  1155. /*
  1156. * Quirk for Raspberry Pi: pending card insert interrupt
  1157. * appears when first enabled after power on
  1158. */
  1159. if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
  1160. assert(s->pending_insert_quirk);
  1161. s->norintsts |= SDHC_NIS_INSERT;
  1162. s->pending_insert_state = false;
  1163. }
  1164. sdhci_update_irq(s);
  1165. break;
  1166. case SDHC_NORINTSIGEN:
  1167. MASKED_WRITE(s->norintsigen, mask, value);
  1168. MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
  1169. sdhci_update_irq(s);
  1170. break;
  1171. case SDHC_ADMAERR:
  1172. MASKED_WRITE(s->admaerr, mask, value);
  1173. break;
  1174. case SDHC_ADMASYSADDR:
  1175. s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
  1176. (uint64_t)mask)) | (uint64_t)value;
  1177. break;
  1178. case SDHC_ADMASYSADDR + 4:
  1179. s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
  1180. ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
  1181. break;
  1182. case SDHC_FEAER:
  1183. s->acmd12errsts |= value;
  1184. s->errintsts |= (value >> 16) & s->errintstsen;
  1185. if (s->acmd12errsts) {
  1186. s->errintsts |= SDHC_EIS_CMD12ERR;
  1187. }
  1188. if (s->errintsts) {
  1189. s->norintsts |= SDHC_NIS_ERR;
  1190. }
  1191. sdhci_update_irq(s);
  1192. break;
  1193. case SDHC_ACMD12ERRSTS:
  1194. MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
  1195. if (s->uhs_mode >= UHS_I) {
  1196. MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);
  1197. if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
  1198. sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
  1199. } else {
  1200. sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
  1201. }
  1202. }
  1203. break;
  1204. case SDHC_CAPAB:
  1205. case SDHC_CAPAB + 4:
  1206. case SDHC_MAXCURR:
  1207. case SDHC_MAXCURR + 4:
  1208. qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
  1209. " <- 0x%08x read-only\n", size, offset, value >> shift);
  1210. break;
  1211. default:
  1212. qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
  1213. "not implemented\n", size, offset, value >> shift);
  1214. break;
  1215. }
  1216. trace_sdhci_access("wr", size << 3, offset, "<-",
  1217. value >> shift, value >> shift);
  1218. }
  1219. static const MemoryRegionOps sdhci_mmio_le_ops = {
  1220. .read = sdhci_read,
  1221. .write = sdhci_write,
  1222. .valid = {
  1223. .min_access_size = 1,
  1224. .max_access_size = 4,
  1225. .unaligned = false
  1226. },
  1227. .endianness = DEVICE_LITTLE_ENDIAN,
  1228. };
  1229. static const MemoryRegionOps sdhci_mmio_be_ops = {
  1230. .read = sdhci_read,
  1231. .write = sdhci_write,
  1232. .impl = {
  1233. .min_access_size = 4,
  1234. .max_access_size = 4,
  1235. },
  1236. .valid = {
  1237. .min_access_size = 1,
  1238. .max_access_size = 4,
  1239. .unaligned = false
  1240. },
  1241. .endianness = DEVICE_BIG_ENDIAN,
  1242. };
  1243. static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
  1244. {
  1245. ERRP_GUARD();
  1246. switch (s->sd_spec_version) {
  1247. case 2 ... 3:
  1248. break;
  1249. default:
  1250. error_setg(errp, "Only Spec v2/v3 are supported");
  1251. return;
  1252. }
  1253. s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
  1254. sdhci_check_capareg(s, errp);
  1255. if (*errp) {
  1256. return;
  1257. }
  1258. }
  1259. /* --- qdev common --- */
  1260. void sdhci_initfn(SDHCIState *s)
  1261. {
  1262. qbus_init(&s->sdbus, sizeof(s->sdbus), TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
  1263. s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
  1264. sdhci_raise_insertion_irq, s);
