12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901 |
- /*
- * QEMU float support
- *
- * The code in this source file is derived from release 2a of the SoftFloat
- * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
- * some later contributions) are provided under that license, as detailed below.
- * It has subsequently been modified by contributors to the QEMU Project,
- * so some portions are provided under:
- * the SoftFloat-2a license
- * the BSD license
- * GPL-v2-or-later
- *
- * Any future contributions to this file after December 1st 2014 will be
- * taken to be licensed under the Softfloat-2a license unless specifically
- * indicated otherwise.
- */
- /*
- ===============================================================================
- This C source file is part of the SoftFloat IEC/IEEE Floating-point
- Arithmetic Package, Release 2a.
- Written by John R. Hauser. This work was made possible in part by the
- International Computer Science Institute, located at Suite 600, 1947 Center
- Street, Berkeley, California 94704. Funding was partially provided by the
- National Science Foundation under grant MIP-9311980. The original version
- of this code was written as part of a project to build a fixed-point vector
- processor in collaboration with the University of California at Berkeley,
- overseen by Profs. Nelson Morgan and John Wawrzynek. More information
- is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
- arithmetic/SoftFloat.html'.
- THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
- has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
- TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
- PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
- AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
- Derivative works are acceptable, even for commercial purposes, so long as
- (1) they include prominent notice that the work is derivative, and (2) they
- include prominent notice akin to these four paragraphs for those parts of
- this code that are retained.
- ===============================================================================
- */
- /* BSD licensing:
- * Copyright (c) 2006, Fabrice Bellard
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * 3. Neither the name of the copyright holder nor the names of its contributors
- * may be used to endorse or promote products derived from this software without
- * specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
- * THE POSSIBILITY OF SUCH DAMAGE.
- */
- /* Portions of this work are licensed under the terms of the GNU GPL,
- * version 2 or later. See the COPYING file in the top-level directory.
- */
- /* softfloat (and in particular the code in softfloat-specialize.h) is
- * target-dependent and needs the TARGET_* macros.
- */
- #include "qemu/osdep.h"
- #include "fpu/softfloat.h"
- /* We only need stdlib for abort() */
- /*----------------------------------------------------------------------------
- | Primitive arithmetic functions, including multi-word arithmetic, and
- | division and square root approximations. (Can be specialized to target if
- | desired.)
- *----------------------------------------------------------------------------*/
- #include "softfloat-macros.h"
- /*----------------------------------------------------------------------------
- | Functions and definitions to determine: (1) whether tininess for underflow
- | is detected before or after rounding by default, (2) what (if anything)
- | happens when exceptions are raised, (3) how signaling NaNs are distinguished
- | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
- | are propagated from function inputs to output. These details are target-
- | specific.
- *----------------------------------------------------------------------------*/
- #include "softfloat-specialize.h"
- /*----------------------------------------------------------------------------
- | Returns the fraction bits of the half-precision floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline uint32_t extractFloat16Frac(float16 a)
- {
- return float16_val(a) & 0x3ff;
- }
- /*----------------------------------------------------------------------------
- | Returns the exponent bits of the half-precision floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline int extractFloat16Exp(float16 a)
- {
- return (float16_val(a) >> 10) & 0x1f;
- }
- /*----------------------------------------------------------------------------
- | Returns the sign bit of the single-precision floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline flag extractFloat16Sign(float16 a)
- {
- return float16_val(a)>>15;
- }
- /*----------------------------------------------------------------------------
- | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
- | and 7, and returns the properly rounded 32-bit integer corresponding to the
- | input. If `zSign' is 1, the input is negated before being converted to an
- | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
- | is simply rounded to an integer, with the inexact exception raised if the
- | input cannot be represented exactly as an integer. However, if the fixed-
- | point input is too large, the invalid exception is raised and the largest
- | positive or negative integer is returned.
- *----------------------------------------------------------------------------*/
- static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
- {
- int8_t roundingMode;
- flag roundNearestEven;
- int8_t roundIncrement, roundBits;
- int32_t z;
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- roundIncrement = 0x40;
- break;
- case float_round_to_zero:
- roundIncrement = 0;
- break;
- case float_round_up:
- roundIncrement = zSign ? 0 : 0x7f;
- break;
- case float_round_down:
- roundIncrement = zSign ? 0x7f : 0;
- break;
- default:
- abort();
- }
- roundBits = absZ & 0x7F;
- absZ = ( absZ + roundIncrement )>>7;
- absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
- z = absZ;
- if ( zSign ) z = - z;
- if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
- float_raise(float_flag_invalid, status);
- return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
- }
- if (roundBits) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
- }
- /*----------------------------------------------------------------------------
- | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
- | `absZ1', with binary point between bits 63 and 64 (between the input words),
- | and returns the properly rounded 64-bit integer corresponding to the input.
- | If `zSign' is 1, the input is negated before being converted to an integer.
- | Ordinarily, the fixed-point input is simply rounded to an integer, with
- | the inexact exception raised if the input cannot be represented exactly as
- | an integer. However, if the fixed-point input is too large, the invalid
- | exception is raised and the largest positive or negative integer is
- | returned.
- *----------------------------------------------------------------------------*/
- static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
- float_status *status)
- {
- int8_t roundingMode;
- flag roundNearestEven, increment;
- int64_t z;
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t) absZ1 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && absZ1;
- break;
- case float_round_down:
- increment = zSign && absZ1;
- break;
- default:
- abort();
- }
- if ( increment ) {
- ++absZ0;
- if ( absZ0 == 0 ) goto overflow;
- absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
- }
- z = absZ0;
- if ( zSign ) z = - z;
- if ( z && ( ( z < 0 ) ^ zSign ) ) {
- overflow:
- float_raise(float_flag_invalid, status);
- return
- zSign ? (int64_t) LIT64( 0x8000000000000000 )
- : LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- if (absZ1) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
- }
- /*----------------------------------------------------------------------------
- | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
- | `absZ1', with binary point between bits 63 and 64 (between the input words),
- | and returns the properly rounded 64-bit unsigned integer corresponding to the
- | input. Ordinarily, the fixed-point input is simply rounded to an integer,
- | with the inexact exception raised if the input cannot be represented exactly
- | as an integer. However, if the fixed-point input is too large, the invalid
- | exception is raised and the largest unsigned integer is returned.
- *----------------------------------------------------------------------------*/
- static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
- uint64_t absZ1, float_status *status)
- {
- int8_t roundingMode;
- flag roundNearestEven, increment;
- roundingMode = status->float_rounding_mode;
- roundNearestEven = (roundingMode == float_round_nearest_even);
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t)absZ1 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && absZ1;
- break;
- case float_round_down:
- increment = zSign && absZ1;
- break;
- default:
- abort();
- }
- if (increment) {
- ++absZ0;
- if (absZ0 == 0) {
- float_raise(float_flag_invalid, status);
- return LIT64(0xFFFFFFFFFFFFFFFF);
- }
- absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
- }
- if (zSign && absZ0) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- if (absZ1) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return absZ0;
- }
- /*----------------------------------------------------------------------------
- | Returns the fraction bits of the single-precision floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline uint32_t extractFloat32Frac( float32 a )
- {
- return float32_val(a) & 0x007FFFFF;
- }
- /*----------------------------------------------------------------------------
- | Returns the exponent bits of the single-precision floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline int extractFloat32Exp(float32 a)
- {
- return ( float32_val(a)>>23 ) & 0xFF;
- }
- /*----------------------------------------------------------------------------
- | Returns the sign bit of the single-precision floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline flag extractFloat32Sign( float32 a )
- {
- return float32_val(a)>>31;
- }
- /*----------------------------------------------------------------------------
- | If `a' is denormal and we are in flush-to-zero mode then set the
- | input-denormal exception and return zero. Otherwise just return the value.
- *----------------------------------------------------------------------------*/
- float32 float32_squash_input_denormal(float32 a, float_status *status)
- {
- if (status->flush_inputs_to_zero) {
- if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
- float_raise(float_flag_input_denormal, status);
- return make_float32(float32_val(a) & 0x80000000);
- }
- }
- return a;
- }
- /*----------------------------------------------------------------------------
- | Normalizes the subnormal single-precision floating-point value represented
- | by the denormalized significand `aSig'. The normalized exponent and
- | significand are stored at the locations pointed to by `zExpPtr' and
- | `zSigPtr', respectively.
- *----------------------------------------------------------------------------*/
- static void
- normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
- {
- int8_t shiftCount;
- shiftCount = countLeadingZeros32( aSig ) - 8;
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
- }
- /*----------------------------------------------------------------------------
- | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
- | single-precision floating-point value, returning the result. After being
- | shifted into the proper positions, the three fields are simply added
- | together to form the result. This means that any integer portion of `zSig'
- | will be added into the exponent. Since a properly normalized significand
- | will have an integer portion equal to 1, the `zExp' input should be 1 less
- | than the desired result exponent whenever `zSig' is a complete, normalized
- | significand.
- *----------------------------------------------------------------------------*/
- static inline float32 packFloat32(flag zSign, int zExp, uint32_t zSig)
- {
- return make_float32(
- ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
- }
- /*----------------------------------------------------------------------------
- | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- | and significand `zSig', and returns the proper single-precision floating-
- | point value corresponding to the abstract input. Ordinarily, the abstract
- | value is simply rounded and packed into the single-precision format, with
- | the inexact exception raised if the abstract input cannot be represented
- | exactly. However, if the abstract value is too large, the overflow and
- | inexact exceptions are raised and an infinity or maximal finite value is
- | returned. If the abstract value is too small, the input value is rounded to
- | a subnormal number, and the underflow and inexact exceptions are raised if
- | the abstract input cannot be represented exactly as a subnormal single-
- | precision floating-point number.
- | The input significand `zSig' has its binary point between bits 30
- | and 29, which is 7 bits to the left of the usual location. This shifted
- | significand must be normalized or smaller. If `zSig' is not normalized,
- | `zExp' must be 0; in that case, the result returned is a subnormal number,
- | and it must not require rounding. In the usual case that `zSig' is
- | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
- | The handling of underflow and overflow follows the IEC/IEEE Standard for
- | Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
- float_status *status)
- {
- int8_t roundingMode;
- flag roundNearestEven;
- int8_t roundIncrement, roundBits;
- flag isTiny;
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- roundIncrement = 0x40;
- break;
- case float_round_to_zero:
- roundIncrement = 0;
- break;
- case float_round_up:
- roundIncrement = zSign ? 0 : 0x7f;
- break;
- case float_round_down:
- roundIncrement = zSign ? 0x7f : 0;
- break;
- default:
- abort();
- break;
- }
- roundBits = zSig & 0x7F;
- if ( 0xFD <= (uint16_t) zExp ) {
- if ( ( 0xFD < zExp )
- || ( ( zExp == 0xFD )
- && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
- ) {
- float_raise(float_flag_overflow | float_flag_inexact, status);
- return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
- }
- if ( zExp < 0 ) {
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat32(zSign, 0, 0);
- }
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < -1 )
- || ( zSig + roundIncrement < 0x80000000 );
- shift32RightJamming( zSig, - zExp, &zSig );
- zExp = 0;
- roundBits = zSig & 0x7F;
- if (isTiny && roundBits) {
- float_raise(float_flag_underflow, status);
- }
- }
- }
- if (roundBits) {
- status->float_exception_flags |= float_flag_inexact;
- }
- zSig = ( zSig + roundIncrement )>>7;
- zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
- if ( zSig == 0 ) zExp = 0;
- return packFloat32( zSign, zExp, zSig );
- }
- /*----------------------------------------------------------------------------
- | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- | and significand `zSig', and returns the proper single-precision floating-
- | point value corresponding to the abstract input. This routine is just like
- | `roundAndPackFloat32' except that `zSig' does not have to be normalized.
- | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
- | floating-point exponent.
- *----------------------------------------------------------------------------*/
- static float32
- normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
- float_status *status)
- {
- int8_t shiftCount;
- shiftCount = countLeadingZeros32( zSig ) - 1;
- return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
- status);
- }
- /*----------------------------------------------------------------------------
- | Returns the fraction bits of the double-precision floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline uint64_t extractFloat64Frac( float64 a )
- {
- return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
- }
- /*----------------------------------------------------------------------------
- | Returns the exponent bits of the double-precision floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline int extractFloat64Exp(float64 a)
- {
- return ( float64_val(a)>>52 ) & 0x7FF;
- }
- /*----------------------------------------------------------------------------
- | Returns the sign bit of the double-precision floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline flag extractFloat64Sign( float64 a )
- {
- return float64_val(a)>>63;
- }
- /*----------------------------------------------------------------------------
- | If `a' is denormal and we are in flush-to-zero mode then set the
- | input-denormal exception and return zero. Otherwise just return the value.
- *----------------------------------------------------------------------------*/
- float64 float64_squash_input_denormal(float64 a, float_status *status)
- {
- if (status->flush_inputs_to_zero) {
- if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
- float_raise(float_flag_input_denormal, status);
- return make_float64(float64_val(a) & (1ULL << 63));
- }
- }
- return a;
- }
- /*----------------------------------------------------------------------------
- | Normalizes the subnormal double-precision floating-point value represented
- | by the denormalized significand `aSig'. The normalized exponent and
- | significand are stored at the locations pointed to by `zExpPtr' and
- | `zSigPtr', respectively.
- *----------------------------------------------------------------------------*/
- static void
- normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
- {
- int8_t shiftCount;
- shiftCount = countLeadingZeros64( aSig ) - 11;
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
- }
- /*----------------------------------------------------------------------------
- | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
- | double-precision floating-point value, returning the result. After being
- | shifted into the proper positions, the three fields are simply added
- | together to form the result. This means that any integer portion of `zSig'
- | will be added into the exponent. Since a properly normalized significand
- | will have an integer portion equal to 1, the `zExp' input should be 1 less
- | than the desired result exponent whenever `zSig' is a complete, normalized
- | significand.
- *----------------------------------------------------------------------------*/
- static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
- {
- return make_float64(
- ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
- }
- /*----------------------------------------------------------------------------
- | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- | and significand `zSig', and returns the proper double-precision floating-
- | point value corresponding to the abstract input. Ordinarily, the abstract
- | value is simply rounded and packed into the double-precision format, with
- | the inexact exception raised if the abstract input cannot be represented
- | exactly. However, if the abstract value is too large, the overflow and
- | inexact exceptions are raised and an infinity or maximal finite value is
- | returned. If the abstract value is too small, the input value is rounded to
- | a subnormal number, and the underflow and inexact exceptions are raised if
- | the abstract input cannot be represented exactly as a subnormal double-
- | precision floating-point number.
- | The input significand `zSig' has its binary point between bits 62
- | and 61, which is 10 bits to the left of the usual location. This shifted
- | significand must be normalized or smaller. If `zSig' is not normalized,
- | `zExp' must be 0; in that case, the result returned is a subnormal number,
- | and it must not require rounding. In the usual case that `zSig' is
- | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
- | The handling of underflow and overflow follows the IEC/IEEE Standard for
- | Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
- float_status *status)
- {
- int8_t roundingMode;
- flag roundNearestEven;
- int roundIncrement, roundBits;
- flag isTiny;
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- roundIncrement = 0x200;
- break;
- case float_round_to_zero:
- roundIncrement = 0;
- break;
- case float_round_up:
- roundIncrement = zSign ? 0 : 0x3ff;
- break;
- case float_round_down:
- roundIncrement = zSign ? 0x3ff : 0;
- break;
- case float_round_to_odd:
- roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
- break;
- default:
- abort();
- }
- roundBits = zSig & 0x3FF;
- if ( 0x7FD <= (uint16_t) zExp ) {
- if ( ( 0x7FD < zExp )
- || ( ( zExp == 0x7FD )
- && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
- ) {
- bool overflow_to_inf = roundingMode != float_round_to_odd &&
- roundIncrement != 0;
- float_raise(float_flag_overflow | float_flag_inexact, status);
- return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
- }
- if ( zExp < 0 ) {
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat64(zSign, 0, 0);
- }
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < -1 )
- || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
- shift64RightJamming( zSig, - zExp, &zSig );
- zExp = 0;
- roundBits = zSig & 0x3FF;
- if (isTiny && roundBits) {
- float_raise(float_flag_underflow, status);
- }
- if (roundingMode == float_round_to_odd) {
- /*
- * For round-to-odd case, the roundIncrement depends on
- * zSig which just changed.
- */
- roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
- }
- }
- }
- if (roundBits) {
- status->float_exception_flags |= float_flag_inexact;
- }
- zSig = ( zSig + roundIncrement )>>10;
- zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
- if ( zSig == 0 ) zExp = 0;
- return packFloat64( zSign, zExp, zSig );
- }
- /*----------------------------------------------------------------------------
- | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- | and significand `zSig', and returns the proper double-precision floating-
- | point value corresponding to the abstract input. This routine is just like
- | `roundAndPackFloat64' except that `zSig' does not have to be normalized.
- | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
- | floating-point exponent.
- *----------------------------------------------------------------------------*/
- static float64
- normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
- float_status *status)
- {
- int8_t shiftCount;
- shiftCount = countLeadingZeros64( zSig ) - 1;
- return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
- status);
- }
- /*----------------------------------------------------------------------------
- | Returns the fraction bits of the extended double-precision floating-point
- | value `a'.
- *----------------------------------------------------------------------------*/
- static inline uint64_t extractFloatx80Frac( floatx80 a )
- {
- return a.low;
- }
- /*----------------------------------------------------------------------------
- | Returns the exponent bits of the extended double-precision floating-point
- | value `a'.
- *----------------------------------------------------------------------------*/
- static inline int32_t extractFloatx80Exp( floatx80 a )
- {
- return a.high & 0x7FFF;
- }
- /*----------------------------------------------------------------------------
- | Returns the sign bit of the extended double-precision floating-point value
- | `a'.
- *----------------------------------------------------------------------------*/
- static inline flag extractFloatx80Sign( floatx80 a )
- {
- return a.high>>15;
- }
- /*----------------------------------------------------------------------------
- | Normalizes the subnormal extended double-precision floating-point value
- | represented by the denormalized significand `aSig'. The normalized exponent
- | and significand are stored at the locations pointed to by `zExpPtr' and
- | `zSigPtr', respectively.
