memory.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120
  1. /*
  2. * Physical memory management
  3. *
  4. * Copyright 2011 Red Hat, Inc. and/or its affiliates
  5. *
  6. * Authors:
  7. * Avi Kivity <avi@redhat.com>
  8. *
  9. * This work is licensed under the terms of the GNU GPL, version 2. See
  10. * the COPYING file in the top-level directory.
  11. *
  12. * Contributions after 2012-01-13 are licensed under the terms of the
  13. * GNU GPL, version 2 or (at your option) any later version.
  14. */
  15. #include "exec/memory.h"
  16. #include "exec/address-spaces.h"
  17. #include "exec/ioport.h"
  18. #include "qapi/visitor.h"
  19. #include "qemu/bitops.h"
  20. #include "qom/object.h"
  21. #include "trace.h"
  22. #include <assert.h>
  23. #include "exec/memory-internal.h"
  24. #include "exec/ram_addr.h"
  25. #include "sysemu/sysemu.h"
  26. //#define DEBUG_UNASSIGNED
  27. static unsigned memory_region_transaction_depth;
  28. static bool memory_region_update_pending;
  29. static bool ioeventfd_update_pending;
  30. static bool global_dirty_log = false;
  31. /* flat_view_mutex is taken around reading as->current_map; the critical
  32. * section is extremely short, so I'm using a single mutex for every AS.
  33. * We could also RCU for the read-side.
  34. *
  35. * The BQL is taken around transaction commits, hence both locks are taken
  36. * while writing to as->current_map (with the BQL taken outside).
  37. */
  38. static QemuMutex flat_view_mutex;
  39. static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
  40. = QTAILQ_HEAD_INITIALIZER(memory_listeners);
  41. static QTAILQ_HEAD(, AddressSpace) address_spaces
  42. = QTAILQ_HEAD_INITIALIZER(address_spaces);
  43. static void memory_init(void)
  44. {
  45. qemu_mutex_init(&flat_view_mutex);
  46. }
  47. typedef struct AddrRange AddrRange;
  48. /*
  49. * Note that signed integers are needed for negative offsetting in aliases
  50. * (large MemoryRegion::alias_offset).
  51. */
  52. struct AddrRange {
  53. Int128 start;
  54. Int128 size;
  55. };
  56. static AddrRange addrrange_make(Int128 start, Int128 size)
  57. {
  58. return (AddrRange) { start, size };
  59. }
  60. static bool addrrange_equal(AddrRange r1, AddrRange r2)
  61. {
  62. return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
  63. }
  64. static Int128 addrrange_end(AddrRange r)
  65. {
  66. return int128_add(r.start, r.size);
  67. }
  68. static AddrRange addrrange_shift(AddrRange range, Int128 delta)
  69. {
  70. int128_addto(&range.start, delta);
  71. return range;
  72. }
  73. static bool addrrange_contains(AddrRange range, Int128 addr)
  74. {
  75. return int128_ge(addr, range.start)
  76. && int128_lt(addr, addrrange_end(range));
  77. }
  78. static bool addrrange_intersects(AddrRange r1, AddrRange r2)
  79. {
  80. return addrrange_contains(r1, r2.start)
  81. || addrrange_contains(r2, r1.start);
  82. }
  83. static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
  84. {
  85. Int128 start = int128_max(r1.start, r2.start);
  86. Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
  87. return addrrange_make(start, int128_sub(end, start));
  88. }
  89. enum ListenerDirection { Forward, Reverse };
  90. static bool memory_listener_match(MemoryListener *listener,
  91. MemoryRegionSection *section)
  92. {
  93. return !listener->address_space_filter
  94. || listener->address_space_filter == section->address_space;
  95. }
  96. #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
  97. do { \
  98. MemoryListener *_listener; \
  99. \
  100. switch (_direction) { \
  101. case Forward: \
  102. QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
  103. if (_listener->_callback) { \
  104. _listener->_callback(_listener, ##_args); \
  105. } \
  106. } \
  107. break; \
  108. case Reverse: \
  109. QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
  110. memory_listeners, link) { \
  111. if (_listener->_callback) { \
  112. _listener->_callback(_listener, ##_args); \