  1265. s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
  1266. sdhci_data_transfer, s);
  1267. s->io_ops = &sdhci_mmio_le_ops;
  1268. }
  1269. void sdhci_uninitfn(SDHCIState *s)
  1270. {
  1271. timer_free(s->insert_timer);
  1272. timer_free(s->transfer_timer);
  1273. g_free(s->fifo_buffer);
  1274. s->fifo_buffer = NULL;
  1275. }
  1276. void sdhci_common_realize(SDHCIState *s, Error **errp)
  1277. {
  1278. ERRP_GUARD();
  1279. switch (s->endianness) {
  1280. case DEVICE_LITTLE_ENDIAN:
  1281. /* s->io_ops is little endian by default */
  1282. break;
  1283. case DEVICE_BIG_ENDIAN:
  1284. if (s->io_ops != &sdhci_mmio_le_ops) {
  1285. error_setg(errp, "SD controller doesn't support big endianness");
  1286. return;
  1287. }
  1288. s->io_ops = &sdhci_mmio_be_ops;
  1289. break;
  1290. default:
  1291. error_setg(errp, "Incorrect endianness");
  1292. return;
  1293. }
  1294. sdhci_init_readonly_registers(s, errp);
  1295. if (*errp) {
  1296. return;
  1297. }
  1298. s->buf_maxsz = sdhci_get_fifolen(s);
  1299. s->fifo_buffer = g_malloc0(s->buf_maxsz);
  1300. memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
  1301. SDHC_REGISTERS_MAP_SIZE);
  1302. }
  1303. void sdhci_common_unrealize(SDHCIState *s)
  1304. {
  1305. /*
  1306. * This function is expected to be called only once for each class:
  1307. * - SysBus: via DeviceClass->unrealize(),
  1308. * - PCI: via PCIDeviceClass->exit().
  1309. * However to avoid double-free and/or use-after-free we still nullify
  1310. * this variable (better safe than sorry!).
  1311. */
  1312. g_free(s->fifo_buffer);
  1313. s->fifo_buffer = NULL;
  1314. }
  1315. static bool sdhci_pending_insert_vmstate_needed(void *opaque)
  1316. {
  1317. SDHCIState *s = opaque;
  1318. return s->pending_insert_state;
  1319. }
  1320. static const VMStateDescription sdhci_pending_insert_vmstate = {
  1321. .name = "sdhci/pending-insert",
  1322. .version_id = 1,
  1323. .minimum_version_id = 1,
  1324. .needed = sdhci_pending_insert_vmstate_needed,
  1325. .fields = (const VMStateField[]) {
  1326. VMSTATE_BOOL(pending_insert_state, SDHCIState),
  1327. VMSTATE_END_OF_LIST()
  1328. },
  1329. };
  1330. const VMStateDescription sdhci_vmstate = {
  1331. .name = "sdhci",
  1332. .version_id = 1,
  1333. .minimum_version_id = 1,
  1334. .fields = (const VMStateField[]) {
  1335. VMSTATE_UINT32(sdmasysad, SDHCIState),
  1336. VMSTATE_UINT16(blksize, SDHCIState),
  1337. VMSTATE_UINT16(blkcnt, SDHCIState),
  1338. VMSTATE_UINT32(argument, SDHCIState),
  1339. VMSTATE_UINT16(trnmod, SDHCIState),
  1340. VMSTATE_UINT16(cmdreg, SDHCIState),
  1341. VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
  1342. VMSTATE_UINT32(prnsts, SDHCIState),
  1343. VMSTATE_UINT8(hostctl1, SDHCIState),
  1344. VMSTATE_UINT8(pwrcon, SDHCIState),
  1345. VMSTATE_UINT8(blkgap, SDHCIState),
  1346. VMSTATE_UINT8(wakcon, SDHCIState),
  1347. VMSTATE_UINT16(clkcon, SDHCIState),
  1348. VMSTATE_UINT8(timeoutcon, SDHCIState),
  1349. VMSTATE_UINT8(admaerr, SDHCIState),
  1350. VMSTATE_UINT16(norintsts, SDHCIState),
  1351. VMSTATE_UINT16(errintsts, SDHCIState),
  1352. VMSTATE_UINT16(norintstsen, SDHCIState),
  1353. VMSTATE_UINT16(errintstsen, SDHCIState),
  1354. VMSTATE_UINT16(norintsigen, SDHCIState),
  1355. VMSTATE_UINT16(errintsigen, SDHCIState),
  1356. VMSTATE_UINT16(acmd12errsts, SDHCIState),
  1357. VMSTATE_UINT16(data_count, SDHCIState),
  1358. VMSTATE_UINT64(admasysaddr, SDHCIState),
  1359. VMSTATE_UINT8(stopped_state, SDHCIState),
  1360. VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
  1361. VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
  1362. VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