- *----------------------------------------------------------------------------*/
- static void
- normalizeFloatx80Subnormal( uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr )
- {
- int8_t shiftCount;
- shiftCount = countLeadingZeros64( aSig );
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
- }
- /*----------------------------------------------------------------------------
- | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
- | extended double-precision floating-point value, returning the result.
- *----------------------------------------------------------------------------*/
- static inline floatx80 packFloatx80( flag zSign, int32_t zExp, uint64_t zSig )
- {
- floatx80 z;
- z.low = zSig;
- z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
- return z;
- }
- /*----------------------------------------------------------------------------
- | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- | and extended significand formed by the concatenation of `zSig0' and `zSig1',
- | and returns the proper extended double-precision floating-point value
- | corresponding to the abstract input. Ordinarily, the abstract value is
- | rounded and packed into the extended double-precision format, with the
- | inexact exception raised if the abstract input cannot be represented
- | exactly. However, if the abstract value is too large, the overflow and
- | inexact exceptions are raised and an infinity or maximal finite value is
- | returned. If the abstract value is too small, the input value is rounded to
- | a subnormal number, and the underflow and inexact exceptions are raised if
- | the abstract input cannot be represented exactly as a subnormal extended
- | double-precision floating-point number.
- | If `roundingPrecision' is 32 or 64, the result is rounded to the same
- | number of bits as single or double precision, respectively. Otherwise, the
- | result is rounded to the full precision of the extended double-precision
- | format.
- | The input significand must be normalized or smaller. If the input
- | significand is not normalized, `zExp' must be 0; in that case, the result
- | returned is a subnormal number, and it must not require rounding. The
- | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
- int32_t zExp, uint64_t zSig0, uint64_t zSig1,
- float_status *status)
- {
- int8_t roundingMode;
- flag roundNearestEven, increment, isTiny;
- int64_t roundIncrement, roundMask, roundBits;
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- if ( roundingPrecision == 80 ) goto precision80;
- if ( roundingPrecision == 64 ) {
- roundIncrement = LIT64( 0x0000000000000400 );
- roundMask = LIT64( 0x00000000000007FF );
- }
- else if ( roundingPrecision == 32 ) {
- roundIncrement = LIT64( 0x0000008000000000 );
- roundMask = LIT64( 0x000000FFFFFFFFFF );
- }
- else {
- goto precision80;
- }
- zSig0 |= ( zSig1 != 0 );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- break;
- case float_round_to_zero:
- roundIncrement = 0;
- break;
- case float_round_up:
- roundIncrement = zSign ? 0 : roundMask;
- break;
- case float_round_down:
- roundIncrement = zSign ? roundMask : 0;
- break;
- default:
- abort();
- }
- roundBits = zSig0 & roundMask;
- if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
- if ( ( 0x7FFE < zExp )
- || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
- ) {
- goto overflow;
- }
- if ( zExp <= 0 ) {
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloatx80(zSign, 0, 0);
- }
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < 0 )
- || ( zSig0 <= zSig0 + roundIncrement );
- shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
- zExp = 0;
- roundBits = zSig0 & roundMask;
- if (isTiny && roundBits) {
- float_raise(float_flag_underflow, status);
- }
- if (roundBits) {
- status->float_exception_flags |= float_flag_inexact;
- }
- zSig0 += roundIncrement;
- if ( (int64_t) zSig0 < 0 ) zExp = 1;
- roundIncrement = roundMask + 1;
- if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
- roundMask |= roundIncrement;
- }
- zSig0 &= ~ roundMask;
- return packFloatx80( zSign, zExp, zSig0 );
- }
- }
- if (roundBits) {
- status->float_exception_flags |= float_flag_inexact;
- }
- zSig0 += roundIncrement;
- if ( zSig0 < roundIncrement ) {
- ++zExp;
- zSig0 = LIT64( 0x8000000000000000 );
- }
- roundIncrement = roundMask + 1;
- if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
- roundMask |= roundIncrement;
- }
- zSig0 &= ~ roundMask;
- if ( zSig0 == 0 ) zExp = 0;
- return packFloatx80( zSign, zExp, zSig0 );
- precision80:
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t)zSig1 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && zSig1;
- break;
- case float_round_down:
- increment = zSign && zSig1;
- break;
- default:
- abort();
- }
- if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
- if ( ( 0x7FFE < zExp )
- || ( ( zExp == 0x7FFE )
- && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
- && increment
- )
- ) {
- roundMask = 0;
- overflow:
- float_raise(float_flag_overflow | float_flag_inexact, status);
- if ( ( roundingMode == float_round_to_zero )
- || ( zSign && ( roundingMode == float_round_up ) )
- || ( ! zSign && ( roundingMode == float_round_down ) )
- ) {
- return packFloatx80( zSign, 0x7FFE, ~ roundMask );
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( zExp <= 0 ) {
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < 0 )
- || ! increment
- || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
- shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
- zExp = 0;
- if (isTiny && zSig1) {
- float_raise(float_flag_underflow, status);
- }
- if (zSig1) {
- status->float_exception_flags |= float_flag_inexact;
- }
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t)zSig1 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && zSig1;
- break;
- case float_round_down:
- increment = zSign && zSig1;
- break;
- default:
- abort();
- }
- if ( increment ) {
- ++zSig0;
- zSig0 &=
- ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
- if ( (int64_t) zSig0 < 0 ) zExp = 1;
- }
- return packFloatx80( zSign, zExp, zSig0 );
- }
- }
- if (zSig1) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( increment ) {
- ++zSig0;
- if ( zSig0 == 0 ) {
- ++zExp;
- zSig0 = LIT64( 0x8000000000000000 );
- }
- else {
- zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
- }
- }
- else {
- if ( zSig0 == 0 ) zExp = 0;
- }
- return packFloatx80( zSign, zExp, zSig0 );
- }
- /*----------------------------------------------------------------------------
- | Takes an abstract floating-point value having sign `zSign', exponent
- | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
- | and returns the proper extended double-precision floating-point value
- | corresponding to the abstract input. This routine is just like
- | `roundAndPackFloatx80' except that the input significand does not have to be
- | normalized.
- *----------------------------------------------------------------------------*/
- static floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
- flag zSign, int32_t zExp,
- uint64_t zSig0, uint64_t zSig1,
- float_status *status)
- {
- int8_t shiftCount;
- if ( zSig0 == 0 ) {
- zSig0 = zSig1;
- zSig1 = 0;
- zExp -= 64;
- }
- shiftCount = countLeadingZeros64( zSig0 );
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- zExp -= shiftCount;
- return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
- zSig0, zSig1, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the least-significant 64 fraction bits of the quadruple-precision
- | floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline uint64_t extractFloat128Frac1( float128 a )
- {
- return a.low;
- }
- /*----------------------------------------------------------------------------
- | Returns the most-significant 48 fraction bits of the quadruple-precision
- | floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline uint64_t extractFloat128Frac0( float128 a )
- {
- return a.high & LIT64( 0x0000FFFFFFFFFFFF );
- }
- /*----------------------------------------------------------------------------
- | Returns the exponent bits of the quadruple-precision floating-point value
- | `a'.
- *----------------------------------------------------------------------------*/
- static inline int32_t extractFloat128Exp( float128 a )
- {
- return ( a.high>>48 ) & 0x7FFF;
- }
- /*----------------------------------------------------------------------------
- | Returns the sign bit of the quadruple-precision floating-point value `a'.
- *----------------------------------------------------------------------------*/
- static inline flag extractFloat128Sign( float128 a )
- {
- return a.high>>63;
- }
- /*----------------------------------------------------------------------------
- | Normalizes the subnormal quadruple-precision floating-point value
- | represented by the denormalized significand formed by the concatenation of
- | `aSig0' and `aSig1'. The normalized exponent is stored at the location
- | pointed to by `zExpPtr'. The most significant 49 bits of the normalized
- | significand are stored at the location pointed to by `zSig0Ptr', and the
- | least significant 64 bits of the normalized significand are stored at the
- | location pointed to by `zSig1Ptr'.
- *----------------------------------------------------------------------------*/
- static void
- normalizeFloat128Subnormal(
- uint64_t aSig0,
- uint64_t aSig1,
- int32_t *zExpPtr,
- uint64_t *zSig0Ptr,
- uint64_t *zSig1Ptr
- )
- {
- int8_t shiftCount;
- if ( aSig0 == 0 ) {
- shiftCount = countLeadingZeros64( aSig1 ) - 15;
- if ( shiftCount < 0 ) {
- *zSig0Ptr = aSig1>>( - shiftCount );
- *zSig1Ptr = aSig1<<( shiftCount & 63 );
- }
- else {
- *zSig0Ptr = aSig1<<shiftCount;
- *zSig1Ptr = 0;
- }
- *zExpPtr = - shiftCount - 63;
- }
- else {
- shiftCount = countLeadingZeros64( aSig0 ) - 15;
- shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
- *zExpPtr = 1 - shiftCount;
- }
- }
- /*----------------------------------------------------------------------------
- | Packs the sign `zSign', the exponent `zExp', and the significand formed
- | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
- | floating-point value, returning the result. After being shifted into the
- | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
- | added together to form the most significant 32 bits of the result. This
- | means that any integer portion of `zSig0' will be added into the exponent.
- | Since a properly normalized significand will have an integer portion equal
- | to 1, the `zExp' input should be 1 less than the desired result exponent
- | whenever `zSig0' and `zSig1' concatenated form a complete, normalized
- | significand.
- *----------------------------------------------------------------------------*/
- static inline float128
- packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
- {
- float128 z;
- z.low = zSig1;
- z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
- return z;
- }
- /*----------------------------------------------------------------------------
- | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- | and extended significand formed by the concatenation of `zSig0', `zSig1',
- | and `zSig2', and returns the proper quadruple-precision floating-point value
- | corresponding to the abstract input. Ordinarily, the abstract value is
- | simply rounded and packed into the quadruple-precision format, with the
- | inexact exception raised if the abstract input cannot be represented
- | exactly. However, if the abstract value is too large, the overflow and
- | inexact exceptions are raised and an infinity or maximal finite value is
- | returned. If the abstract value is too small, the input value is rounded to
- | a subnormal number, and the underflow and inexact exceptions are raised if
- | the abstract input cannot be represented exactly as a subnormal quadruple-
- | precision floating-point number.
- | The input significand must be normalized or smaller. If the input
- | significand is not normalized, `zExp' must be 0; in that case, the result
- | returned is a subnormal number, and it must not require rounding. In the
- | usual case that the input significand is normalized, `zExp' must be 1 less
- | than the ``true'' floating-point exponent. The handling of underflow and
- | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
- uint64_t zSig0, uint64_t zSig1,
- uint64_t zSig2, float_status *status)
- {
- int8_t roundingMode;
- flag roundNearestEven, increment, isTiny;
- roundingMode = status->float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t)zSig2 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && zSig2;
- break;
- case float_round_down:
- increment = zSign && zSig2;
- break;
- case float_round_to_odd:
- increment = !(zSig1 & 0x1) && zSig2;
- break;
- default:
- abort();
- }
- if ( 0x7FFD <= (uint32_t) zExp ) {
- if ( ( 0x7FFD < zExp )
- || ( ( zExp == 0x7FFD )
- && eq128(
- LIT64( 0x0001FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF ),
- zSig0,
- zSig1
- )
- && increment
- )
- ) {
- float_raise(float_flag_overflow | float_flag_inexact, status);
- if ( ( roundingMode == float_round_to_zero )
- || ( zSign && ( roundingMode == float_round_up ) )
- || ( ! zSign && ( roundingMode == float_round_down ) )
- || (roundingMode == float_round_to_odd)
- ) {
- return
- packFloat128(
- zSign,
- 0x7FFE,
- LIT64( 0x0000FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF )
- );
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( zExp < 0 ) {
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat128(zSign, 0, 0, 0);
- }
- isTiny =
- (status->float_detect_tininess
- == float_tininess_before_rounding)
- || ( zExp < -1 )
- || ! increment
- || lt128(
- zSig0,
- zSig1,
- LIT64( 0x0001FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF )
- );
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
- zExp = 0;
- if (isTiny && zSig2) {
- float_raise(float_flag_underflow, status);
- }
- switch (roundingMode) {
- case float_round_nearest_even:
- case float_round_ties_away:
- increment = ((int64_t)zSig2 < 0);
- break;
- case float_round_to_zero:
- increment = 0;
- break;
- case float_round_up:
- increment = !zSign && zSig2;
- break;
- case float_round_down:
- increment = zSign && zSig2;
- break;
- case float_round_to_odd:
- increment = !(zSig1 & 0x1) && zSig2;
- break;
- default:
- abort();
- }
- }
- }
- if (zSig2) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( increment ) {
- add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
- zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
- }
- else {
- if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
- }
- return packFloat128( zSign, zExp, zSig0, zSig1 );
- }
- /*----------------------------------------------------------------------------
- | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- | and significand formed by the concatenation of `zSig0' and `zSig1', and
- | returns the proper quadruple-precision floating-point value corresponding
- | to the abstract input. This routine is just like `roundAndPackFloat128'
- | except that the input significand has fewer bits and does not have to be
- | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
- | point exponent.
- *----------------------------------------------------------------------------*/
- static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
- uint64_t zSig0, uint64_t zSig1,
- float_status *status)
- {
- int8_t shiftCount;
- uint64_t zSig2;
- if ( zSig0 == 0 ) {
- zSig0 = zSig1;
- zSig1 = 0;
- zExp -= 64;
- }
- shiftCount = countLeadingZeros64( zSig0 ) - 15;
- if ( 0 <= shiftCount ) {
- zSig2 = 0;
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- }
- else {
- shift128ExtraRightJamming(
- zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
- }
- zExp -= shiftCount;
- return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the 32-bit two's complement integer `a'
- | to the single-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 int32_to_float32(int32_t a, float_status *status)
- {
- flag zSign;
- if ( a == 0 ) return float32_zero;
- if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
- zSign = ( a < 0 );
- return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the 32-bit two's complement integer `a'
- | to the double-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 int32_to_float64(int32_t a, float_status *status)
- {
- flag zSign;
- uint32_t absA;
- int8_t shiftCount;
- uint64_t zSig;
- if ( a == 0 ) return float64_zero;
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 21;
- zSig = absA;
- return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the 32-bit two's complement integer `a'
- | to the extended double-precision floating-point format. The conversion
- | is performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 int32_to_floatx80(int32_t a, float_status *status)
- {
- flag zSign;
- uint32_t absA;
- int8_t shiftCount;
- uint64_t zSig;
- if ( a == 0 ) return packFloatx80( 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 32;
- zSig = absA;
- return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the 32-bit two's complement integer `a' to
- | the quadruple-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 int32_to_float128(int32_t a, float_status *status)
- {
- flag zSign;
- uint32_t absA;
- int8_t shiftCount;
- uint64_t zSig0;
- if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 17;
- zSig0 = absA;
- return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a'
- | to the single-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 int64_to_float32(int64_t a, float_status *status)
- {
- flag zSign;
- uint64_t absA;
- int8_t shiftCount;
- if ( a == 0 ) return float32_zero;
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA ) - 40;
- if ( 0 <= shiftCount ) {
- return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
- }
- else {
- shiftCount += 7;
- if ( shiftCount < 0 ) {
- shift64RightJamming( absA, - shiftCount, &absA );
- }
- else {
- absA <<= shiftCount;
- }
- return roundAndPackFloat32(zSign, 0x9C - shiftCount, absA, status);
- }
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a'
- | to the double-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 int64_to_float64(int64_t a, float_status *status)
- {
- flag zSign;
- if ( a == 0 ) return float64_zero;
- if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
- return packFloat64( 1, 0x43E, 0 );
- }
- zSign = ( a < 0 );
- return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a'
- | to the extended double-precision floating-point format. The conversion
- | is performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 int64_to_floatx80(int64_t a, float_status *status)
- {
- flag zSign;
- uint64_t absA;
- int8_t shiftCount;
- if ( a == 0 ) return packFloatx80( 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA );
- return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a' to
- | the quadruple-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 int64_to_float128(int64_t a, float_status *status)
- {
- flag zSign;
- uint64_t absA;
- int8_t shiftCount;
- int32_t zExp;
- uint64_t zSig0, zSig1;
- if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA ) + 49;
- zExp = 0x406E - shiftCount;
- if ( 64 <= shiftCount ) {
- zSig1 = 0;
- zSig0 = absA;
- shiftCount -= 64;
- }
- else {
- zSig1 = absA;
- zSig0 = 0;
- }
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- return packFloat128( zSign, zExp, zSig0, zSig1 );
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit unsigned integer `a'
- | to the single-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 uint64_to_float32(uint64_t a, float_status *status)
- {
- int shiftcount;
- if (a == 0) {
- return float32_zero;
- }
- /* Determine (left) shift needed to put first set bit into bit posn 23
- * (since packFloat32() expects the binary point between bits 23 and 22);
- * this is the fast case for smallish numbers.
- */
- shiftcount = countLeadingZeros64(a) - 40;
- if (shiftcount >= 0) {
- return packFloat32(0, 0x95 - shiftcount, a << shiftcount);
- }
- /* Otherwise we need to do a round-and-pack. roundAndPackFloat32()
- * expects the binary point between bits 30 and 29, hence the + 7.
