sparse-mem.c 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161
  1. /*
  2. * A sparse memory device. Useful for fuzzing
  3. *
  4. * Copyright Red Hat Inc., 2021
  5. *
  6. * Authors:
  7. * Alexander Bulekov <alxndr@bu.edu>
  8. *
  9. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10. * See the COPYING file in the top-level directory.
  11. */
  12. #include "qemu/osdep.h"
  13. #include "qemu/error-report.h"
  14. #include "hw/qdev-properties.h"
  15. #include "hw/sysbus.h"
  16. #include "qapi/error.h"
  17. #include "qemu/units.h"
  18. #include "system/qtest.h"
  19. #include "hw/mem/sparse-mem.h"
  20. #define SPARSE_MEM(obj) OBJECT_CHECK(SparseMemState, (obj), TYPE_SPARSE_MEM)
  21. #define SPARSE_BLOCK_SIZE 0x1000
  22. typedef struct SparseMemState {
  23. SysBusDevice parent_obj;
  24. MemoryRegion mmio;
  25. uint64_t baseaddr;
  26. uint64_t length;
  27. uint64_t size_used;
  28. uint64_t maxsize;
  29. GHashTable *mapped;
  30. } SparseMemState;
  31. typedef struct sparse_mem_block {
  32. uint8_t data[SPARSE_BLOCK_SIZE];
  33. } sparse_mem_block;
  34. static uint64_t sparse_mem_read(void *opaque, hwaddr addr, unsigned int size)
  35. {
  36. SparseMemState *s = opaque;
  37. uint64_t ret = 0;
  38. size_t pfn = addr / SPARSE_BLOCK_SIZE;
  39. size_t offset = addr % SPARSE_BLOCK_SIZE;
  40. sparse_mem_block *block;
  41. block = g_hash_table_lookup(s->mapped, (void *)pfn);
  42. if (block) {
  43. assert(offset + size <= sizeof(block->data));
  44. memcpy(&ret, block->data + offset, size);
  45. }
  46. return ret;
  47. }
  48. static void sparse_mem_write(void *opaque, hwaddr addr, uint64_t v,
  49. unsigned int size)
  50. {
  51. SparseMemState *s = opaque;
  52. size_t pfn = addr / SPARSE_BLOCK_SIZE;
  53. size_t offset = addr % SPARSE_BLOCK_SIZE;
  54. sparse_mem_block *block;
  55. if (!g_hash_table_lookup(s->mapped, (void *)pfn) &&
  56. s->size_used + SPARSE_BLOCK_SIZE < s->maxsize && v) {
  57. g_hash_table_insert(s->mapped, (void *)pfn,
  58. g_new0(sparse_mem_block, 1));
  59. s->size_used += sizeof(block->data);
  60. }
  61. block = g_hash_table_lookup(s->mapped, (void *)pfn);
  62. if (!block) {
  63. return;
  64. }
  65. assert(offset + size <= sizeof(block->data));
  66. memcpy(block->data + offset, &v, size);
  67. }
  68. static void sparse_mem_enter_reset(Object *obj, ResetType type)
  69. {
  70. SparseMemState *s = SPARSE_MEM(obj);
  71. g_hash_table_remove_all(s->mapped);
  72. return;
  73. }
  74. static const MemoryRegionOps sparse_mem_ops = {
  75. .read = sparse_mem_read,
  76. .write = sparse_mem_write,
  77. .endianness = DEVICE_LITTLE_ENDIAN,
  78. .valid = {
  79. .min_access_size = 1,
  80. .max_access_size = 8,
  81. .unaligned = false,
  82. },
  83. };
  84. static const Property sparse_mem_properties[] = {
  85. /* The base address of the memory */
  86. DEFINE_PROP_UINT64("baseaddr", SparseMemState, baseaddr, 0x0),
  87. /* The length of the sparse memory region */
  88. DEFINE_PROP_UINT64("length", SparseMemState, length, UINT64_MAX),
  89. /* Max amount of actual memory that can be used to back the sparse memory */
  90. DEFINE_PROP_UINT64("maxsize", SparseMemState, maxsize, 10 * MiB),
  91. };
  92. MemoryRegion *sparse_mem_init(uint64_t addr, uint64_t length)
  93. {
  94. DeviceState *dev;
  95. dev = qdev_new(TYPE_SPARSE_MEM);
  96. qdev_prop_set_uint64(dev, "baseaddr", addr);
  97. qdev_prop_set_uint64(dev, "length", length);
  98. sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
  99. sysbus_mmio_map_overlap(SYS_BUS_DEVICE(dev), 0, addr, -10000);
  100. return &SPARSE_MEM(dev)->mmio;
  101. }
  102. static void sparse_mem_realize(DeviceState *dev, Error **errp)
  103. {
  104. SparseMemState *s = SPARSE_MEM(dev);
  105. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  106. if (!qtest_enabled()) {
  107. error_setg(errp, "sparse_mem device should only be used "
  108. "for testing with QTest");
  109. return;
  110. }
  111. assert(s->baseaddr + s->length > s->baseaddr);
  112. s->mapped = g_hash_table_new_full(NULL, NULL, NULL,
  113. (GDestroyNotify)g_free);
  114. memory_region_init_io(&s->mmio, OBJECT(s), &sparse_mem_ops, s,
  115. "sparse-mem", s->length);
  116. sysbus_init_mmio(sbd, &s->mmio);
  117. }
  118. static void sparse_mem_class_init(ObjectClass *klass, void *data)
  119. {
  120. ResettableClass *rc = RESETTABLE_CLASS(klass);
  121. DeviceClass *dc = DEVICE_CLASS(klass);
  122. device_class_set_props(dc, sparse_mem_properties);
  123. dc->desc = "Sparse Memory Device";
  124. dc->realize = sparse_mem_realize;
  125. rc->phases.enter = sparse_mem_enter_reset;
  126. }
  127. static const TypeInfo sparse_mem_types[] = {
  128. {
  129. .name = TYPE_SPARSE_MEM,
  130. .parent = TYPE_SYS_BUS_DEVICE,
  131. .instance_size = sizeof(SparseMemState),
  132. .class_init = sparse_mem_class_init,
  133. },
  134. };
  135. DEFINE_TYPES(sparse_mem_types);