  1363. VMSTATE_END_OF_LIST()
  1364. },
  1365. .subsections = (const VMStateDescription * const []) {
  1366. &sdhci_pending_insert_vmstate,
  1367. NULL
  1368. },
  1369. };
  1370. void sdhci_common_class_init(ObjectClass *klass, void *data)
  1371. {
  1372. DeviceClass *dc = DEVICE_CLASS(klass);
  1373. set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
  1374. dc->vmsd = &sdhci_vmstate;
  1375. device_class_set_legacy_reset(dc, sdhci_poweron_reset);
  1376. }
  1377. /* --- qdev SysBus --- */
  1378. static const Property sdhci_sysbus_properties[] = {
  1379. DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
  1380. DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
  1381. false),
  1382. DEFINE_PROP_LINK("dma", SDHCIState,
  1383. dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
  1384. DEFINE_PROP_BOOL("wp-inverted", SDHCIState,
  1385. wp_inverted, false),
  1386. };
  1387. static void sdhci_sysbus_init(Object *obj)
  1388. {
  1389. SDHCIState *s = SYSBUS_SDHCI(obj);
  1390. sdhci_initfn(s);
  1391. }
  1392. static void sdhci_sysbus_finalize(Object *obj)
  1393. {
  1394. SDHCIState *s = SYSBUS_SDHCI(obj);
  1395. if (s->dma_mr) {
  1396. object_unparent(OBJECT(s->dma_mr));
  1397. }
  1398. sdhci_uninitfn(s);
  1399. }
  1400. static void sdhci_sysbus_realize(DeviceState *dev, Error **errp)
  1401. {
  1402. ERRP_GUARD();
  1403. SDHCIState *s = SYSBUS_SDHCI(dev);
  1404. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  1405. sdhci_common_realize(s, errp);
  1406. if (*errp) {
  1407. return;
  1408. }
  1409. if (s->dma_mr) {
  1410. s->dma_as = &s->sysbus_dma_as;
  1411. address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
  1412. } else {
  1413. /* use system_memory() if property "dma" not set */
  1414. s->dma_as = &address_space_memory;
  1415. }
  1416. sysbus_init_irq(sbd, &s->irq);
  1417. sysbus_init_mmio(sbd, &s->iomem);
  1418. }
  1419. static void sdhci_sysbus_unrealize(DeviceState *dev)
  1420. {
  1421. SDHCIState *s = SYSBUS_SDHCI(dev);
  1422. sdhci_common_unrealize(s);
  1423. if (s->dma_mr) {
  1424. address_space_destroy(s->dma_as);
  1425. }
  1426. }
  1427. static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
  1428. {
  1429. DeviceClass *dc = DEVICE_CLASS(klass);
  1430. device_class_set_props(dc, sdhci_sysbus_properties);
  1431. dc->realize = sdhci_sysbus_realize;
  1432. dc->unrealize = sdhci_sysbus_unrealize;
  1433. sdhci_common_class_init(klass, data);
  1434. }
  1435. /* --- qdev bus master --- */
  1436. static void sdhci_bus_class_init(ObjectClass *klass, void *data)
  1437. {
  1438. SDBusClass *sbc = SD_BUS_CLASS(klass);
  1439. sbc->set_inserted = sdhci_set_inserted;
  1440. sbc->set_readonly = sdhci_set_readonly;
  1441. }
  1442. /* --- qdev i.MX eSDHC --- */
  1443. #define USDHC_MIX_CTRL 0x48
  1444. #define USDHC_VENDOR_SPEC 0xc0
  1445. #define USDHC_IMX_FRC_SDCLK_ON (1 << 8)
  1446. #define USDHC_DLL_CTRL 0x60
  1447. #define USDHC_TUNING_CTRL 0xcc
  1448. #define USDHC_TUNE_CTRL_STATUS 0x68
  1449. #define USDHC_WTMK_LVL 0x44
  1450. /* Undocumented register used by guests working around erratum ERR004536 */
  1451. #define USDHC_UNDOCUMENTED_REG27 0x6c
  1452. #define USDHC_CTRL_4BITBUS (0x1 << 1)
  1453. #define USDHC_CTRL_8BITBUS (0x2 << 1)
  1454. #define USDHC_PRNSTS_SDSTB (1 << 3)
  1455. static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
  1456. {
  1457. SDHCIState *s = SYSBUS_SDHCI(opaque);
  1458. uint32_t ret;
  1459. uint16_t hostctl1;
  1460. switch (offset) {
  1461. default:
  1462. return sdhci_read(opaque, offset, size);
  1463. case SDHC_HOSTCTL:
  1464. /*