- */
- shiftcount += 7;
- if (shiftcount < 0) {
- shift64RightJamming(a, -shiftcount, &a);
- } else {
- a <<= shiftcount;
- }
- return roundAndPackFloat32(0, 0x9c - shiftcount, a, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit unsigned integer `a'
- | to the double-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 uint64_to_float64(uint64_t a, float_status *status)
- {
- int exp = 0x43C;
- int shiftcount;
- if (a == 0) {
- return float64_zero;
- }
- shiftcount = countLeadingZeros64(a) - 1;
- if (shiftcount < 0) {
- shift64RightJamming(a, -shiftcount, &a);
- } else {
- a <<= shiftcount;
- }
- return roundAndPackFloat64(0, exp - shiftcount, a, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit unsigned integer `a'
- | to the quadruple-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 uint64_to_float128(uint64_t a, float_status *status)
- {
- if (a == 0) {
- return float128_zero;
- }
- return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point value
- | `a' to the 32-bit two's complement integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic---which means in particular that the conversion is rounded
- | according to the current rounding mode. If `a' is a NaN, the largest
- | positive integer is returned. Otherwise, if the conversion overflows, the
- | largest integer with the same sign as `a' is returned.
- *----------------------------------------------------------------------------*/
- int32_t float32_to_int32(float32 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= 0x00800000;
- shiftCount = 0xAF - aExp;
- aSig64 = aSig;
- aSig64 <<= 32;
- if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
- return roundAndPackInt32(aSign, aSig64, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point value
- | `a' to the 32-bit two's complement integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic, except that the conversion is always rounded toward zero.
- | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- | the conversion overflows, the largest integer with the same sign as `a' is
- | returned.
- *----------------------------------------------------------------------------*/
- int32_t float32_to_int32_round_to_zero(float32 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- int32_t z;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x9E;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xCF000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
- }
- return (int32_t) 0x80000000;
- }
- else if ( aExp <= 0x7E ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point value
- | `a' to the 16-bit two's complement integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic, except that the conversion is always rounded toward zero.
- | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- | the conversion overflows, the largest integer with the same sign as `a' is
- | returned.
- *----------------------------------------------------------------------------*/
- int16_t float32_to_int16_round_to_zero(float32 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- int32_t z;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x8E;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xC7000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return 0x7FFF;
- }
- }
- return (int32_t) 0xffff8000;
- }
- else if ( aExp <= 0x7E ) {
- if ( aExp | aSig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- shiftCount -= 0x10;
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) {
- z = - z;
- }
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point value
- | `a' to the 64-bit two's complement integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic---which means in particular that the conversion is rounded
- | according to the current rounding mode. If `a' is a NaN, the largest
- | positive integer is returned. Otherwise, if the conversion overflows, the
- | largest integer with the same sign as `a' is returned.
- *----------------------------------------------------------------------------*/
- int64_t float32_to_int64(float32 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64, aSigExtra;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = 0xBE - aExp;
- if ( shiftCount < 0 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- if ( aExp ) aSig |= 0x00800000;
- aSig64 = aSig;
- aSig64 <<= 40;
- shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
- return roundAndPackInt64(aSign, aSig64, aSigExtra, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point value
- | `a' to the 64-bit unsigned integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic---which means in particular that the conversion is rounded
- | according to the current rounding mode. If `a' is a NaN, the largest
- | unsigned integer is returned. Otherwise, if the conversion overflows, the
- | largest unsigned integer is returned. If the 'a' is negative, the result
- | is rounded and zero is returned; values that do not round to zero will
- | raise the inexact exception flag.
- *----------------------------------------------------------------------------*/
- uint64_t float32_to_uint64(float32 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64, aSigExtra;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac(a);
- aExp = extractFloat32Exp(a);
- aSign = extractFloat32Sign(a);
- if ((aSign) && (aExp > 126)) {
- float_raise(float_flag_invalid, status);
- if (float32_is_any_nan(a)) {
- return LIT64(0xFFFFFFFFFFFFFFFF);
- } else {
- return 0;
- }
- }
- shiftCount = 0xBE - aExp;
- if (aExp) {
- aSig |= 0x00800000;
- }
- if (shiftCount < 0) {
- float_raise(float_flag_invalid, status);
- return LIT64(0xFFFFFFFFFFFFFFFF);
- }
- aSig64 = aSig;
- aSig64 <<= 40;
- shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
- return roundAndPackUint64(aSign, aSig64, aSigExtra, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point value
- | `a' to the 64-bit unsigned integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic, except that the conversion is always rounded toward zero. If
- | `a' is a NaN, the largest unsigned integer is returned. Otherwise, if the
- | conversion overflows, the largest unsigned integer is returned. If the
- | 'a' is negative, the result is rounded and zero is returned; values that do
- | not round to zero will raise the inexact flag.
- *----------------------------------------------------------------------------*/
- uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *status)
- {
- signed char current_rounding_mode = status->float_rounding_mode;
- set_float_rounding_mode(float_round_to_zero, status);
- int64_t v = float32_to_uint64(a, status);
- set_float_rounding_mode(current_rounding_mode, status);
- return v;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point value
- | `a' to the 64-bit two's complement integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic, except that the conversion is always rounded toward zero. If
- | `a' is a NaN, the largest positive integer is returned. Otherwise, if the
- | conversion overflows, the largest integer with the same sign as `a' is
- | returned.
- *----------------------------------------------------------------------------*/
- int64_t float32_to_int64_round_to_zero(float32 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64;
- int64_t z;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0xBE;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xDF000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- else if ( aExp <= 0x7E ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig64 = aSig | 0x00800000;
- aSig64 <<= 40;
- z = aSig64>>( - shiftCount );
- if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point value
- | `a' to the double-precision floating-point format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 float32_to_float64(float32 a, float_status *status)
- {
- flag aSign;
- int aExp;
- uint32_t aSig;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if (aSig) {
- return commonNaNToFloat64(float32ToCommonNaN(a, status), status);
- }
- return packFloat64( aSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point value
- | `a' to the extended double-precision floating-point format. The conversion
- | is performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 float32_to_floatx80(float32 a, float_status *status)
- {
- flag aSign;
- int aExp;
- uint32_t aSig;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if (aSig) {
- return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
- }
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- aSig |= 0x00800000;
- return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point value
- | `a' to the double-precision floating-point format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 float32_to_float128(float32 a, float_status *status)
- {
- flag aSign;
- int aExp;
- uint32_t aSig;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if (aSig) {
- return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
- }
- return packFloat128( aSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
- }
- /*----------------------------------------------------------------------------
- | Rounds the single-precision floating-point value `a' to an integer, and
- | returns the result as a single-precision floating-point value. The
- | operation is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 float32_round_to_int(float32 a, float_status *status)
- {
- flag aSign;
- int aExp;
- uint32_t lastBitMask, roundBitsMask;
- uint32_t z;
- a = float32_squash_input_denormal(a, status);
- aExp = extractFloat32Exp( a );
- if ( 0x96 <= aExp ) {
- if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
- return propagateFloat32NaN(a, a, status);
- }
- return a;
- }
- if ( aExp <= 0x7E ) {
- if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
- status->float_exception_flags |= float_flag_inexact;
- aSign = extractFloat32Sign( a );
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
- return packFloat32( aSign, 0x7F, 0 );
- }
- break;
- case float_round_ties_away:
- if (aExp == 0x7E) {
- return packFloat32(aSign, 0x7F, 0);
- }
- break;
- case float_round_down:
- return make_float32(aSign ? 0xBF800000 : 0);
- case float_round_up:
- return make_float32(aSign ? 0x80000000 : 0x3F800000);
- }
- return packFloat32( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x96 - aExp;
- roundBitsMask = lastBitMask - 1;
- z = float32_val(a);
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- z += lastBitMask>>1;
- if ((z & roundBitsMask) == 0) {
- z &= ~lastBitMask;
- }
- break;
- case float_round_ties_away:
- z += lastBitMask >> 1;
- break;
- case float_round_to_zero:
- break;
- case float_round_up:
- if (!extractFloat32Sign(make_float32(z))) {
- z += roundBitsMask;
- }
- break;
- case float_round_down:
- if (extractFloat32Sign(make_float32(z))) {
- z += roundBitsMask;
- }
- break;
- default:
- abort();
- }
- z &= ~ roundBitsMask;
- if (z != float32_val(a)) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return make_float32(z);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of adding the absolute values of the single-precision
- | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
- | before being returned. `zSign' is ignored if the result is a NaN.
- | The addition is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static float32 addFloat32Sigs(float32 a, float32 b, flag zSign,
- float_status *status)
- {
- int aExp, bExp, zExp;
- uint32_t aSig, bSig, zSig;
- int expDiff;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 6;
- bSig <<= 6;
- if ( 0 < expDiff ) {
- if ( aExp == 0xFF ) {
- if (aSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x20000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x20000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- zExp = bExp;
- }
- else {
- if ( aExp == 0xFF ) {
- if (aSig | bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return a;
- }
- if ( aExp == 0 ) {
- if (status->flush_to_zero) {
- if (aSig | bSig) {
- float_raise(float_flag_output_denormal, status);
- }
- return packFloat32(zSign, 0, 0);
- }
- return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
- }
- zSig = 0x40000000 + aSig + bSig;
- zExp = aExp;
- goto roundAndPack;
- }
- aSig |= 0x20000000;
- zSig = ( aSig + bSig )<<1;
- --zExp;
- if ( (int32_t) zSig < 0 ) {
- zSig = aSig + bSig;
- ++zExp;
- }
- roundAndPack:
- return roundAndPackFloat32(zSign, zExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of subtracting the absolute values of the single-
- | precision floating-point values `a' and `b'. If `zSign' is 1, the
- | difference is negated before being returned. `zSign' is ignored if the
- | result is a NaN. The subtraction is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static float32 subFloat32Sigs(float32 a, float32 b, flag zSign,
- float_status *status)
- {
- int aExp, bExp, zExp;
- uint32_t aSig, bSig, zSig;
- int expDiff;
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 7;
- bSig <<= 7;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0xFF ) {
- if (aSig | bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloat32(status->float_rounding_mode == float_round_down, 0, 0);
- bExpBigger:
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return packFloat32( zSign ^ 1, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x40000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- bSig |= 0x40000000;
- bBigger:
- zSig = bSig - aSig;
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0xFF ) {
- if (aSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x40000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- aSig |= 0x40000000;
- aBigger:
- zSig = aSig - bSig;
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of adding the single-precision floating-point values `a'
- | and `b'. The operation is performed according to the IEC/IEEE Standard for
- | Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 float32_add(float32 a, float32 b, float_status *status)
- {
- flag aSign, bSign;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return addFloat32Sigs(a, b, aSign, status);
- }
- else {
- return subFloat32Sigs(a, b, aSign, status);
- }
- }
- /*----------------------------------------------------------------------------
- | Returns the result of subtracting the single-precision floating-point values
- | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- | for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 float32_sub(float32 a, float32 b, float_status *status)
- {
- flag aSign, bSign;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return subFloat32Sigs(a, b, aSign, status);
- }
- else {
- return addFloat32Sigs(a, b, aSign, status);
- }
- }
- /*----------------------------------------------------------------------------
- | Returns the result of multiplying the single-precision floating-point values
- | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- | for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 float32_mul(float32 a, float32 b, float_status *status)
- {
- flag aSign, bSign, zSign;
- int aExp, bExp, zExp;
- uint32_t aSig, bSig;
- uint64_t zSig64;
- uint32_t zSig;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN(a, b, status);
- }
- if ( ( bExp | bSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- if ( ( aExp | aSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x7F;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
- zSig = zSig64;
- if ( 0 <= (int32_t) ( zSig<<1 ) ) {
- zSig <<= 1;
- --zExp;
- }
- return roundAndPackFloat32(zSign, zExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of dividing the single-precision floating-point value `a'
- | by the corresponding value `b'. The operation is performed according to the
- | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 float32_div(float32 a, float32 b, float_status *status)
- {
- flag aSign, bSign, zSign;
- int aExp, bExp, zExp;
- uint32_t aSig, bSig, zSig;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if (aSig) {
- return propagateFloat32NaN(a, b, status);
- }
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return packFloat32( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- float_raise(float_flag_divbyzero, status);
- return packFloat32( zSign, 0xFF, 0 );
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x7D;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- if ( bSig <= ( aSig + aSig ) ) {
- aSig >>= 1;
- ++zExp;
- }
- zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
- if ( ( zSig & 0x3F ) == 0 ) {
- zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
- }
- return roundAndPackFloat32(zSign, zExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the remainder of the single-precision floating-point value `a'
- | with respect to the corresponding value `b'. The operation is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 float32_rem(float32 a, float32 b, float_status *status)
- {
- flag aSign, zSign;
- int aExp, bExp, expDiff;
- uint32_t aSig, bSig;
- uint32_t q;
- uint64_t aSig64, bSig64, q64;
- uint32_t alternateASig;
- int32_t sigMean;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- if ( bExp == 0xFF ) {
- if (bSig) {
- return propagateFloat32NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return a;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- expDiff = aExp - bExp;
- aSig |= 0x00800000;
- bSig |= 0x00800000;
- if ( expDiff < 32 ) {
- aSig <<= 8;
- bSig <<= 8;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- aSig >>= 1;
- }
- q = ( bSig <= aSig );
- if ( q ) aSig -= bSig;
- if ( 0 < expDiff ) {
- q = ( ( (uint64_t) aSig )<<32 ) / bSig;
- q >>= 32 - expDiff;
- bSig >>= 2;
- aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
- }
- else {
- aSig >>= 2;
- bSig >>= 2;
- }
- }
- else {
- if ( bSig <= aSig ) aSig -= bSig;
- aSig64 = ( (uint64_t) aSig )<<40;
- bSig64 = ( (uint64_t) bSig )<<40;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q64 = estimateDiv128To64( aSig64, 0, bSig64 );
- q64 = ( 2 < q64 ) ? q64 - 2 : 0;
- aSig64 = - ( ( bSig * q64 )<<38 );
- expDiff -= 62;
- }
- expDiff += 64;
- q64 = estimateDiv128To64( aSig64, 0, bSig64 );
- q64 = ( 2 < q64 ) ? q64 - 2 : 0;
- q = q64>>( 64 - expDiff );
- bSig <<= 6;
- aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
- }
- do {
- alternateASig = aSig;
- ++q;
- aSig -= bSig;
- } while ( 0 <= (int32_t) aSig );
- sigMean = aSig + alternateASig;
- if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
- aSig = alternateASig;
- }
- zSign = ( (int32_t) aSig < 0 );
- if ( zSign ) aSig = - aSig;
- return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of multiplying the single-precision floating-point values
- | `a' and `b' then adding 'c', with no intermediate rounding step after the
- | multiplication. The operation is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic 754-2008.
- | The flags argument allows the caller to select negation of the
- | addend, the intermediate product, or the final result. (The difference
- | between this and having the caller do a separate negation is that negating
- | externally will flip the sign bit on NaNs.)
- *----------------------------------------------------------------------------*/
- float32 float32_muladd(float32 a, float32 b, float32 c, int flags,
- float_status *status)
- {
- flag aSign, bSign, cSign, zSign;
- int aExp, bExp, cExp, pExp, zExp, expDiff;
- uint32_t aSig, bSig, cSig;
- flag pInf, pZero, pSign;
- uint64_t pSig64, cSig64, zSig64;
- uint32_t pSig;
- int shiftcount;
- flag signflip, infzero;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- c = float32_squash_input_denormal(c, status);
- aSig = extractFloat32Frac(a);
- aExp = extractFloat32Exp(a);
- aSign = extractFloat32Sign(a);
- bSig = extractFloat32Frac(b);
- bExp = extractFloat32Exp(b);
- bSign = extractFloat32Sign(b);
- cSig = extractFloat32Frac(c);
- cExp = extractFloat32Exp(c);
- cSign = extractFloat32Sign(c);
- infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
- (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));
- /* It is implementation-defined whether the cases of (0,inf,qnan)
- * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
- * they return if they do), so we have to hand this information
- * off to the target-specific pick-a-NaN routine.
- */
- if (((aExp == 0xff) && aSig) ||
- ((bExp == 0xff) && bSig) ||
- ((cExp == 0xff) && cSig)) {
- return propagateFloat32MulAddNaN(a, b, c, infzero, status);
- }
- if (infzero) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- if (flags & float_muladd_negate_c) {
- cSign ^= 1;
- }
- signflip = (flags & float_muladd_negate_result) ? 1 : 0;
- /* Work out the sign and type of the product */
- pSign = aSign ^ bSign;
- if (flags & float_muladd_negate_product) {
- pSign ^= 1;
- }
- pInf = (aExp == 0xff) || (bExp == 0xff);
- pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
- if (cExp == 0xff) {
- if (pInf && (pSign ^ cSign)) {
- /* addition of opposite-signed infinities => InvalidOperation */
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- /* Otherwise generate an infinity of the same sign */
- return packFloat32(cSign ^ signflip, 0xff, 0);
- }
- if (pInf) {
- return packFloat32(pSign ^ signflip, 0xff, 0);
- }
- if (pZero) {
- if (cExp == 0) {
- if (cSig == 0) {
- /* Adding two exact zeroes */
- if (pSign == cSign) {
- zSign = pSign;
- } else if (status->float_rounding_mode == float_round_down) {
- zSign = 1;
- } else {
- zSign = 0;
- }
- return packFloat32(zSign ^ signflip, 0, 0);
- }
- /* Exact zero plus a denorm */
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat32(cSign ^ signflip, 0, 0);
- }
- }
- /* Zero plus something non-zero : just return the something */
- if (flags & float_muladd_halve_result) {
- if (cExp == 0) {
- normalizeFloat32Subnormal(cSig, &cExp, &cSig);
- }
- /* Subtract one to halve, and one again because roundAndPackFloat32
- * wants one less than the true exponent.
- */
- cExp -= 2;
- cSig = (cSig | 0x00800000) << 7;
- return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status);
- }
- return packFloat32(cSign ^ signflip, cExp, cSig);
- }
- if (aExp == 0) {
- normalizeFloat32Subnormal(aSig, &aExp, &aSig);
- }
- if (bExp == 0) {
- normalizeFloat32Subnormal(bSig, &bExp, &bSig);
- }
- /* Calculate the actual result a * b + c */
- /* Multiply first; this is easy. */
- /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
- * because we want the true exponent, not the "one-less-than"
- * flavour that roundAndPackFloat32() takes.