  113. } \
  114. } \
  115. break; \
  116. default: \
  117. abort(); \
  118. } \
  119. } while (0)
  120. #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
  121. do { \
  122. MemoryListener *_listener; \
  123. \
  124. switch (_direction) { \
  125. case Forward: \
  126. QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
  127. if (_listener->_callback \
  128. && memory_listener_match(_listener, _section)) { \
  129. _listener->_callback(_listener, _section, ##_args); \
  130. } \
  131. } \
  132. break; \
  133. case Reverse: \
  134. QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
  135. memory_listeners, link) { \
  136. if (_listener->_callback \
  137. && memory_listener_match(_listener, _section)) { \
  138. _listener->_callback(_listener, _section, ##_args); \
  139. } \
  140. } \
  141. break; \
  142. default: \
  143. abort(); \
  144. } \
  145. } while (0)
  146. /* No need to ref/unref .mr, the FlatRange keeps it alive. */
  147. #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
  148. MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
  149. .mr = (fr)->mr, \
  150. .address_space = (as), \
  151. .offset_within_region = (fr)->offset_in_region, \
  152. .size = (fr)->addr.size, \
  153. .offset_within_address_space = int128_get64((fr)->addr.start), \
  154. .readonly = (fr)->readonly, \
  155. }))
  156. struct CoalescedMemoryRange {
  157. AddrRange addr;
  158. QTAILQ_ENTRY(CoalescedMemoryRange) link;
  159. };
  160. struct MemoryRegionIoeventfd {
  161. AddrRange addr;
  162. bool match_data;
  163. uint64_t data;
  164. EventNotifier *e;
  165. };
  166. static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
  167. MemoryRegionIoeventfd b)
  168. {
  169. if (int128_lt(a.addr.start, b.addr.start)) {
  170. return true;
  171. } else if (int128_gt(a.addr.start, b.addr.start)) {
  172. return false;
  173. } else if (int128_lt(a.addr.size, b.addr.size)) {
  174. return true;
  175. } else if (int128_gt(a.addr.size, b.addr.size)) {
  176. return false;
  177. } else if (a.match_data < b.match_data) {
  178. return true;
  179. } else if (a.match_data > b.match_data) {
  180. return false;
  181. } else if (a.match_data) {
  182. if (a.data < b.data) {
  183. return true;
  184. } else if (a.data > b.data) {
  185. return false;
  186. }
  187. }
  188. if (a.e < b.e) {
  189. return true;
  190. } else if (a.e > b.e) {
  191. return false;
  192. }
  193. return false;
  194. }
  195. static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
  196. MemoryRegionIoeventfd b)
  197. {
  198. return !memory_region_ioeventfd_before(a, b)
  199. && !memory_region_ioeventfd_before(b, a);
  200. }
  201. typedef struct FlatRange FlatRange;
  202. typedef struct FlatView FlatView;
  203. /* Range of memory in the global map. Addresses are absolute. */
  204. struct FlatRange {
  205. MemoryRegion *mr;
  206. hwaddr offset_in_region;
  207. AddrRange addr;
  208. uint8_t dirty_log_mask;
  209. bool romd_mode;
  210. bool readonly;
  211. };
  212. /* Flattened global view of current active memory hierarchy. Kept in sorted
  213. * order.
  214. */
  215. struct FlatView {
  216. unsigned ref;
  217. FlatRange *ranges;
  218. unsigned nr;
  219. unsigned nr_allocated;
  220. };
  221. typedef struct AddressSpaceOps AddressSpaceOps;
  222. #define FOR_EACH_FLAT_RANGE(var, view) \
  223. for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
  224. static bool flatrange_equal(FlatRange *a, FlatRange *b)
  225. {
  226. return a->mr == b->mr
  227. && addrrange_equal(a->addr, b->addr)
  228. && a->offset_in_region == b->offset_in_region
  229. && a->romd_mode == b->romd_mode
  230. && a->readonly == b->readonly;
  231. }
  232. static void flatview_init(FlatView *view)
  233. {
  234. view->ref = 1;
  235. view->ranges = NULL;
  236. view->nr = 0;
  237. view->nr_allocated = 0;
  238. }
  239. /* Insert a range into a given position. Caller is responsible for maintaining
  240. * sorting order.