  1465. * For a detailed explanation on the following bit
  1466. * manipulation code see comments in a similar part of
  1467. * usdhc_write()
  1468. */
  1469. hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
  1470. if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
  1471. hostctl1 |= USDHC_CTRL_8BITBUS;
  1472. }
  1473. if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
  1474. hostctl1 |= USDHC_CTRL_4BITBUS;
  1475. }
  1476. ret = hostctl1;
  1477. ret |= (uint32_t)s->blkgap << 16;
  1478. ret |= (uint32_t)s->wakcon << 24;
  1479. break;
  1480. case SDHC_PRNSTS:
  1481. /* Add SDSTB (SD Clock Stable) bit to PRNSTS */
  1482. ret = sdhci_read(opaque, offset, size) & ~USDHC_PRNSTS_SDSTB;
  1483. if (s->clkcon & SDHC_CLOCK_INT_STABLE) {
  1484. ret |= USDHC_PRNSTS_SDSTB;
  1485. }
  1486. break;
  1487. case USDHC_VENDOR_SPEC:
  1488. ret = s->vendor_spec;
  1489. break;
  1490. case USDHC_DLL_CTRL:
  1491. case USDHC_TUNE_CTRL_STATUS:
  1492. case USDHC_UNDOCUMENTED_REG27:
  1493. case USDHC_TUNING_CTRL:
  1494. case USDHC_MIX_CTRL:
  1495. case USDHC_WTMK_LVL:
  1496. ret = 0;
  1497. break;
  1498. }
  1499. return ret;
  1500. }
  1501. static void
  1502. usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
  1503. {
  1504. SDHCIState *s = SYSBUS_SDHCI(opaque);
  1505. uint8_t hostctl1;
  1506. uint32_t value = (uint32_t)val;
  1507. switch (offset) {
  1508. case USDHC_DLL_CTRL:
  1509. case USDHC_TUNE_CTRL_STATUS:
  1510. case USDHC_UNDOCUMENTED_REG27:
  1511. case USDHC_TUNING_CTRL:
  1512. case USDHC_WTMK_LVL:
  1513. break;
  1514. case USDHC_VENDOR_SPEC:
  1515. s->vendor_spec = value;
  1516. switch (s->vendor) {
  1517. case SDHCI_VENDOR_IMX:
  1518. if (value & USDHC_IMX_FRC_SDCLK_ON) {
  1519. s->prnsts &= ~SDHC_IMX_CLOCK_GATE_OFF;
  1520. } else {
  1521. s->prnsts |= SDHC_IMX_CLOCK_GATE_OFF;
  1522. }
  1523. break;
  1524. default:
  1525. break;
  1526. }
  1527. break;
  1528. case SDHC_HOSTCTL:
  1529. /*
  1530. * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
  1531. *
  1532. * 7 6 5 4 3 2 1 0
  1533. * |-----------+--------+--------+-----------+----------+---------|
  1534. * | Card | Card | Endian | DATA3 | Data | Led |
  1535. * | Detect | Detect | Mode | as Card | Transfer | Control |
  1536. * | Signal | Test | | Detection | Width | |
  1537. * | Selection | Level | | Pin | | |
  1538. * |-----------+--------+--------+-----------+----------+---------|
  1539. *
  1540. * and 0x29
  1541. *
  1542. * 15 10 9 8
  1543. * |----------+------|
  1544. * | Reserved | DMA |
  1545. * | | Sel. |
  1546. * | | |
  1547. * |----------+------|
  1548. *
  1549. * and here's what SDCHI spec expects those offsets to be:
  1550. *
  1551. * 0x28 (Host Control Register)
  1552. *
  1553. * 7 6 5 4 3 2 1 0
  1554. * |--------+--------+----------+------+--------+----------+---------|
  1555. * | Card | Card | Extended | DMA | High | Data | LED |
  1556. * | Detect | Detect | Data | Sel. | Speed | Transfer | Control |
  1557. * | Signal | Test | Transfer | | Enable | Width | |
  1558. * | Sel. | Level | Width | | | | |
  1559. * |--------+--------+----------+------+--------+----------+---------|
  1560. *
  1561. * and 0x29 (Power Control Register)
  1562. *
  1563. * |----------------------------------|
  1564. * | Power Control Register |
  1565. * | |
  1566. * | Description omitted, |
  1567. * | since it has no analog in ESDHCI |
  1568. * | |
  1569. * |----------------------------------|
  1570. *
  1571. * Since offsets 0x2A and 0x2B should be compatible between
  1572. * both IP specs we only need to reconcile least 16-bit of the
  1573. * word we've been given.