- */
- pExp = aExp + bExp - 0x7e;
- aSig = (aSig | 0x00800000) << 7;
- bSig = (bSig | 0x00800000) << 8;
- pSig64 = (uint64_t)aSig * bSig;
- if ((int64_t)(pSig64 << 1) >= 0) {
- pSig64 <<= 1;
- pExp--;
- }
- zSign = pSign ^ signflip;
- /* Now pSig64 is the significand of the multiply, with the explicit bit in
- * position 62.
- */
- if (cExp == 0) {
- if (!cSig) {
- /* Throw out the special case of c being an exact zero now */
- shift64RightJamming(pSig64, 32, &pSig64);
- pSig = pSig64;
- if (flags & float_muladd_halve_result) {
- pExp--;
- }
- return roundAndPackFloat32(zSign, pExp - 1,
- pSig, status);
- }
- normalizeFloat32Subnormal(cSig, &cExp, &cSig);
- }
- cSig64 = (uint64_t)cSig << (62 - 23);
- cSig64 |= LIT64(0x4000000000000000);
- expDiff = pExp - cExp;
- if (pSign == cSign) {
- /* Addition */
- if (expDiff > 0) {
- /* scale c to match p */
- shift64RightJamming(cSig64, expDiff, &cSig64);
- zExp = pExp;
- } else if (expDiff < 0) {
- /* scale p to match c */
- shift64RightJamming(pSig64, -expDiff, &pSig64);
- zExp = cExp;
- } else {
- /* no scaling needed */
- zExp = cExp;
- }
- /* Add significands and make sure explicit bit ends up in posn 62 */
- zSig64 = pSig64 + cSig64;
- if ((int64_t)zSig64 < 0) {
- shift64RightJamming(zSig64, 1, &zSig64);
- } else {
- zExp--;
- }
- } else {
- /* Subtraction */
- if (expDiff > 0) {
- shift64RightJamming(cSig64, expDiff, &cSig64);
- zSig64 = pSig64 - cSig64;
- zExp = pExp;
- } else if (expDiff < 0) {
- shift64RightJamming(pSig64, -expDiff, &pSig64);
- zSig64 = cSig64 - pSig64;
- zExp = cExp;
- zSign ^= 1;
- } else {
- zExp = pExp;
- if (cSig64 < pSig64) {
- zSig64 = pSig64 - cSig64;
- } else if (pSig64 < cSig64) {
- zSig64 = cSig64 - pSig64;
- zSign ^= 1;
- } else {
- /* Exact zero */
- zSign = signflip;
- if (status->float_rounding_mode == float_round_down) {
- zSign ^= 1;
- }
- return packFloat32(zSign, 0, 0);
- }
- }
- --zExp;
- /* Normalize to put the explicit bit back into bit 62. */
- shiftcount = countLeadingZeros64(zSig64) - 1;
- zSig64 <<= shiftcount;
- zExp -= shiftcount;
- }
- if (flags & float_muladd_halve_result) {
- zExp--;
- }
- shift64RightJamming(zSig64, 32, &zSig64);
- return roundAndPackFloat32(zSign, zExp, zSig64, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the square root of the single-precision floating-point value `a'.
- | The operation is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 float32_sqrt(float32 a, float_status *status)
- {
- flag aSign;
- int aExp, zExp;
- uint32_t aSig, zSig;
- uint64_t rem, term;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if (aSig) {
- return propagateFloat32NaN(a, float32_zero, status);
- }
- if ( ! aSign ) return a;
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- if ( aSign ) {
- if ( ( aExp | aSig ) == 0 ) return a;
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return float32_zero;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
- aSig = ( aSig | 0x00800000 )<<8;
- zSig = estimateSqrt32( aExp, aSig ) + 2;
- if ( ( zSig & 0x7F ) <= 5 ) {
- if ( zSig < 2 ) {
- zSig = 0x7FFFFFFF;
- goto roundAndPack;
- }
- aSig >>= aExp & 1;
- term = ( (uint64_t) zSig ) * zSig;
- rem = ( ( (uint64_t) aSig )<<32 ) - term;
- while ( (int64_t) rem < 0 ) {
- --zSig;
- rem += ( ( (uint64_t) zSig )<<1 ) | 1;
- }
- zSig |= ( rem != 0 );
- }
- shift32RightJamming( zSig, 1, &zSig );
- roundAndPack:
- return roundAndPackFloat32(0, zExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the binary exponential of the single-precision floating-point value
- | `a'. The operation is performed according to the IEC/IEEE Standard for
- | Binary Floating-Point Arithmetic.
- |
- | Uses the following identities:
- |
- | 1. -------------------------------------------------------------------------
- | x x*ln(2)
- | 2 = e
- |
- | 2. -------------------------------------------------------------------------
- | 2 3 4 5 n
- | x x x x x x x
- | e = 1 + --- + --- + --- + --- + --- + ... + --- + ...
- | 1! 2! 3! 4! 5! n!
- *----------------------------------------------------------------------------*/
- static const float64 float32_exp2_coefficients[15] =
- {
- const_float64( 0x3ff0000000000000ll ), /* 1 */
- const_float64( 0x3fe0000000000000ll ), /* 2 */
- const_float64( 0x3fc5555555555555ll ), /* 3 */
- const_float64( 0x3fa5555555555555ll ), /* 4 */
- const_float64( 0x3f81111111111111ll ), /* 5 */
- const_float64( 0x3f56c16c16c16c17ll ), /* 6 */
- const_float64( 0x3f2a01a01a01a01all ), /* 7 */
- const_float64( 0x3efa01a01a01a01all ), /* 8 */
- const_float64( 0x3ec71de3a556c734ll ), /* 9 */
- const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
- const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
- const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
- const_float64( 0x3de6124613a86d09ll ), /* 13 */
- const_float64( 0x3da93974a8c07c9dll ), /* 14 */
- const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
- };
- float32 float32_exp2(float32 a, float_status *status)
- {
- flag aSign;
- int aExp;
- uint32_t aSig;
- float64 r, x, xn;
- int i;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF) {
- if (aSig) {
- return propagateFloat32NaN(a, float32_zero, status);
- }
- return (aSign) ? float32_zero : a;
- }
- if (aExp == 0) {
- if (aSig == 0) return float32_one;
- }
- float_raise(float_flag_inexact, status);
- /* ******************************* */
- /* using float64 for approximation */
- /* ******************************* */
- x = float32_to_float64(a, status);
- x = float64_mul(x, float64_ln2, status);
- xn = x;
- r = float64_one;
- for (i = 0 ; i < 15 ; i++) {
- float64 f;
- f = float64_mul(xn, float32_exp2_coefficients[i], status);
- r = float64_add(r, f, status);
- xn = float64_mul(xn, x, status);
- }
- return float64_to_float32(r, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the binary log of the single-precision floating-point value `a'.
- | The operation is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 float32_log2(float32 a, float_status *status)
- {
- flag aSign, zSign;
- int aExp;
- uint32_t aSig, zSig, i;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- if ( aSign ) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- if ( aExp == 0xFF ) {
- if (aSig) {
- return propagateFloat32NaN(a, float32_zero, status);
- }
- return a;
- }
- aExp -= 0x7F;
- aSig |= 0x00800000;
- zSign = aExp < 0;
- zSig = aExp << 23;
- for (i = 1 << 22; i > 0; i >>= 1) {
- aSig = ( (uint64_t)aSig * aSig ) >> 23;
- if ( aSig & 0x01000000 ) {
- aSig >>= 1;
- zSig |= i;
- }
- }
- if ( zSign )
- zSig = -zSig;
- return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point value `a' is equal to
- | the corresponding value `b', and 0 otherwise. The invalid exception is
- | raised if either operand is a NaN. Otherwise, the comparison is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float32_eq(float32 a, float32 b, float_status *status)
- {
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- av = float32_val(a);
- bv = float32_val(b);
- return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point value `a' is less than
- | or equal to the corresponding value `b', and 0 otherwise. The invalid
- | exception is raised if either operand is a NaN. The comparison is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float32_le(float32 a, float32 b, float_status *status)
- {
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point value `a' is less than
- | the corresponding value `b', and 0 otherwise. The invalid exception is
- | raised if either operand is a NaN. The comparison is performed according
- | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float32_lt(float32 a, float32 b, float_status *status)
- {
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point values `a' and `b' cannot
- | be compared, and 0 otherwise. The invalid exception is raised if either
- | operand is a NaN. The comparison is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float32_unordered(float32 a, float32 b, float_status *status)
- {
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point value `a' is equal to
- | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- | exception. The comparison is performed according to the IEC/IEEE Standard
- | for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float32_eq_quiet(float32 a, float32 b, float_status *status)
- {
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if (float32_is_signaling_nan(a, status)
- || float32_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- return ( float32_val(a) == float32_val(b) ) ||
- ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point value `a' is less than or
- | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
- | cause an exception. Otherwise, the comparison is performed according to the
- | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float32_le_quiet(float32 a, float32 b, float_status *status)
- {
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if (float32_is_signaling_nan(a, status)
- || float32_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point value `a' is less than
- | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- | exception. Otherwise, the comparison is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float32_lt_quiet(float32 a, float32 b, float_status *status)
- {
- flag aSign, bSign;
- uint32_t av, bv;
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if (float32_is_signaling_nan(a, status)
- || float32_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- av = float32_val(a);
- bv = float32_val(b);
- if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point values `a' and `b' cannot
- | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
- | comparison is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float32_unordered_quiet(float32 a, float32 b, float_status *status)
- {
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if (float32_is_signaling_nan(a, status)
- || float32_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the double-precision floating-point value
- | `a' to the 32-bit two's complement integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic---which means in particular that the conversion is rounded
- | according to the current rounding mode. If `a' is a NaN, the largest
- | positive integer is returned. Otherwise, if the conversion overflows, the
- | largest integer with the same sign as `a' is returned.
- *----------------------------------------------------------------------------*/
- int32_t float64_to_int32(float64 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x42C - aExp;
- if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32(aSign, aSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the double-precision floating-point value
- | `a' to the 32-bit two's complement integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic, except that the conversion is always rounded toward zero.
- | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- | the conversion overflows, the largest integer with the same sign as `a' is
- | returned.
- *----------------------------------------------------------------------------*/
- int32_t float64_to_int32_round_to_zero(float64 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, savedASig;
- int32_t z;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( 0x41E < aExp ) {
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FF ) {
- if (aExp || aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the double-precision floating-point value
- | `a' to the 16-bit two's complement integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic, except that the conversion is always rounded toward zero.
- | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- | the conversion overflows, the largest integer with the same sign as `a' is
- | returned.
- *----------------------------------------------------------------------------*/
- int16_t float64_to_int16_round_to_zero(float64 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, savedASig;
- int32_t z;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( 0x40E < aExp ) {
- if ( ( aExp == 0x7FF ) && aSig ) {
- aSign = 0;
- }
- goto invalid;
- }
- else if ( aExp < 0x3FF ) {
- if ( aExp || aSig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) {
- z = - z;
- }
- if ( ( (int16_t)z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the double-precision floating-point value
- | `a' to the 64-bit two's complement integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic---which means in particular that the conversion is rounded
- | according to the current rounding mode. If `a' is a NaN, the largest
- | positive integer is returned. Otherwise, if the conversion overflows, the
- | largest integer with the same sign as `a' is returned.
- *----------------------------------------------------------------------------*/
- int64_t float64_to_int64(float64 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, aSigExtra;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- if ( shiftCount <= 0 ) {
- if ( 0x43E < aExp ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FF )
- && ( aSig != LIT64( 0x0010000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- aSigExtra = 0;
- aSig <<= - shiftCount;
- }
- else {
- shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
- }
- return roundAndPackInt64(aSign, aSig, aSigExtra, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the double-precision floating-point value
- | `a' to the 64-bit two's complement integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic, except that the conversion is always rounded toward zero.
- | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- | the conversion overflows, the largest integer with the same sign as `a' is
- | returned.
- *----------------------------------------------------------------------------*/
- int64_t float64_to_int64_round_to_zero(float64 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig;
- int64_t z;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = aExp - 0x433;
- if ( 0 <= shiftCount ) {
- if ( 0x43E <= aExp ) {
- if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FF )
- && ( aSig != LIT64( 0x0010000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- z = aSig<<shiftCount;
- }
- else {
- if ( aExp < 0x3FE ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- z = aSig>>( - shiftCount );
- if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- }
- if ( aSign ) z = - z;
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the double-precision floating-point value
- | `a' to the single-precision floating-point format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 float64_to_float32(float64 a, float_status *status)
- {
- flag aSign;
- int aExp;
- uint64_t aSig;
- uint32_t zSig;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return commonNaNToFloat32(float64ToCommonNaN(a, status), status);
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- shift64RightJamming( aSig, 22, &aSig );
- zSig = aSig;
- if ( aExp || zSig ) {
- zSig |= 0x40000000;
- aExp -= 0x381;
- }
- return roundAndPackFloat32(aSign, aExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
- | half-precision floating-point value, returning the result. After being
- | shifted into the proper positions, the three fields are simply added
- | together to form the result. This means that any integer portion of `zSig'
- | will be added into the exponent. Since a properly normalized significand
- | will have an integer portion equal to 1, the `zExp' input should be 1 less
- | than the desired result exponent whenever `zSig' is a complete, normalized
- | significand.
- *----------------------------------------------------------------------------*/
- static float16 packFloat16(flag zSign, int zExp, uint16_t zSig)
- {
- return make_float16(
- (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
- }
- /*----------------------------------------------------------------------------
- | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- | and significand `zSig', and returns the proper half-precision floating-
- | point value corresponding to the abstract input. Ordinarily, the abstract
- | value is simply rounded and packed into the half-precision format, with
- | the inexact exception raised if the abstract input cannot be represented
- | exactly. However, if the abstract value is too large, the overflow and
- | inexact exceptions are raised and an infinity or maximal finite value is
- | returned. If the abstract value is too small, the input value is rounded to
- | a subnormal number, and the underflow and inexact exceptions are raised if
- | the abstract input cannot be represented exactly as a subnormal half-
- | precision floating-point number.
- | The `ieee' flag indicates whether to use IEEE standard half precision, or
- | ARM-style "alternative representation", which omits the NaN and Inf
- | encodings in order to raise the maximum representable exponent by one.
- | The input significand `zSig' has its binary point between bits 22
- | and 23, which is 13 bits to the left of the usual location. This shifted
- | significand must be normalized or smaller. If `zSig' is not normalized,
- | `zExp' must be 0; in that case, the result returned is a subnormal number,
- | and it must not require rounding. In the usual case that `zSig' is
- | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
- | Note the slightly odd position of the binary point in zSig compared with the
- | other roundAndPackFloat functions. This should probably be fixed if we
- | need to implement more float16 routines than just conversion.
- | The handling of underflow and overflow follows the IEC/IEEE Standard for
- | Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static float16 roundAndPackFloat16(flag zSign, int zExp,
- uint32_t zSig, flag ieee,
- float_status *status)
- {
- int maxexp = ieee ? 29 : 30;
- uint32_t mask;
- uint32_t increment;
- bool rounding_bumps_exp;
- bool is_tiny = false;
- /* Calculate the mask of bits of the mantissa which are not
- * representable in half-precision and will be lost.
- */
- if (zExp < 1) {
- /* Will be denormal in halfprec */
- mask = 0x00ffffff;
- if (zExp >= -11) {
- mask >>= 11 + zExp;
- }
- } else {
- /* Normal number in halfprec */
- mask = 0x00001fff;
- }
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- increment = (mask + 1) >> 1;
- if ((zSig & mask) == increment) {
- increment = zSig & (increment << 1);
- }
- break;
- case float_round_ties_away:
- increment = (mask + 1) >> 1;
- break;
- case float_round_up:
- increment = zSign ? 0 : mask;
- break;
- case float_round_down:
- increment = zSign ? mask : 0;
- break;
- default: /* round_to_zero */
- increment = 0;
- break;
- }
- rounding_bumps_exp = (zSig + increment >= 0x01000000);
- if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
- if (ieee) {
- float_raise(float_flag_overflow | float_flag_inexact, status);
- return packFloat16(zSign, 0x1f, 0);
- } else {
- float_raise(float_flag_invalid, status);
- return packFloat16(zSign, 0x1f, 0x3ff);
- }
- }
- if (zExp < 0) {
- /* Note that flush-to-zero does not affect half-precision results */
- is_tiny =
- (status->float_detect_tininess == float_tininess_before_rounding)
- || (zExp < -1)
- || (!rounding_bumps_exp);
- }
- if (zSig & mask) {
- float_raise(float_flag_inexact, status);
- if (is_tiny) {
- float_raise(float_flag_underflow, status);
- }
- }
- zSig += increment;
- if (rounding_bumps_exp) {
- zSig >>= 1;
- zExp++;
- }
- if (zExp < -10) {
- return packFloat16(zSign, 0, 0);
- }
- if (zExp < 0) {
- zSig >>= -zExp;
- zExp = 0;
- }
- return packFloat16(zSign, zExp, zSig >> 13);
- }
- static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr,
- uint32_t *zSigPtr)
- {
- int8_t shiftCount = countLeadingZeros32(aSig) - 21;
- *zSigPtr = aSig << shiftCount;
- *zExpPtr = 1 - shiftCount;
- }
- /* Half precision floats come in two formats: standard IEEE and "ARM" format.
- The latter gains extra exponent range by omitting the NaN/Inf encodings. */
- float32 float16_to_float32(float16 a, flag ieee, float_status *status)
- {
- flag aSign;
- int aExp;
- uint32_t aSig;
- aSign = extractFloat16Sign(a);
- aExp = extractFloat16Exp(a);
- aSig = extractFloat16Frac(a);
- if (aExp == 0x1f && ieee) {
- if (aSig) {
- return commonNaNToFloat32(float16ToCommonNaN(a, status), status);
- }
- return packFloat32(aSign, 0xff, 0);
- }
- if (aExp == 0) {
- if (aSig == 0) {
- return packFloat32(aSign, 0, 0);
- }
- normalizeFloat16Subnormal(aSig, &aExp, &aSig);
- aExp--;
- }
- return packFloat32( aSign, aExp + 0x70, aSig << 13);
- }
- float16 float32_to_float16(float32 a, flag ieee, float_status *status)
- {
- flag aSign;
- int aExp;
- uint32_t aSig;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if (aSig) {
- /* Input is a NaN */
- if (!ieee) {
- float_raise(float_flag_invalid, status);
- return packFloat16(aSign, 0, 0);
- }
- return commonNaNToFloat16(
- float32ToCommonNaN(a, status), status);
- }
- /* Infinity */
- if (!ieee) {
- float_raise(float_flag_invalid, status);
- return packFloat16(aSign, 0x1f, 0x3ff);
- }
- return packFloat16(aSign, 0x1f, 0);
- }
- if (aExp == 0 && aSig == 0) {
- return packFloat16(aSign, 0, 0);
- }
- /* Decimal point between bits 22 and 23. Note that we add the 1 bit
- * even if the input is denormal; however this is harmless because
- * the largest possible single-precision denormal is still smaller
- * than the smallest representable half-precision denormal, and so we
- * will end up ignoring aSig and returning via the "always return zero"
- * codepath.
- */
- aSig |= 0x00800000;
- aExp -= 0x71;
- return roundAndPackFloat16(aSign, aExp, aSig, ieee, status);
- }
- float64 float16_to_float64(float16 a, flag ieee, float_status *status)
- {
- flag aSign;
- int aExp;
- uint32_t aSig;
- aSign = extractFloat16Sign(a);
- aExp = extractFloat16Exp(a);
- aSig = extractFloat16Frac(a);
- if (aExp == 0x1f && ieee) {
- if (aSig) {
- return commonNaNToFloat64(
- float16ToCommonNaN(a, status), status);
- }
- return packFloat64(aSign, 0x7ff, 0);
- }
- if (aExp == 0) {
- if (aSig == 0) {
- return packFloat64(aSign, 0, 0);
- }
- normalizeFloat16Subnormal(aSig, &aExp, &aSig);
- aExp--;
- }
- return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
- }
- float16 float64_to_float16(float64 a, flag ieee, float_status *status)
- {
- flag aSign;
- int aExp;
- uint64_t aSig;
- uint32_t zSig;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac(a);
- aExp = extractFloat64Exp(a);
- aSign = extractFloat64Sign(a);
- if (aExp == 0x7FF) {
- if (aSig) {
- /* Input is a NaN */
- if (!ieee) {
- float_raise(float_flag_invalid, status);
- return packFloat16(aSign, 0, 0);
- }
- return commonNaNToFloat16(
- float64ToCommonNaN(a, status), status);
- }
- /* Infinity */
- if (!ieee) {
- float_raise(float_flag_invalid, status);
- return packFloat16(aSign, 0x1f, 0x3ff);
- }
- return packFloat16(aSign, 0x1f, 0);
- }
- shift64RightJamming(aSig, 29, &aSig);
- zSig = aSig;
- if (aExp == 0 && zSig == 0) {
- return packFloat16(aSign, 0, 0);
- }
- /* Decimal point between bits 22 and 23. Note that we add the 1 bit
- * even if the input is denormal; however this is harmless because
- * the largest possible single-precision denormal is still smaller
- * than the smallest representable half-precision denormal, and so we
- * will end up ignoring aSig and returning via the "always return zero"
- * codepath.
- */
- zSig |= 0x00800000;
- aExp -= 0x3F1;
- return roundAndPackFloat16(aSign, aExp, zSig, ieee, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the double-precision floating-point value
- | `a' to the extended double-precision floating-point format. The conversion
- | is performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 float64_to_floatx80(float64 a, float_status *status)
- {
- flag aSign;
- int aExp;
- uint64_t aSig;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
- }
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- return
- packFloatx80(
- aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the double-precision floating-point value
- | `a' to the quadruple-precision floating-point format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 float64_to_float128(float64 a, float_status *status)
- {
- flag aSign;
- int aExp;
- uint64_t aSig, zSig0, zSig1;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
- }
- return packFloat128( aSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
- return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
- }
- /*----------------------------------------------------------------------------
- | Rounds the double-precision floating-point value `a' to an integer, and
- | returns the result as a double-precision floating-point value. The
- | operation is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 float64_round_to_int(float64 a, float_status *status)
- {
- flag aSign;
- int aExp;
- uint64_t lastBitMask, roundBitsMask;
- uint64_t z;
- a = float64_squash_input_denormal(a, status);
- aExp = extractFloat64Exp( a );
- if ( 0x433 <= aExp ) {
- if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
- return propagateFloat64NaN(a, a, status);
- }
- return a;
- }
- if ( aExp < 0x3FF ) {
- if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
- status->float_exception_flags |= float_flag_inexact;
- aSign = extractFloat64Sign( a );
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
- return packFloat64( aSign, 0x3FF, 0 );
- }
- break;
- case float_round_ties_away:
- if (aExp == 0x3FE) {
- return packFloat64(aSign, 0x3ff, 0);
- }
- break;
- case float_round_down:
- return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
- case float_round_up:
- return make_float64(
- aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
- }
- return packFloat64( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x433 - aExp;
- roundBitsMask = lastBitMask - 1;
- z = float64_val(a);
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- z += lastBitMask >> 1;
- if ((z & roundBitsMask) == 0) {
- z &= ~lastBitMask;
- }
- break;
- case float_round_ties_away:
- z += lastBitMask >> 1;
- break;
- case float_round_to_zero:
- break;
- case float_round_up:
- if (!extractFloat64Sign(make_float64(z))) {
- z += roundBitsMask;
- }
- break;
- case float_round_down:
- if (extractFloat64Sign(make_float64(z))) {
- z += roundBitsMask;
- }
- break;
- default:
- abort();
- }
- z &= ~ roundBitsMask;
- if (z != float64_val(a)) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return make_float64(z);
- }
- float64 float64_trunc_to_int(float64 a, float_status *status)
- {
- int oldmode;
- float64 res;
- oldmode = status->float_rounding_mode;
- status->float_rounding_mode = float_round_to_zero;
- res = float64_round_to_int(a, status);
- status->float_rounding_mode = oldmode;
- return res;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of adding the absolute values of the double-precision
- | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
- | before being returned. `zSign' is ignored if the result is a NaN.
- | The addition is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static float64 addFloat64Sigs(float64 a, float64 b, flag zSign,
- float_status *status)
- {
- int aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig;
- int expDiff;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 9;
- bSig <<= 9;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= LIT64( 0x2000000000000000 );
- }
- shift64RightJamming( bSig, expDiff, &bSig );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= LIT64( 0x2000000000000000 );
- }
- shift64RightJamming( aSig, - expDiff, &aSig );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FF ) {
- if (aSig | bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return a;
- }
- if ( aExp == 0 ) {
- if (status->flush_to_zero) {
- if (aSig | bSig) {
- float_raise(float_flag_output_denormal, status);
- }
- return packFloat64(zSign, 0, 0);
- }
- return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
- }
- zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
- zExp = aExp;
- goto roundAndPack;
- }
- aSig |= LIT64( 0x2000000000000000 );
- zSig = ( aSig + bSig )<<1;
- --zExp;
- if ( (int64_t) zSig < 0 ) {
- zSig = aSig + bSig;
- ++zExp;
- }
- roundAndPack:
- return roundAndPackFloat64(zSign, zExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of subtracting the absolute values of the double-
- | precision floating-point values `a' and `b'. If `zSign' is 1, the
- | difference is negated before being returned. `zSign' is ignored if the
- | result is a NaN. The subtraction is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static float64 subFloat64Sigs(float64 a, float64 b, flag zSign,
- float_status *status)
- {
- int aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig;
- int expDiff;
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 10;
- bSig <<= 10;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FF ) {
- if (aSig | bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloat64(status->float_rounding_mode == float_round_down, 0, 0);
- bExpBigger:
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return packFloat64( zSign ^ 1, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= LIT64( 0x4000000000000000 );
- }
- shift64RightJamming( aSig, - expDiff, &aSig );
- bSig |= LIT64( 0x4000000000000000 );
- bBigger:
- zSig = bSig - aSig;
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= LIT64( 0x4000000000000000 );
- }
- shift64RightJamming( bSig, expDiff, &bSig );
- aSig |= LIT64( 0x4000000000000000 );
- aBigger:
- zSig = aSig - bSig;
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of adding the double-precision floating-point values `a'
- | and `b'. The operation is performed according to the IEC/IEEE Standard for
- | Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 float64_add(float64 a, float64 b, float_status *status)
- {
- flag aSign, bSign;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return addFloat64Sigs(a, b, aSign, status);
- }
- else {
- return subFloat64Sigs(a, b, aSign, status);
- }
- }
- /*----------------------------------------------------------------------------
- | Returns the result of subtracting the double-precision floating-point values
- | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- | for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 float64_sub(float64 a, float64 b, float_status *status)
- {
- flag aSign, bSign;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return subFloat64Sigs(a, b, aSign, status);
- }
- else {
- return addFloat64Sigs(a, b, aSign, status);
- }
- }
- /*----------------------------------------------------------------------------
- | Returns the result of multiplying the double-precision floating-point values
- | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- | for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 float64_mul(float64 a, float64 b, float_status *status)
- {
- flag aSign, bSign, zSign;
- int aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig0, zSig1;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
- return propagateFloat64NaN(a, b, status);
- }
- if ( ( bExp | bSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- if ( ( aExp | aSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x3FF;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- mul64To128( aSig, bSig, &zSig0, &zSig1 );
- zSig0 |= ( zSig1 != 0 );
- if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
- zSig0 <<= 1;
- --zExp;
- }
- return roundAndPackFloat64(zSign, zExp, zSig0, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of dividing the double-precision floating-point value `a'
- | by the corresponding value `b'. The operation is performed according to
- | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 float64_div(float64 a, float64 b, float_status *status)
- {
- flag aSign, bSign, zSign;
- int aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig;
- uint64_t rem0, rem1;
- uint64_t term0, term1;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return propagateFloat64NaN(a, b, status);
- }
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return packFloat64( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- float_raise(float_flag_divbyzero, status);
- return packFloat64( zSign, 0x7FF, 0 );
- }
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x3FD;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- if ( bSig <= ( aSig + aSig ) ) {
- aSig >>= 1;
- ++zExp;
- }
- zSig = estimateDiv128To64( aSig, 0, bSig );
- if ( ( zSig & 0x1FF ) <= 2 ) {
- mul64To128( bSig, zSig, &term0, &term1 );
- sub128( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig;
- add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
- }
- zSig |= ( rem1 != 0 );
- }
- return roundAndPackFloat64(zSign, zExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the remainder of the double-precision floating-point value `a'
- | with respect to the corresponding value `b'. The operation is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 float64_rem(float64 a, float64 b, float_status *status)
- {
- flag aSign, zSign;
- int aExp, bExp, expDiff;
- uint64_t aSig, bSig;
- uint64_t q, alternateASig;
- int64_t sigMean;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- if ( aExp == 0x7FF ) {
- if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
- return propagateFloat64NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- if ( bExp == 0x7FF ) {
- if (bSig) {
- return propagateFloat64NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return a;
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- expDiff = aExp - bExp;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- aSig >>= 1;
- }
- q = ( bSig <= aSig );
- if ( q ) aSig -= bSig;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- aSig = - ( ( bSig>>2 ) * q );
- expDiff -= 62;
- }
- expDiff += 64;
- if ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- q >>= 64 - expDiff;
- bSig >>= 2;
- aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
- }
- else {
- aSig >>= 2;
- bSig >>= 2;
- }
- do {
- alternateASig = aSig;
- ++q;
- aSig -= bSig;
- } while ( 0 <= (int64_t) aSig );
- sigMean = aSig + alternateASig;
- if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
- aSig = alternateASig;
- }
- zSign = ( (int64_t) aSig < 0 );
- if ( zSign ) aSig = - aSig;
- return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of multiplying the double-precision floating-point values
- | `a' and `b' then adding 'c', with no intermediate rounding step after the
- | multiplication. The operation is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic 754-2008.
- | The flags argument allows the caller to select negation of the
- | addend, the intermediate product, or the final result. (The difference
- | between this and having the caller do a separate negation is that negating
- | externally will flip the sign bit on NaNs.)
- *----------------------------------------------------------------------------*/
- float64 float64_muladd(float64 a, float64 b, float64 c, int flags,
- float_status *status)
- {
- flag aSign, bSign, cSign, zSign;
- int aExp, bExp, cExp, pExp, zExp, expDiff;
- uint64_t aSig, bSig, cSig;
- flag pInf, pZero, pSign;
- uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
- int shiftcount;
- flag signflip, infzero;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- c = float64_squash_input_denormal(c, status);
- aSig = extractFloat64Frac(a);
- aExp = extractFloat64Exp(a);
- aSign = extractFloat64Sign(a);
- bSig = extractFloat64Frac(b);
- bExp = extractFloat64Exp(b);
- bSign = extractFloat64Sign(b);
- cSig = extractFloat64Frac(c);
- cExp = extractFloat64Exp(c);
- cSign = extractFloat64Sign(c);
- infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
- (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));
- /* It is implementation-defined whether the cases of (0,inf,qnan)
- * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
- * they return if they do), so we have to hand this information
- * off to the target-specific pick-a-NaN routine.
- */
- if (((aExp == 0x7ff) && aSig) ||
- ((bExp == 0x7ff) && bSig) ||
- ((cExp == 0x7ff) && cSig)) {
- return propagateFloat64MulAddNaN(a, b, c, infzero, status);
- }
- if (infzero) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- if (flags & float_muladd_negate_c) {
- cSign ^= 1;
- }
- signflip = (flags & float_muladd_negate_result) ? 1 : 0;
- /* Work out the sign and type of the product */
- pSign = aSign ^ bSign;
- if (flags & float_muladd_negate_product) {
- pSign ^= 1;
- }
- pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
- pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
- if (cExp == 0x7ff) {
- if (pInf && (pSign ^ cSign)) {
- /* addition of opposite-signed infinities => InvalidOperation */
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- /* Otherwise generate an infinity of the same sign */
- return packFloat64(cSign ^ signflip, 0x7ff, 0);
- }
- if (pInf) {
- return packFloat64(pSign ^ signflip, 0x7ff, 0);
- }
- if (pZero) {
- if (cExp == 0) {
- if (cSig == 0) {
- /* Adding two exact zeroes */
- if (pSign == cSign) {
- zSign = pSign;
- } else if (status->float_rounding_mode == float_round_down) {
- zSign = 1;
- } else {
- zSign = 0;
- }
- return packFloat64(zSign ^ signflip, 0, 0);
- }
- /* Exact zero plus a denorm */
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat64(cSign ^ signflip, 0, 0);
- }
- }
- /* Zero plus something non-zero : just return the something */
- if (flags & float_muladd_halve_result) {
- if (cExp == 0) {
- normalizeFloat64Subnormal(cSig, &cExp, &cSig);
- }
- /* Subtract one to halve, and one again because roundAndPackFloat64
- * wants one less than the true exponent.
- */
- cExp -= 2;
- cSig = (cSig | 0x0010000000000000ULL) << 10;
- return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status);
- }
- return packFloat64(cSign ^ signflip, cExp, cSig);
- }
- if (aExp == 0) {
- normalizeFloat64Subnormal(aSig, &aExp, &aSig);
- }
- if (bExp == 0) {
- normalizeFloat64Subnormal(bSig, &bExp, &bSig);
- }
- /* Calculate the actual result a * b + c */
- /* Multiply first; this is easy. */
- /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
- * because we want the true exponent, not the "one-less-than"
- * flavour that roundAndPackFloat64() takes.
- */
- pExp = aExp + bExp - 0x3fe;
- aSig = (aSig | LIT64(0x0010000000000000))<<10;
- bSig = (bSig | LIT64(0x0010000000000000))<<11;
- mul64To128(aSig, bSig, &pSig0, &pSig1);
- if ((int64_t)(pSig0 << 1) >= 0) {
- shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
- pExp--;
- }
- zSign = pSign ^ signflip;
- /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
- * bit in position 126.
- */
- if (cExp == 0) {
- if (!cSig) {
- /* Throw out the special case of c being an exact zero now */
- shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
- if (flags & float_muladd_halve_result) {
- pExp--;
- }
- return roundAndPackFloat64(zSign, pExp - 1,
- pSig1, status);
- }
- normalizeFloat64Subnormal(cSig, &cExp, &cSig);
- }
- /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
- * significand of the addend, with the explicit bit in position 126.
- */
- cSig0 = cSig << (126 - 64 - 52);
- cSig1 = 0;
- cSig0 |= LIT64(0x4000000000000000);
- expDiff = pExp - cExp;
- if (pSign == cSign) {
- /* Addition */
- if (expDiff > 0) {
- /* scale c to match p */
- shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
- zExp = pExp;
- } else if (expDiff < 0) {
- /* scale p to match c */
- shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
- zExp = cExp;
- } else {
- /* no scaling needed */
- zExp = cExp;
- }
- /* Add significands and make sure explicit bit ends up in posn 126 */
- add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
- if ((int64_t)zSig0 < 0) {
- shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
- } else {
- zExp--;
- }
- shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
- if (flags & float_muladd_halve_result) {
- zExp--;
- }
- return roundAndPackFloat64(zSign, zExp, zSig1, status);
- } else {
- /* Subtraction */
- if (expDiff > 0) {
- shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
- sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
- zExp = pExp;
- } else if (expDiff < 0) {
- shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
- sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
- zExp = cExp;
- zSign ^= 1;
- } else {
- zExp = pExp;
- if (lt128(cSig0, cSig1, pSig0, pSig1)) {
- sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
- } else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
- sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
- zSign ^= 1;
- } else {
- /* Exact zero */
- zSign = signflip;
- if (status->float_rounding_mode == float_round_down) {
- zSign ^= 1;
- }
- return packFloat64(zSign, 0, 0);
- }
- }
- --zExp;
- /* Do the equivalent of normalizeRoundAndPackFloat64() but
- * starting with the significand in a pair of uint64_t.