  1574. */
  1575. /*
  1576. * First, save bits 7 6 and 0 since they are identical
  1577. */
  1578. hostctl1 = value & (SDHC_CTRL_LED |
  1579. SDHC_CTRL_CDTEST_INS |
  1580. SDHC_CTRL_CDTEST_EN);
  1581. /*
  1582. * Second, split "Data Transfer Width" from bits 2 and 1 in to
  1583. * bits 5 and 1
  1584. */
  1585. if (value & USDHC_CTRL_8BITBUS) {
  1586. hostctl1 |= SDHC_CTRL_8BITBUS;
  1587. }
  1588. if (value & USDHC_CTRL_4BITBUS) {
  1589. hostctl1 |= USDHC_CTRL_4BITBUS;
  1590. }
  1591. /*
  1592. * Third, move DMA select from bits 9 and 8 to bits 4 and 3
  1593. */
  1594. hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
  1595. /*
  1596. * Now place the corrected value into low 16-bit of the value
  1597. * we are going to give standard SDHCI write function
  1598. *
  1599. * NOTE: This transformation should be the inverse of what can
  1600. * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
  1601. * kernel
  1602. */
  1603. value &= ~UINT16_MAX;
  1604. value |= hostctl1;
  1605. value |= (uint16_t)s->pwrcon << 8;
  1606. sdhci_write(opaque, offset, value, size);
  1607. break;
  1608. case USDHC_MIX_CTRL:
  1609. /*
  1610. * So, when SD/MMC stack in Linux tries to write to "Transfer
  1611. * Mode Register", ESDHC i.MX quirk code will translate it
  1612. * into a write to ESDHC_MIX_CTRL, so we do the opposite in
  1613. * order to get where we started
  1614. *
  1615. * Note that Auto CMD23 Enable bit is located in a wrong place
  1616. * on i.MX, but since it is not used by QEMU we do not care.
  1617. *
  1618. * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
  1619. * here because it will result in a call to
  1620. * sdhci_send_command(s) which we don't want.
  1621. *
  1622. */
  1623. s->trnmod = value & UINT16_MAX;
  1624. break;
  1625. case SDHC_TRNMOD:
  1626. /*
  1627. * Similar to above, but this time a write to "Command
  1628. * Register" will be translated into a 4-byte write to
  1629. * "Transfer Mode register" where lower 16-bit of value would
  1630. * be set to zero. So what we do is fill those bits with
  1631. * cached value from s->trnmod and let the SDHCI
  1632. * infrastructure handle the rest
  1633. */
  1634. sdhci_write(opaque, offset, val | s->trnmod, size);
  1635. break;
  1636. case SDHC_BLKSIZE:
  1637. /*
  1638. * ESDHCI does not implement "Host SDMA Buffer Boundary", and
  1639. * Linux driver will try to zero this field out which will
  1640. * break the rest of SDHCI emulation.