- */
- if (zSig0) {
- shiftcount = countLeadingZeros64(zSig0) - 1;
- shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
- if (zSig1) {
- zSig0 |= 1;
- }
- zExp -= shiftcount;
- } else {
- shiftcount = countLeadingZeros64(zSig1);
- if (shiftcount == 0) {
- zSig0 = (zSig1 >> 1) | (zSig1 & 1);
- zExp -= 63;
- } else {
- shiftcount--;
- zSig0 = zSig1 << shiftcount;
- zExp -= (shiftcount + 64);
- }
- }
- if (flags & float_muladd_halve_result) {
- zExp--;
- }
- return roundAndPackFloat64(zSign, zExp, zSig0, status);
- }
- }
- /*----------------------------------------------------------------------------
- | Returns the square root of the double-precision floating-point value `a'.
- | The operation is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 float64_sqrt(float64 a, float_status *status)
- {
- flag aSign;
- int aExp, zExp;
- uint64_t aSig, zSig, doubleZSig;
- uint64_t rem0, rem1, term0, term1;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return propagateFloat64NaN(a, a, status);
- }
- if ( ! aSign ) return a;
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- if ( aSign ) {
- if ( ( aExp | aSig ) == 0 ) return a;
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return float64_zero;
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
- aSig |= LIT64( 0x0010000000000000 );
- zSig = estimateSqrt32( aExp, aSig>>21 );
- aSig <<= 9 - ( aExp & 1 );
- zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
- if ( ( zSig & 0x1FF ) <= 5 ) {
- doubleZSig = zSig<<1;
- mul64To128( zSig, zSig, &term0, &term1 );
- sub128( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig;
- doubleZSig -= 2;
- add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
- }
- zSig |= ( ( rem0 | rem1 ) != 0 );
- }
- return roundAndPackFloat64(0, zExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the binary log of the double-precision floating-point value `a'.
- | The operation is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 float64_log2(float64 a, float_status *status)
- {
- flag aSign, zSign;
- int aExp;
- uint64_t aSig, aSig0, aSig1, zSig, i;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- if ( aSign ) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- if ( aExp == 0x7FF ) {
- if (aSig) {
- return propagateFloat64NaN(a, float64_zero, status);
- }
- return a;
- }
- aExp -= 0x3FF;
- aSig |= LIT64( 0x0010000000000000 );
- zSign = aExp < 0;
- zSig = (uint64_t)aExp << 52;
- for (i = 1LL << 51; i > 0; i >>= 1) {
- mul64To128( aSig, aSig, &aSig0, &aSig1 );
- aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
- if ( aSig & LIT64( 0x0020000000000000 ) ) {
- aSig >>= 1;
- zSig |= i;
- }
- }
- if ( zSign )
- zSig = -zSig;
- return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point value `a' is equal to the
- | corresponding value `b', and 0 otherwise. The invalid exception is raised
- | if either operand is a NaN. Otherwise, the comparison is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float64_eq(float64 a, float64 b, float_status *status)
- {
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- av = float64_val(a);
- bv = float64_val(b);
- return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point value `a' is less than or
- | equal to the corresponding value `b', and 0 otherwise. The invalid
- | exception is raised if either operand is a NaN. The comparison is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float64_le(float64 a, float64 b, float_status *status)
- {
- flag aSign, bSign;
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point value `a' is less than
- | the corresponding value `b', and 0 otherwise. The invalid exception is
- | raised if either operand is a NaN. The comparison is performed according
- | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float64_lt(float64 a, float64 b, float_status *status)
- {
- flag aSign, bSign;
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point values `a' and `b' cannot
- | be compared, and 0 otherwise. The invalid exception is raised if either
- | operand is a NaN. The comparison is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float64_unordered(float64 a, float64 b, float_status *status)
- {
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point value `a' is equal to the
- | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- | exception.The comparison is performed according to the IEC/IEEE Standard
- | for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float64_eq_quiet(float64 a, float64 b, float_status *status)
- {
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if (float64_is_signaling_nan(a, status)
- || float64_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- av = float64_val(a);
- bv = float64_val(b);
- return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point value `a' is less than or
- | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
- | cause an exception. Otherwise, the comparison is performed according to the
- | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float64_le_quiet(float64 a, float64 b, float_status *status)
- {
- flag aSign, bSign;
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if (float64_is_signaling_nan(a, status)
- || float64_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
- return ( av == bv ) || ( aSign ^ ( av < bv ) );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point value `a' is less than
- | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- | exception. Otherwise, the comparison is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float64_lt_quiet(float64 a, float64 b, float_status *status)
- {
- flag aSign, bSign;
- uint64_t av, bv;
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if (float64_is_signaling_nan(a, status)
- || float64_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- av = float64_val(a);
- bv = float64_val(b);
- if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
- return ( av != bv ) && ( aSign ^ ( av < bv ) );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point values `a' and `b' cannot
- | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
- | comparison is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float64_unordered_quiet(float64 a, float64 b, float_status *status)
- {
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if (float64_is_signaling_nan(a, status)
- || float64_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the extended double-precision floating-
- | point value `a' to the 32-bit two's complement integer format. The
- | conversion is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic---which means in particular that the conversion
- | is rounded according to the current rounding mode. If `a' is a NaN, the
- | largest positive integer is returned. Otherwise, if the conversion
- | overflows, the largest integer with the same sign as `a' is returned.
- *----------------------------------------------------------------------------*/
- int32_t floatx80_to_int32(floatx80 a, float_status *status)
- {
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig;
- if (floatx80_invalid_encoding(a)) {
- float_raise(float_flag_invalid, status);
- return 1 << 31;
- }
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
- shiftCount = 0x4037 - aExp;
- if ( shiftCount <= 0 ) shiftCount = 1;
- shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32(aSign, aSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the extended double-precision floating-
- | point value `a' to the 32-bit two's complement integer format. The
- | conversion is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic, except that the conversion is always rounded
- | toward zero. If `a' is a NaN, the largest positive integer is returned.
- | Otherwise, if the conversion overflows, the largest integer with the same
- | sign as `a' is returned.
- *----------------------------------------------------------------------------*/
- int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
- {
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig, savedASig;
- int32_t z;
- if (floatx80_invalid_encoding(a)) {
- float_raise(float_flag_invalid, status);
- return 1 << 31;
- }
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( 0x401E < aExp ) {
- if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FFF ) {
- if (aExp || aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- shiftCount = 0x403E - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the extended double-precision floating-
- | point value `a' to the 64-bit two's complement integer format. The
- | conversion is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic---which means in particular that the conversion
- | is rounded according to the current rounding mode. If `a' is a NaN,
- | the largest positive integer is returned. Otherwise, if the conversion
- | overflows, the largest integer with the same sign as `a' is returned.
- *----------------------------------------------------------------------------*/
- int64_t floatx80_to_int64(floatx80 a, float_status *status)
- {
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig, aSigExtra;
- if (floatx80_invalid_encoding(a)) {
- float_raise(float_flag_invalid, status);
- return 1ULL << 63;
- }
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- shiftCount = 0x403E - aExp;
- if ( shiftCount <= 0 ) {
- if ( shiftCount ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FFF )
- && ( aSig != LIT64( 0x8000000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- aSigExtra = 0;
- }
- else {
- shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
- }
- return roundAndPackInt64(aSign, aSig, aSigExtra, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the extended double-precision floating-
- | point value `a' to the 64-bit two's complement integer format. The
- | conversion is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic, except that the conversion is always rounded
- | toward zero. If `a' is a NaN, the largest positive integer is returned.
- | Otherwise, if the conversion overflows, the largest integer with the same
- | sign as `a' is returned.
- *----------------------------------------------------------------------------*/
- int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
- {
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig;
- int64_t z;
- if (floatx80_invalid_encoding(a)) {
- float_raise(float_flag_invalid, status);
- return 1ULL << 63;
- }
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- shiftCount = aExp - 0x403E;
- if ( 0 <= shiftCount ) {
- aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
- if ( ( a.high != 0xC03E ) || aSig ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- else if ( aExp < 0x3FFF ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- z = aSig>>( - shiftCount );
- if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the extended double-precision floating-
- | point value `a' to the single-precision floating-point format. The
- | conversion is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 floatx80_to_float32(floatx80 a, float_status *status)
- {
- flag aSign;
- int32_t aExp;
- uint64_t aSig;
- if (floatx80_invalid_encoding(a)) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( aSig<<1 ) ) {
- return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- shift64RightJamming( aSig, 33, &aSig );
- if ( aExp || aSig ) aExp -= 0x3F81;
- return roundAndPackFloat32(aSign, aExp, aSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the extended double-precision floating-
- | point value `a' to the double-precision floating-point format. The
- | conversion is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 floatx80_to_float64(floatx80 a, float_status *status)
- {
- flag aSign;
- int32_t aExp;
- uint64_t aSig, zSig;
- if (floatx80_invalid_encoding(a)) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( aSig<<1 ) ) {
- return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
- }
- return packFloat64( aSign, 0x7FF, 0 );
- }
- shift64RightJamming( aSig, 1, &zSig );
- if ( aExp || aSig ) aExp -= 0x3C01;
- return roundAndPackFloat64(aSign, aExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the extended double-precision floating-
- | point value `a' to the quadruple-precision floating-point format. The
- | conversion is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 floatx80_to_float128(floatx80 a, float_status *status)
- {
- flag aSign;
- int aExp;
- uint64_t aSig, zSig0, zSig1;
- if (floatx80_invalid_encoding(a)) {
- float_raise(float_flag_invalid, status);
- return float128_default_nan(status);
- }
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
- return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
- }
- shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
- return packFloat128( aSign, aExp, zSig0, zSig1 );
- }
- /*----------------------------------------------------------------------------
- | Rounds the extended double-precision floating-point value `a' to an integer,
- | and returns the result as an extended quadruple-precision floating-point
- | value. The operation is performed according to the IEC/IEEE Standard for
- | Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
- {
- flag aSign;
- int32_t aExp;
- uint64_t lastBitMask, roundBitsMask;
- floatx80 z;
- if (floatx80_invalid_encoding(a)) {
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- aExp = extractFloatx80Exp( a );
- if ( 0x403E <= aExp ) {
- if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
- return propagateFloatx80NaN(a, a, status);
- }
- return a;
- }
- if ( aExp < 0x3FFF ) {
- if ( ( aExp == 0 )
- && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
- return a;
- }
- status->float_exception_flags |= float_flag_inexact;
- aSign = extractFloatx80Sign( a );
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
- ) {
- return
- packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
- }
- break;
- case float_round_ties_away:
- if (aExp == 0x3FFE) {
- return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
- }
- break;
- case float_round_down:
- return
- aSign ?
- packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
- : packFloatx80( 0, 0, 0 );
- case float_round_up:
- return
- aSign ? packFloatx80( 1, 0, 0 )
- : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
- }
- return packFloatx80( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x403E - aExp;
- roundBitsMask = lastBitMask - 1;
- z = a;
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- z.low += lastBitMask>>1;
- if ((z.low & roundBitsMask) == 0) {
- z.low &= ~lastBitMask;
- }
- break;
- case float_round_ties_away:
- z.low += lastBitMask >> 1;
- break;
- case float_round_to_zero:
- break;
- case float_round_up:
- if (!extractFloatx80Sign(z)) {
- z.low += roundBitsMask;
- }
- break;
- case float_round_down:
- if (extractFloatx80Sign(z)) {
- z.low += roundBitsMask;
- }
- break;
- default:
- abort();
- }
- z.low &= ~ roundBitsMask;
- if ( z.low == 0 ) {
- ++z.high;
- z.low = LIT64( 0x8000000000000000 );
- }
- if (z.low != a.low) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of adding the absolute values of the extended double-
- | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
- | negated before being returned. `zSign' is ignored if the result is a NaN.
- | The addition is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
- float_status *status)
- {
- int32_t aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig0, zSig1;
- int32_t expDiff;
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FFF ) {
- if ((uint64_t)(aSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) --expDiff;
- shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) ++expDiff;
- shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
- return propagateFloatx80NaN(a, b, status);
- }
- return a;
- }
- zSig1 = 0;
- zSig0 = aSig + bSig;
- if ( aExp == 0 ) {
- normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
- goto roundAndPack;
- }
- zExp = aExp;
- goto shiftRight1;
- }
- zSig0 = aSig + bSig;
- if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
- shiftRight1:
- shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
- zSig0 |= LIT64( 0x8000000000000000 );
- ++zExp;
- roundAndPack:
- return roundAndPackFloatx80(status->floatx80_rounding_precision,
- zSign, zExp, zSig0, zSig1, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of subtracting the absolute values of the extended
- | double-precision floating-point values `a' and `b'. If `zSign' is 1, the
- | difference is negated before being returned. `zSign' is ignored if the
- | result is a NaN. The subtraction is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
- float_status *status)
- {
- int32_t aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig0, zSig1;
- int32_t expDiff;
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
- return propagateFloatx80NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- zSig1 = 0;
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
- bExpBigger:
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) ++expDiff;
- shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
- bBigger:
- sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FFF ) {
- if ((uint64_t)(aSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) --expDiff;
- shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
- aBigger:
- sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
- zExp = aExp;
- normalizeRoundAndPack:
- return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
- zSign, zExp, zSig0, zSig1, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of adding the extended double-precision floating-point
- | values `a' and `b'. The operation is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
- {
- flag aSign, bSign;
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign == bSign ) {
- return addFloatx80Sigs(a, b, aSign, status);
- }
- else {
- return subFloatx80Sigs(a, b, aSign, status);
- }
- }
- /*----------------------------------------------------------------------------
- | Returns the result of subtracting the extended double-precision floating-
- | point values `a' and `b'. The operation is performed according to the
- | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
- {
- flag aSign, bSign;
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign == bSign ) {
- return subFloatx80Sigs(a, b, aSign, status);
- }
- else {
- return addFloatx80Sigs(a, b, aSign, status);
- }
- }
- /*----------------------------------------------------------------------------
- | Returns the result of multiplying the extended double-precision floating-
- | point values `a' and `b'. The operation is performed according to the
- | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
- {
- flag aSign, bSign, zSign;
- int32_t aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig0, zSig1;
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- bSign = extractFloatx80Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( aSig<<1 )
- || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
- return propagateFloatx80NaN(a, b, status);
- }
- if ( ( bExp | bSig ) == 0 ) goto invalid;
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- if ( ( aExp | aSig ) == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x3FFE;
- mul64To128( aSig, bSig, &zSig0, &zSig1 );
- if ( 0 < (int64_t) zSig0 ) {
- shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
- --zExp;
- }
- return roundAndPackFloatx80(status->floatx80_rounding_precision,
- zSign, zExp, zSig0, zSig1, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of dividing the extended double-precision floating-point
- | value `a' by the corresponding value `b'. The operation is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
- {
- flag aSign, bSign, zSign;
- int32_t aExp, bExp, zExp;
- uint64_t aSig, bSig, zSig0, zSig1;
- uint64_t rem0, rem1, rem2, term0, term1, term2;
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- bSign = extractFloatx80Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ((uint64_t)(aSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- goto invalid;
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return packFloatx80( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- float_raise(float_flag_divbyzero, status);
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x3FFE;
- rem1 = 0;
- if ( bSig <= aSig ) {
- shift128Right( aSig, 0, 1, &aSig, &rem1 );
- ++zExp;
- }
- zSig0 = estimateDiv128To64( aSig, rem1, bSig );
- mul64To128( bSig, zSig0, &term0, &term1 );
- sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig0;
- add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, bSig );
- if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
- mul64To128( bSig, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- while ( (int64_t) rem1 < 0 ) {
- --zSig1;
- add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
- }
- zSig1 |= ( ( rem1 | rem2 ) != 0 );
- }
- return roundAndPackFloatx80(status->floatx80_rounding_precision,
- zSign, zExp, zSig0, zSig1, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the remainder of the extended double-precision floating-point value
- | `a' with respect to the corresponding value `b'. The operation is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
- {
- flag aSign, zSign;
- int32_t aExp, bExp, expDiff;
- uint64_t aSig0, aSig1, bSig;
- uint64_t q, term0, term1, alternateASig0, alternateASig1;
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- aSig0 = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- if ( aExp == 0x7FFF ) {
- if ( (uint64_t) ( aSig0<<1 )
- || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
- return propagateFloatx80NaN(a, b, status);
- }
- goto invalid;
- }
- if ( bExp == 0x7FFF ) {
- if ((uint64_t)(bSig << 1)) {
- return propagateFloatx80NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
- normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
- }
- bSig |= LIT64( 0x8000000000000000 );
- zSign = aSign;
- expDiff = aExp - bExp;
- aSig1 = 0;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
- expDiff = 0;
- }
- q = ( bSig <= aSig0 );
- if ( q ) aSig0 -= bSig;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- mul64To128( bSig, q, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
- expDiff -= 62;
- }
- expDiff += 64;
- if ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- q >>= 64 - expDiff;
- mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
- while ( le128( term0, term1, aSig0, aSig1 ) ) {
- ++q;
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- }
- }
- else {
- term1 = 0;
- term0 = bSig;
- }
- sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
- if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
- || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
- && ( q & 1 ) )
- ) {
- aSig0 = alternateASig0;
- aSig1 = alternateASig1;
- zSign = ! zSign;
- }
- return
- normalizeRoundAndPackFloatx80(
- 80, zSign, bExp + expDiff, aSig0, aSig1, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the square root of the extended double-precision floating-point
- | value `a'. The operation is performed according to the IEC/IEEE Standard
- | for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 floatx80_sqrt(floatx80 a, float_status *status)
- {
- flag aSign;
- int32_t aExp, zExp;
- uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
- uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- if (floatx80_invalid_encoding(a)) {
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- aSig0 = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ((uint64_t)(aSig0 << 1)) {
- return propagateFloatx80NaN(a, a, status);
- }
- if ( ! aSign ) return a;
- goto invalid;
- }
- if ( aSign ) {
- if ( ( aExp | aSig0 ) == 0 ) return a;
- invalid:
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- if ( aExp == 0 ) {
- if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
- normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
- }
- zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
- zSig0 = estimateSqrt32( aExp, aSig0>>32 );
- shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
- zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
- doubleZSig0 = zSig0<<1;
- mul64To128( zSig0, zSig0, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig0;
- doubleZSig0 -= 2;
- add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
- if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
- if ( zSig1 == 0 ) zSig1 = 1;
- mul64To128( doubleZSig0, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- mul64To128( zSig1, zSig1, &term2, &term3 );
- sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (int64_t) rem1 < 0 ) {
- --zSig1;
- shortShift128Left( 0, zSig1, 1, &term2, &term3 );
- term3 |= 1;
- term2 |= doubleZSig0;
- add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
- zSig0 |= doubleZSig0;
- return roundAndPackFloatx80(status->floatx80_rounding_precision,
- 0, zExp, zSig0, zSig1, status);
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the extended double-precision floating-point value `a' is equal
- | to the corresponding value `b', and 0 otherwise. The invalid exception is
- | raised if either operand is a NaN. Otherwise, the comparison is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
- {
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
- || (extractFloatx80Exp(a) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(a) << 1))
- || (extractFloatx80Exp(b) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(b) << 1))
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the extended double-precision floating-point value `a' is
- | less than or equal to the corresponding value `b', and 0 otherwise. The
- | invalid exception is raised if either operand is a NaN. The comparison is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic.
- *----------------------------------------------------------------------------*/
- int floatx80_le(floatx80 a, floatx80 b, float_status *status)
- {
- flag aSign, bSign;
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
- || (extractFloatx80Exp(a) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(a) << 1))
- || (extractFloatx80Exp(b) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(b) << 1))
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the extended double-precision floating-point value `a' is
- | less than the corresponding value `b', and 0 otherwise. The invalid
- | exception is raised if either operand is a NaN. The comparison is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
- {
- flag aSign, bSign;
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
- || (extractFloatx80Exp(a) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(a) << 1))
- || (extractFloatx80Exp(b) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(b) << 1))
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the extended double-precision floating-point values `a' and `b'
- | cannot be compared, and 0 otherwise. The invalid exception is raised if
- | either operand is a NaN. The comparison is performed according to the
- | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
- {
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
- || (extractFloatx80Exp(a) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(a) << 1))
- || (extractFloatx80Exp(b) == 0x7FFF
- && (uint64_t) (extractFloatx80Frac(b) << 1))
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the extended double-precision floating-point value `a' is
- | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
- | cause an exception. The comparison is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
- {
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if (floatx80_is_signaling_nan(a, status)
- || floatx80_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the extended double-precision floating-point value `a' is less
- | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
- | do not cause an exception. Otherwise, the comparison is performed according
- | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
- {
- flag aSign, bSign;
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if (floatx80_is_signaling_nan(a, status)
- || floatx80_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the extended double-precision floating-point value `a' is less
- | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
- | an exception. Otherwise, the comparison is performed according to the
- | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
- {
- flag aSign, bSign;
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if (floatx80_is_signaling_nan(a, status)
- || floatx80_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the extended double-precision floating-point values `a' and `b'
- | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception.
- | The comparison is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
- {
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if (floatx80_is_signaling_nan(a, status)
- || floatx80_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the quadruple-precision floating-point
- | value `a' to the 32-bit two's complement integer format. The conversion
- | is performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic---which means in particular that the conversion is rounded
- | according to the current rounding mode. If `a' is a NaN, the largest
- | positive integer is returned. Otherwise, if the conversion overflows, the
- | largest integer with the same sign as `a' is returned.
- *----------------------------------------------------------------------------*/
- int32_t float128_to_int32(float128 a, float_status *status)
- {
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig0, aSig1;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- aSig0 |= ( aSig1 != 0 );
- shiftCount = 0x4028 - aExp;
- if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
- return roundAndPackInt32(aSign, aSig0, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the quadruple-precision floating-point
- | value `a' to the 32-bit two's complement integer format. The conversion
- | is performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic, except that the conversion is always rounded toward zero. If
- | `a' is a NaN, the largest positive integer is returned. Otherwise, if the
- | conversion overflows, the largest integer with the same sign as `a' is
- | returned.
- *----------------------------------------------------------------------------*/
- int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
- {
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig0, aSig1, savedASig;
- int32_t z;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- aSig0 |= ( aSig1 != 0 );
- if ( 0x401E < aExp ) {
- if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FFF ) {
- if (aExp || aSig0) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = 0x402F - aExp;
- savedASig = aSig0;
- aSig0 >>= shiftCount;
- z = aSig0;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig0<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the quadruple-precision floating-point
- | value `a' to the 64-bit two's complement integer format. The conversion
- | is performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic---which means in particular that the conversion is rounded
- | according to the current rounding mode. If `a' is a NaN, the largest
- | positive integer is returned. Otherwise, if the conversion overflows, the
- | largest integer with the same sign as `a' is returned.
- *----------------------------------------------------------------------------*/
- int64_t float128_to_int64(float128 a, float_status *status)
- {
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig0, aSig1;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = 0x402F - aExp;
- if ( shiftCount <= 0 ) {
- if ( 0x403E < aExp ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FFF )
- && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
- )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
- }
- else {
- shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
- }
- return roundAndPackInt64(aSign, aSig0, aSig1, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the quadruple-precision floating-point
- | value `a' to the 64-bit two's complement integer format. The conversion
- | is performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic, except that the conversion is always rounded toward zero.
- | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- | the conversion overflows, the largest integer with the same sign as `a' is
- | returned.
- *----------------------------------------------------------------------------*/
- int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
- {
- flag aSign;
- int32_t aExp, shiftCount;
- uint64_t aSig0, aSig1;
- int64_t z;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = aExp - 0x402F;
- if ( 0 < shiftCount ) {
- if ( 0x403E <= aExp ) {
- aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
- if ( ( a.high == LIT64( 0xC03E000000000000 ) )
- && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
- if (aSig1) {
- status->float_exception_flags |= float_flag_inexact;
- }
- }
- else {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
- if ( (uint64_t) ( aSig1<<shiftCount ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- }
- else {
- if ( aExp < 0x3FFF ) {
- if ( aExp | aSig0 | aSig1 ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- z = aSig0>>( - shiftCount );
- if ( aSig1
- || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- }
- if ( aSign ) z = - z;
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the quadruple-precision floating-point value
- | `a' to the 64-bit unsigned integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic---which means in particular that the conversion is rounded
- | according to the current rounding mode. If `a' is a NaN, the largest
- | positive integer is returned. If the conversion overflows, the
- | largest unsigned integer is returned. If 'a' is negative, the value is
- | rounded and zero is returned; negative values that do not round to zero
- | will raise the inexact exception.
- *----------------------------------------------------------------------------*/
- uint64_t float128_to_uint64(float128 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig0, aSig1;
- aSig0 = extractFloat128Frac0(a);
- aSig1 = extractFloat128Frac1(a);
- aExp = extractFloat128Exp(a);
- aSign = extractFloat128Sign(a);
- if (aSign && (aExp > 0x3FFE)) {
- float_raise(float_flag_invalid, status);
- if (float128_is_any_nan(a)) {
- return LIT64(0xFFFFFFFFFFFFFFFF);
- } else {
- return 0;
- }
- }
- if (aExp) {
- aSig0 |= LIT64(0x0001000000000000);
- }
- shiftCount = 0x402F - aExp;
- if (shiftCount <= 0) {
- if (0x403E < aExp) {
- float_raise(float_flag_invalid, status);
- return LIT64(0xFFFFFFFFFFFFFFFF);
- }
- shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
- } else {
- shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
- }
- return roundAndPackUint64(aSign, aSig0, aSig1, status);
- }
- uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
- {
- uint64_t v;
- signed char current_rounding_mode = status->float_rounding_mode;
- set_float_rounding_mode(float_round_to_zero, status);
- v = float128_to_uint64(a, status);
- set_float_rounding_mode(current_rounding_mode, status);
- return v;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the quadruple-precision floating-point
- | value `a' to the 32-bit unsigned integer format. The conversion
- | is performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic except that the conversion is always rounded toward zero.
- | If `a' is a NaN, the largest positive integer is returned. Otherwise,
- | if the conversion overflows, the largest unsigned integer is returned.
- | If 'a' is negative, the value is rounded and zero is returned; negative
- | values that do not round to zero will raise the inexact exception.
- *----------------------------------------------------------------------------*/
- uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
- {
- uint64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float128_to_uint64_round_to_zero(a, status);
- if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the quadruple-precision floating-point
- | value `a' to the single-precision floating-point format. The conversion
- | is performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic.
- *----------------------------------------------------------------------------*/
- float32 float128_to_float32(float128 a, float_status *status)
- {
- flag aSign;
- int32_t aExp;
- uint64_t aSig0, aSig1;
- uint32_t zSig;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- aSig0 |= ( aSig1 != 0 );
- shift64RightJamming( aSig0, 18, &aSig0 );
- zSig = aSig0;
- if ( aExp || zSig ) {
- zSig |= 0x40000000;
- aExp -= 0x3F81;
- }
- return roundAndPackFloat32(aSign, aExp, zSig, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the quadruple-precision floating-point
- | value `a' to the double-precision floating-point format. The conversion
- | is performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic.
- *----------------------------------------------------------------------------*/
- float64 float128_to_float64(float128 a, float_status *status)
- {
- flag aSign;
- int32_t aExp;
- uint64_t aSig0, aSig1;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
- }
- return packFloat64( aSign, 0x7FF, 0 );
- }
- shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
- aSig0 |= ( aSig1 != 0 );
- if ( aExp || aSig0 ) {
- aSig0 |= LIT64( 0x4000000000000000 );
- aExp -= 0x3C01;
- }
- return roundAndPackFloat64(aSign, aExp, aSig0, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the quadruple-precision floating-point
- | value `a' to the extended double-precision floating-point format. The
- | conversion is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- floatx80 float128_to_floatx80(float128 a, float_status *status)
- {
- flag aSign;
- int32_t aExp;
- uint64_t aSig0, aSig1;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
- }
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- else {
- aSig0 |= LIT64( 0x0001000000000000 );
- }
- shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
- return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
- }
- /*----------------------------------------------------------------------------
- | Rounds the quadruple-precision floating-point value `a' to an integer, and
- | returns the result as a quadruple-precision floating-point value. The
- | operation is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 float128_round_to_int(float128 a, float_status *status)
- {
- flag aSign;
- int32_t aExp;
- uint64_t lastBitMask, roundBitsMask;
- float128 z;
- aExp = extractFloat128Exp( a );
- if ( 0x402F <= aExp ) {
- if ( 0x406F <= aExp ) {
- if ( ( aExp == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
- ) {
- return propagateFloat128NaN(a, a, status);
- }
- return a;
- }
- lastBitMask = 1;
- lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
- roundBitsMask = lastBitMask - 1;
- z = a;
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- if ( lastBitMask ) {
- add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
- if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
- }
- else {
- if ( (int64_t) z.low < 0 ) {
- ++z.high;
- if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
- }
- }
- break;
- case float_round_ties_away:
- if (lastBitMask) {
- add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
- } else {
- if ((int64_t) z.low < 0) {
- ++z.high;
- }
- }
- break;
- case float_round_to_zero:
- break;
- case float_round_up:
- if (!extractFloat128Sign(z)) {
- add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
- }
- break;
- case float_round_down:
- if (extractFloat128Sign(z)) {
- add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
- }
- break;
- default:
- abort();
- }
- z.low &= ~ roundBitsMask;
- }
- else {
- if ( aExp < 0x3FFF ) {
- if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
- status->float_exception_flags |= float_flag_inexact;
- aSign = extractFloat128Sign( a );
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FFE )
- && ( extractFloat128Frac0( a )
- | extractFloat128Frac1( a ) )
- ) {
- return packFloat128( aSign, 0x3FFF, 0, 0 );
- }
- break;
- case float_round_ties_away:
- if (aExp == 0x3FFE) {
- return packFloat128(aSign, 0x3FFF, 0, 0);
- }
- break;
- case float_round_down:
- return
- aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
- : packFloat128( 0, 0, 0, 0 );
- case float_round_up:
- return
- aSign ? packFloat128( 1, 0, 0, 0 )
- : packFloat128( 0, 0x3FFF, 0, 0 );
- }
- return packFloat128( aSign, 0, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x402F - aExp;
- roundBitsMask = lastBitMask - 1;
- z.low = 0;
- z.high = a.high;
- switch (status->float_rounding_mode) {
- case float_round_nearest_even:
- z.high += lastBitMask>>1;
- if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
- z.high &= ~ lastBitMask;
- }
- break;
- case float_round_ties_away:
- z.high += lastBitMask>>1;
- break;
- case float_round_to_zero:
- break;
- case float_round_up:
- if (!extractFloat128Sign(z)) {
- z.high |= ( a.low != 0 );
- z.high += roundBitsMask;
- }
- break;
- case float_round_down:
- if (extractFloat128Sign(z)) {
- z.high |= (a.low != 0);
- z.high += roundBitsMask;
- }
- break;
- default:
- abort();
- }
- z.high &= ~ roundBitsMask;
- }
- if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of adding the absolute values of the quadruple-precision
- | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
- | before being returned. `zSign' is ignored if the result is a NaN.
- | The addition is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
- float_status *status)
- {
- int32_t aExp, bExp, zExp;
- uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- int32_t expDiff;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FFF ) {
- if (aSig0 | aSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= LIT64( 0x0001000000000000 );
- }
- shift128ExtraRightJamming(
- bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= LIT64( 0x0001000000000000 );
- }
- shift128ExtraRightJamming(
- aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat128NaN(a, b, status);
- }
- return a;
- }
- add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- if ( aExp == 0 ) {
- if (status->flush_to_zero) {
- if (zSig0 | zSig1) {
- float_raise(float_flag_output_denormal, status);
- }
- return packFloat128(zSign, 0, 0, 0);
- }
- return packFloat128( zSign, 0, zSig0, zSig1 );
- }
- zSig2 = 0;
- zSig0 |= LIT64( 0x0002000000000000 );
- zExp = aExp;
- goto shiftRight1;
- }
- aSig0 |= LIT64( 0x0001000000000000 );
- add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- --zExp;
- if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
- ++zExp;
- shiftRight1:
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- roundAndPack:
- return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of subtracting the absolute values of the quadruple-
- | precision floating-point values `a' and `b'. If `zSign' is 1, the
- | difference is negated before being returned. `zSign' is ignored if the
- | result is a NaN. The subtraction is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
- float_status *status)
- {
- int32_t aExp, bExp, zExp;
- uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
- int32_t expDiff;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- expDiff = aExp - bExp;
- shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
- shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat128NaN(a, b, status);
- }
- float_raise(float_flag_invalid, status);
- return float128_default_nan(status);
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig0 < aSig0 ) goto aBigger;
- if ( aSig0 < bSig0 ) goto bBigger;
- if ( bSig1 < aSig1 ) goto aBigger;
- if ( aSig1 < bSig1 ) goto bBigger;
- return packFloat128(status->float_rounding_mode == float_round_down,
- 0, 0, 0);
- bExpBigger:
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= LIT64( 0x4000000000000000 );
- }
- shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- bSig0 |= LIT64( 0x4000000000000000 );
- bBigger:
- sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FFF ) {
- if (aSig0 | aSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= LIT64( 0x4000000000000000 );
- }
- shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
- aSig0 |= LIT64( 0x4000000000000000 );
- aBigger:
- sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
- status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of adding the quadruple-precision floating-point values
- | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- | for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 float128_add(float128 a, float128 b, float_status *status)
- {
- flag aSign, bSign;
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign == bSign ) {
- return addFloat128Sigs(a, b, aSign, status);
- }
- else {
- return subFloat128Sigs(a, b, aSign, status);
- }
- }
- /*----------------------------------------------------------------------------
- | Returns the result of subtracting the quadruple-precision floating-point
- | values `a' and `b'. The operation is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 float128_sub(float128 a, float128 b, float_status *status)
- {
- flag aSign, bSign;
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign == bSign ) {
- return subFloat128Sigs(a, b, aSign, status);
- }
- else {
- return addFloat128Sigs(a, b, aSign, status);
- }
- }
- /*----------------------------------------------------------------------------
- | Returns the result of multiplying the quadruple-precision floating-point
- | values `a' and `b'. The operation is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 float128_mul(float128 a, float128 b, float_status *status)
- {
- flag aSign, bSign, zSign;
- int32_t aExp, bExp, zExp;
- uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- bSign = extractFloat128Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat128NaN(a, b, status);
- }
- if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return float128_default_nan(status);
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- zExp = aExp + bExp - 0x4000;
- aSig0 |= LIT64( 0x0001000000000000 );
- shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
- mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
- add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zSig2 |= ( zSig3 != 0 );
- if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- ++zExp;
- }
- return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the result of dividing the quadruple-precision floating-point value
- | `a' by the corresponding value `b'. The operation is performed according to
- | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 float128_div(float128 a, float128 b, float_status *status)
- {
- flag aSign, bSign, zSign;
- int32_t aExp, bExp, zExp;
- uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- bSign = extractFloat128Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if (aSig0 | aSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- goto invalid;
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return packFloat128( zSign, 0, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return float128_default_nan(status);
- }
- float_raise(float_flag_divbyzero, status);
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = aExp - bExp + 0x3FFD;
- shortShift128Left(
- aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
- shortShift128Left(
- bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
- if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
- shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
- ++zExp;
- }
- zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
- mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
- sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig0;
- add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
- }
- zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
- if ( ( zSig1 & 0x3FFF ) <= 4 ) {
- mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
- sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
- while ( (int64_t) rem1 < 0 ) {
- --zSig1;
- add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
- }
- /*----------------------------------------------------------------------------
- | Returns the remainder of the quadruple-precision floating-point value `a'
- | with respect to the corresponding value `b'. The operation is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 float128_rem(float128 a, float128 b, float_status *status)
- {
- flag aSign, zSign;
- int32_t aExp, bExp, expDiff;
- uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
- uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
- int64_t sigMean0;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- if ( aExp == 0x7FFF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat128NaN(a, b, status);
- }
- goto invalid;
- }
- if ( bExp == 0x7FFF ) {
- if (bSig0 | bSig1) {
- return propagateFloat128NaN(a, b, status);
- }
- return a;
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return float128_default_nan(status);
- }
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return a;
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- expDiff = aExp - bExp;
- if ( expDiff < -1 ) return a;
- shortShift128Left(
- aSig0 | LIT64( 0x0001000000000000 ),
- aSig1,
- 15 - ( expDiff < 0 ),
- &aSig0,
- &aSig1
- );
- shortShift128Left(
- bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
- q = le128( bSig0, bSig1, aSig0, aSig1 );
- if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
- shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
- shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
- sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
- expDiff -= 61;
- }
- if ( -64 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- q >>= - expDiff;
- shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
- expDiff += 52;
- if ( expDiff < 0 ) {
- shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- }
- else {
- shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
- }
- mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
- sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
- }
- else {
- shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
- shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
- }
- do {
- alternateASig0 = aSig0;
- alternateASig1 = aSig1;
- ++q;
- sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- } while ( 0 <= (int64_t) aSig0 );
- add128(
- aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
- if ( ( sigMean0 < 0 )
- || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
- aSig0 = alternateASig0;
- aSig1 = alternateASig1;
- }
- zSign = ( (int64_t) aSig0 < 0 );
- if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
- return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
- status);
- }
- /*----------------------------------------------------------------------------
- | Returns the square root of the quadruple-precision floating-point value `a'.