  1641. *
  1642. * Linux defaults to maximum possible setting (512K boundary)
  1643. * and it seems to be the only option that i.MX IP implements,
  1644. * so we artificially set it to that value.
  1645. */
  1646. val |= 0x7 << 12;
  1647. /* FALLTHROUGH */
  1648. default:
  1649. sdhci_write(opaque, offset, val, size);
  1650. break;
  1651. }
  1652. }
  1653. static const MemoryRegionOps usdhc_mmio_ops = {
  1654. .read = usdhc_read,
  1655. .write = usdhc_write,
  1656. .valid = {
  1657. .min_access_size = 1,
  1658. .max_access_size = 4,
  1659. .unaligned = false
  1660. },
  1661. .endianness = DEVICE_LITTLE_ENDIAN,
  1662. };
  1663. static void imx_usdhc_init(Object *obj)
  1664. {
  1665. SDHCIState *s = SYSBUS_SDHCI(obj);
  1666. s->io_ops = &usdhc_mmio_ops;
  1667. s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
  1668. }
  1669. /* --- qdev Samsung s3c --- */
  1670. #define S3C_SDHCI_CONTROL2 0x80
  1671. #define S3C_SDHCI_CONTROL3 0x84
  1672. #define S3C_SDHCI_CONTROL4 0x8c
  1673. static uint64_t sdhci_s3c_read(void *opaque, hwaddr offset, unsigned size)
  1674. {
  1675. uint64_t ret;
  1676. switch (offset) {
  1677. case S3C_SDHCI_CONTROL2:
  1678. case S3C_SDHCI_CONTROL3:
  1679. case S3C_SDHCI_CONTROL4:
  1680. /* ignore */
  1681. ret = 0;
  1682. break;
  1683. default:
  1684. ret = sdhci_read(opaque, offset, size);
  1685. break;
  1686. }
  1687. return ret;
  1688. }
  1689. static void sdhci_s3c_write(void *opaque, hwaddr offset, uint64_t val,
  1690. unsigned size)
  1691. {
  1692. switch (offset) {
  1693. case S3C_SDHCI_CONTROL2:
  1694. case S3C_SDHCI_CONTROL3:
  1695. case S3C_SDHCI_CONTROL4:
  1696. /* ignore */
  1697. break;
  1698. default:
  1699. sdhci_write(opaque, offset, val, size);
  1700. break;
  1701. }
  1702. }
  1703. static const MemoryRegionOps sdhci_s3c_mmio_ops = {
  1704. .read = sdhci_s3c_read,
  1705. .write = sdhci_s3c_write,
  1706. .valid = {
  1707. .min_access_size = 1,
  1708. .max_access_size = 4,
  1709. .unaligned = false
  1710. },
  1711. .endianness = DEVICE_LITTLE_ENDIAN,
  1712. };
  1713. static void sdhci_s3c_init(Object *obj)
  1714. {
  1715. SDHCIState *s = SYSBUS_SDHCI(obj);
  1716. s->io_ops = &sdhci_s3c_mmio_ops;
  1717. }
  1718. static const TypeInfo sdhci_types[] = {
  1719. {
  1720. .name = TYPE_SDHCI_BUS,
  1721. .parent = TYPE_SD_BUS,
  1722. .instance_size = sizeof(SDBus),
  1723. .class_init = sdhci_bus_class_init,
  1724. },
  1725. {
  1726. .name = TYPE_SYSBUS_SDHCI,
  1727. .parent = TYPE_SYS_BUS_DEVICE,
  1728. .instance_size = sizeof(SDHCIState),
  1729. .instance_init = sdhci_sysbus_init,
  1730. .instance_finalize = sdhci_sysbus_finalize,
  1731. .class_init = sdhci_sysbus_class_init,
  1732. },
  1733. {
  1734. .name = TYPE_IMX_USDHC,
  1735. .parent = TYPE_SYSBUS_SDHCI,
  1736. .instance_init = imx_usdhc_init,
  1737. },
  1738. {
  1739. .name = TYPE_S3C_SDHCI,
  1740. .parent = TYPE_SYSBUS_SDHCI,
  1741. .instance_init = sdhci_s3c_init,
  1742. },
  1743. };
  1744. DEFINE_TYPES(sdhci_types)