- | The operation is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- float128 float128_sqrt(float128 a, float_status *status)
- {
- flag aSign;
- int32_t aExp, zExp;
- uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
- uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if (aSig0 | aSig1) {
- return propagateFloat128NaN(a, a, status);
- }
- if ( ! aSign ) return a;
- goto invalid;
- }
- if ( aSign ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
- invalid:
- float_raise(float_flag_invalid, status);
- return float128_default_nan(status);
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
- aSig0 |= LIT64( 0x0001000000000000 );
- zSig0 = estimateSqrt32( aExp, aSig0>>17 );
- shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
- zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
- doubleZSig0 = zSig0<<1;
- mul64To128( zSig0, zSig0, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (int64_t) rem0 < 0 ) {
- --zSig0;
- doubleZSig0 -= 2;
- add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
- if ( ( zSig1 & 0x1FFF ) <= 5 ) {
- if ( zSig1 == 0 ) zSig1 = 1;
- mul64To128( doubleZSig0, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- mul64To128( zSig1, zSig1, &term2, &term3 );
- sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (int64_t) rem1 < 0 ) {
- --zSig1;
- shortShift128Left( 0, zSig1, 1, &term2, &term3 );
- term3 |= 1;
- term2 |= doubleZSig0;
- add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the quadruple-precision floating-point value `a' is equal to
- | the corresponding value `b', and 0 otherwise. The invalid exception is
- | raised if either operand is a NaN. Otherwise, the comparison is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float128_eq(float128 a, float128 b, float_status *status)
- {
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the quadruple-precision floating-point value `a' is less than
- | or equal to the corresponding value `b', and 0 otherwise. The invalid
- | exception is raised if either operand is a NaN. The comparison is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float128_le(float128 a, float128 b, float_status *status)
- {
- flag aSign, bSign;
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the quadruple-precision floating-point value `a' is less than
- | the corresponding value `b', and 0 otherwise. The invalid exception is
- | raised if either operand is a NaN. The comparison is performed according
- | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float128_lt(float128 a, float128 b, float_status *status)
- {
- flag aSign, bSign;
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
- | be compared, and 0 otherwise. The invalid exception is raised if either
- | operand is a NaN. The comparison is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float128_unordered(float128 a, float128 b, float_status *status)
- {
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise(float_flag_invalid, status);
- return 1;
- }
- return 0;
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the quadruple-precision floating-point value `a' is equal to
- | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- | exception. The comparison is performed according to the IEC/IEEE Standard
- | for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float128_eq_quiet(float128 a, float128 b, float_status *status)
- {
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if (float128_is_signaling_nan(a, status)
- || float128_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the quadruple-precision floating-point value `a' is less than
- | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
- | cause an exception. Otherwise, the comparison is performed according to the
- | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float128_le_quiet(float128 a, float128 b, float_status *status)
- {
- flag aSign, bSign;
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if (float128_is_signaling_nan(a, status)
- || float128_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the quadruple-precision floating-point value `a' is less than
- | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- | exception. Otherwise, the comparison is performed according to the IEC/IEEE
- | Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float128_lt_quiet(float128 a, float128 b, float_status *status)
- {
- flag aSign, bSign;
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if (float128_is_signaling_nan(a, status)
- || float128_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
- }
- /*----------------------------------------------------------------------------
- | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
- | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
- | comparison is performed according to the IEC/IEEE Standard for Binary
- | Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*/
- int float128_unordered_quiet(float128 a, float128 b, float_status *status)
- {
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if (float128_is_signaling_nan(a, status)
- || float128_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return 1;
- }
- return 0;
- }
- /* misc functions */
- float32 uint32_to_float32(uint32_t a, float_status *status)
- {
- return int64_to_float32(a, status);
- }
- float64 uint32_to_float64(uint32_t a, float_status *status)
- {
- return int64_to_float64(a, status);
- }
- uint32_t float32_to_uint32(float32 a, float_status *status)
- {
- int64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float32_to_int64(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
- }
- uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *status)
- {
- int64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float32_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
- }
- int16_t float32_to_int16(float32 a, float_status *status)
- {
- int32_t v;
- int16_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float32_to_int32(a, status);
- if (v < -0x8000) {
- res = -0x8000;
- } else if (v > 0x7fff) {
- res = 0x7fff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
- }
- uint16_t float32_to_uint16(float32 a, float_status *status)
- {
- int32_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float32_to_int32(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
- }
- uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *status)
- {
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float32_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
- }
- uint32_t float64_to_uint32(float64 a, float_status *status)
- {
- uint64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float64_to_uint64(a, status);
- if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
- }
- uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *status)
- {
- uint64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float64_to_uint64_round_to_zero(a, status);
- if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
- }
- int16_t float64_to_int16(float64 a, float_status *status)
- {
- int64_t v;
- int16_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float64_to_int32(a, status);
- if (v < -0x8000) {
- res = -0x8000;
- } else if (v > 0x7fff) {
- res = 0x7fff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
- }
- uint16_t float64_to_uint16(float64 a, float_status *status)
- {
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float64_to_int32(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
- }
- uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *status)
- {
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float64_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
- }
- /*----------------------------------------------------------------------------
- | Returns the result of converting the double-precision floating-point value
- | `a' to the 64-bit unsigned integer format. The conversion is
- | performed according to the IEC/IEEE Standard for Binary Floating-Point
- | Arithmetic---which means in particular that the conversion is rounded
- | according to the current rounding mode. If `a' is a NaN, the largest
- | positive integer is returned. If the conversion overflows, the
- | largest unsigned integer is returned. If 'a' is negative, the value is
- | rounded and zero is returned; negative values that do not round to zero
- | will raise the inexact exception.
- *----------------------------------------------------------------------------*/
- uint64_t float64_to_uint64(float64 a, float_status *status)
- {
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, aSigExtra;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac(a);
- aExp = extractFloat64Exp(a);
- aSign = extractFloat64Sign(a);
- if (aSign && (aExp > 1022)) {
- float_raise(float_flag_invalid, status);
- if (float64_is_any_nan(a)) {
- return LIT64(0xFFFFFFFFFFFFFFFF);
- } else {
- return 0;
- }
- }
- if (aExp) {
- aSig |= LIT64(0x0010000000000000);
- }
- shiftCount = 0x433 - aExp;
- if (shiftCount <= 0) {
- if (0x43E < aExp) {
- float_raise(float_flag_invalid, status);
- return LIT64(0xFFFFFFFFFFFFFFFF);
- }
- aSigExtra = 0;
- aSig <<= -shiftCount;
- } else {
- shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
- }
- return roundAndPackUint64(aSign, aSig, aSigExtra, status);
- }
- uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status)
- {
- signed char current_rounding_mode = status->float_rounding_mode;
- set_float_rounding_mode(float_round_to_zero, status);
- uint64_t v = float64_to_uint64(a, status);
- set_float_rounding_mode(current_rounding_mode, status);
- return v;
- }
- #define COMPARE(s, nan_exp) \
- static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\
- int is_quiet, float_status *status) \
- { \
- flag aSign, bSign; \
- uint ## s ## _t av, bv; \
- a = float ## s ## _squash_input_denormal(a, status); \
- b = float ## s ## _squash_input_denormal(b, status); \
- \
- if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \
- extractFloat ## s ## Frac( a ) ) || \
- ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \
- extractFloat ## s ## Frac( b ) )) { \
- if (!is_quiet || \
- float ## s ## _is_signaling_nan(a, status) || \
- float ## s ## _is_signaling_nan(b, status)) { \
- float_raise(float_flag_invalid, status); \
- } \
- return float_relation_unordered; \
- } \
- aSign = extractFloat ## s ## Sign( a ); \
- bSign = extractFloat ## s ## Sign( b ); \
- av = float ## s ## _val(a); \
- bv = float ## s ## _val(b); \
- if ( aSign != bSign ) { \
- if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \
- /* zero case */ \
- return float_relation_equal; \
- } else { \
- return 1 - (2 * aSign); \
- } \
- } else { \
- if (av == bv) { \
- return float_relation_equal; \
- } else { \
- return 1 - 2 * (aSign ^ ( av < bv )); \
- } \
- } \
- } \
- \
- int float ## s ## _compare(float ## s a, float ## s b, float_status *status) \
- { \
- return float ## s ## _compare_internal(a, b, 0, status); \
- } \
- \
- int float ## s ## _compare_quiet(float ## s a, float ## s b, \
- float_status *status) \
- { \
- return float ## s ## _compare_internal(a, b, 1, status); \
- }
- COMPARE(32, 0xff)
- COMPARE(64, 0x7ff)
- static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
- int is_quiet, float_status *status)
- {
- flag aSign, bSign;
- if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
- float_raise(float_flag_invalid, status);
- return float_relation_unordered;
- }
- if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
- ( extractFloatx80Frac( a )<<1 ) ) ||
- ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
- ( extractFloatx80Frac( b )<<1 ) )) {
- if (!is_quiet ||
- floatx80_is_signaling_nan(a, status) ||
- floatx80_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return float_relation_unordered;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
- ( ( a.low | b.low ) == 0 ) ) {
- /* zero case */
- return float_relation_equal;
- } else {
- return 1 - (2 * aSign);
- }
- } else {
- if (a.low == b.low && a.high == b.high) {
- return float_relation_equal;
- } else {
- return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
- }
- }
- }
- int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
- {
- return floatx80_compare_internal(a, b, 0, status);
- }
- int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
- {
- return floatx80_compare_internal(a, b, 1, status);
- }
- static inline int float128_compare_internal(float128 a, float128 b,
- int is_quiet, float_status *status)
- {
- flag aSign, bSign;
- if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
- ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
- ( ( extractFloat128Exp( b ) == 0x7fff ) &&
- ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
- if (!is_quiet ||
- float128_is_signaling_nan(a, status) ||
- float128_is_signaling_nan(b, status)) {
- float_raise(float_flag_invalid, status);
- }
- return float_relation_unordered;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
- /* zero case */
- return float_relation_equal;
- } else {
- return 1 - (2 * aSign);
- }
- } else {
- if (a.low == b.low && a.high == b.high) {
- return float_relation_equal;
- } else {
- return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
- }
- }
- }
- int float128_compare(float128 a, float128 b, float_status *status)
- {
- return float128_compare_internal(a, b, 0, status);
- }
- int float128_compare_quiet(float128 a, float128 b, float_status *status)
- {
- return float128_compare_internal(a, b, 1, status);
- }
- /* min() and max() functions. These can't be implemented as
- * 'compare and pick one input' because that would mishandle
- * NaNs and +0 vs -0.
- *
- * minnum() and maxnum() functions. These are similar to the min()
- * and max() functions but if one of the arguments is a QNaN and
- * the other is numerical then the numerical argument is returned.
- * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
- * and maxNum() operations. min() and max() are the typical min/max
- * semantics provided by many CPUs which predate that specification.
- *
- * minnummag() and maxnummag() functions correspond to minNumMag()
- * and minNumMag() from the IEEE-754 2008.
- */
- #define MINMAX(s) \
- static inline float ## s float ## s ## _minmax(float ## s a, float ## s b, \
- int ismin, int isieee, \
- int ismag, \
- float_status *status) \
- { \
- flag aSign, bSign; \
- uint ## s ## _t av, bv, aav, abv; \
- a = float ## s ## _squash_input_denormal(a, status); \
- b = float ## s ## _squash_input_denormal(b, status); \
- if (float ## s ## _is_any_nan(a) || \
- float ## s ## _is_any_nan(b)) { \
- if (isieee) { \
- if (float ## s ## _is_quiet_nan(a, status) && \
- !float ## s ##_is_any_nan(b)) { \
- return b; \
- } else if (float ## s ## _is_quiet_nan(b, status) && \
- !float ## s ## _is_any_nan(a)) { \
- return a; \
- } \
- } \
- return propagateFloat ## s ## NaN(a, b, status); \
- } \
- aSign = extractFloat ## s ## Sign(a); \
- bSign = extractFloat ## s ## Sign(b); \
- av = float ## s ## _val(a); \
- bv = float ## s ## _val(b); \
- if (ismag) { \
- aav = float ## s ## _abs(av); \
- abv = float ## s ## _abs(bv); \
- if (aav != abv) { \
- if (ismin) { \
- return (aav < abv) ? a : b; \
- } else { \
- return (aav < abv) ? b : a; \
- } \
- } \
- } \
- if (aSign != bSign) { \
- if (ismin) { \
- return aSign ? a : b; \
- } else { \
- return aSign ? b : a; \
- } \
- } else { \
- if (ismin) { \
- return (aSign ^ (av < bv)) ? a : b; \
- } else { \
- return (aSign ^ (av < bv)) ? b : a; \
- } \
- } \
- } \
- \
- float ## s float ## s ## _min(float ## s a, float ## s b, \
- float_status *status) \
- { \
- return float ## s ## _minmax(a, b, 1, 0, 0, status); \
- } \
- \
- float ## s float ## s ## _max(float ## s a, float ## s b, \
- float_status *status) \
- { \
- return float ## s ## _minmax(a, b, 0, 0, 0, status); \
- } \
- \
- float ## s float ## s ## _minnum(float ## s a, float ## s b, \
- float_status *status) \
- { \
- return float ## s ## _minmax(a, b, 1, 1, 0, status); \
- } \
- \
- float ## s float ## s ## _maxnum(float ## s a, float ## s b, \
- float_status *status) \
- { \
- return float ## s ## _minmax(a, b, 0, 1, 0, status); \
- } \
- \
- float ## s float ## s ## _minnummag(float ## s a, float ## s b, \
- float_status *status) \
- { \
- return float ## s ## _minmax(a, b, 1, 1, 1, status); \
- } \
- \
- float ## s float ## s ## _maxnummag(float ## s a, float ## s b, \
- float_status *status) \
- { \
- return float ## s ## _minmax(a, b, 0, 1, 1, status); \
- }
- MINMAX(32)
- MINMAX(64)
- /* Multiply A by 2 raised to the power N. */
- float32 float32_scalbn(float32 a, int n, float_status *status)
- {
- flag aSign;
- int16_t aExp;
- uint32_t aSig;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) {
- return propagateFloat32NaN(a, a, status);
- }
- return a;
- }
- if (aExp != 0) {
- aSig |= 0x00800000;
- } else if (aSig == 0) {
- return a;
- } else {
- aExp++;
- }
- if (n > 0x200) {
- n = 0x200;
- } else if (n < -0x200) {
- n = -0x200;
- }
- aExp += n - 1;
- aSig <<= 7;
- return normalizeRoundAndPackFloat32(aSign, aExp, aSig, status);
- }
- float64 float64_scalbn(float64 a, int n, float_status *status)
- {
- flag aSign;
- int16_t aExp;
- uint64_t aSig;
- a = float64_squash_input_denormal(a, status);
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig ) {
- return propagateFloat64NaN(a, a, status);
- }
- return a;
- }
- if (aExp != 0) {
- aSig |= LIT64( 0x0010000000000000 );
- } else if (aSig == 0) {
- return a;
- } else {
- aExp++;
- }
- if (n > 0x1000) {
- n = 0x1000;
- } else if (n < -0x1000) {
- n = -0x1000;
- }
- aExp += n - 1;
- aSig <<= 10;
- return normalizeRoundAndPackFloat64(aSign, aExp, aSig, status);
- }
- floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
- {
- flag aSign;
- int32_t aExp;
- uint64_t aSig;
- if (floatx80_invalid_encoding(a)) {
- float_raise(float_flag_invalid, status);
- return floatx80_default_nan(status);
- }
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig<<1 ) {
- return propagateFloatx80NaN(a, a, status);
- }
- return a;
- }
- if (aExp == 0) {
- if (aSig == 0) {
- return a;
- }
- aExp++;
- }
- if (n > 0x10000) {
- n = 0x10000;
- } else if (n < -0x10000) {
- n = -0x10000;
- }
- aExp += n;
- return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
- aSign, aExp, aSig, 0, status);
- }
- float128 float128_scalbn(float128 a, int n, float_status *status)
- {
- flag aSign;
- int32_t aExp;
- uint64_t aSig0, aSig1;
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return propagateFloat128NaN(a, a, status);
- }
- return a;
- }
- if (aExp != 0) {
- aSig0 |= LIT64( 0x0001000000000000 );
- } else if (aSig0 == 0 && aSig1 == 0) {
- return a;
- } else {
- aExp++;
- }
- if (n > 0x10000) {
- n = 0x10000;
- } else if (n < -0x10000) {
- n = -0x10000;
- }
- aExp += n - 1;
- return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
- , status);
- }
|