  241. */
  242. static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
  243. {
  244. if (view->nr == view->nr_allocated) {
  245. view->nr_allocated = MAX(2 * view->nr, 10);
  246. view->ranges = g_realloc(view->ranges,
  247. view->nr_allocated * sizeof(*view->ranges));
  248. }
  249. memmove(view->ranges + pos + 1, view->ranges + pos,
  250. (view->nr - pos) * sizeof(FlatRange));
  251. view->ranges[pos] = *range;
  252. memory_region_ref(range->mr);
  253. ++view->nr;
  254. }
  255. static void flatview_destroy(FlatView *view)
  256. {
  257. int i;
  258. for (i = 0; i < view->nr; i++) {
  259. memory_region_unref(view->ranges[i].mr);
  260. }
  261. g_free(view->ranges);
  262. g_free(view);
  263. }
  264. static void flatview_ref(FlatView *view)
  265. {
  266. atomic_inc(&view->ref);
  267. }
  268. static void flatview_unref(FlatView *view)
  269. {
  270. if (atomic_fetch_dec(&view->ref) == 1) {
  271. flatview_destroy(view);
  272. }
  273. }
  274. static bool can_merge(FlatRange *r1, FlatRange *r2)
  275. {
  276. return int128_eq(addrrange_end(r1->addr), r2->addr.start)
  277. && r1->mr == r2->mr
  278. && int128_eq(int128_add(int128_make64(r1->offset_in_region),
  279. r1->addr.size),
  280. int128_make64(r2->offset_in_region))
  281. && r1->dirty_log_mask == r2->dirty_log_mask
  282. && r1->romd_mode == r2->romd_mode
  283. && r1->readonly == r2->readonly;
  284. }
  285. /* Attempt to simplify a view by merging adjacent ranges */
  286. static void flatview_simplify(FlatView *view)
  287. {
  288. unsigned i, j;
  289. i = 0;
  290. while (i < view->nr) {
  291. j = i + 1;
  292. while (j < view->nr
  293. && can_merge(&view->ranges[j-1], &view->ranges[j])) {
  294. int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
  295. ++j;
  296. }
  297. ++i;
  298. memmove(&view->ranges[i], &view->ranges[j],
  299. (view->nr - j) * sizeof(view->ranges[j]));
  300. view->nr -= j - i;
  301. }
  302. }
  303. static bool memory_region_big_endian(MemoryRegion *mr)
  304. {
  305. #ifdef TARGET_WORDS_BIGENDIAN
  306. return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
  307. #else
  308. return mr->ops->endianness == DEVICE_BIG_ENDIAN;
  309. #endif
  310. }
  311. static bool memory_region_wrong_endianness(MemoryRegion *mr)
  312. {
  313. #ifdef TARGET_WORDS_BIGENDIAN
  314. return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
  315. #else
  316. return mr->ops->endianness == DEVICE_BIG_ENDIAN;
  317. #endif
  318. }
  319. static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
  320. {
  321. if (memory_region_wrong_endianness(mr)) {
  322. switch (size) {
  323. case 1:
  324. break;
  325. case 2:
  326. *data = bswap16(*data);
  327. break;
  328. case 4:
  329. *data = bswap32(*data);
  330. break;
  331. case 8:
  332. *data = bswap64(*data);
  333. break;
  334. default:
  335. abort();
  336. }
  337. }
  338. }
  339. static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
  340. hwaddr addr,
  341. uint64_t *value,
  342. unsigned size,
  343. unsigned shift,
  344. uint64_t mask)
  345. {
  346. uint64_t tmp;
  347. tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
  348. trace_memory_region_ops_read(mr, addr, tmp, size);
  349. *value |= (tmp & mask) << shift;
  350. }
  351. static void memory_region_read_accessor(MemoryRegion *mr,
  352. hwaddr addr,
  353. uint64_t *value,
  354. unsigned size,
  355. unsigned shift,
  356. uint64_t mask)
  357. {
  358. uint64_t tmp;
  359. if (mr->flush_coalesced_mmio) {
  360. qemu_flush_coalesced_mmio_buffer();
  361. }
  362. tmp = mr->ops->read(mr->opaque, addr, size);
  363. trace_memory_region_ops_read(mr, addr, tmp, size);
  364. *value |= (tmp & mask) << shift;
  365. }
  366. static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
  367. hwaddr addr,
  368. uint64_t *value,
  369. unsigned size,
  370. unsigned shift,
  371. uint64_t mask)
  372. {
  373. uint64_t tmp;
  374. tmp = (*value >> shift) & mask;
  375. trace_memory_region_ops_write(mr, addr, tmp, size);
  376. mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
  377. }
  378. static void memory_region_write_accessor(MemoryRegion *mr,
  379. hwaddr addr,
  380. uint64_t *value,
  381. unsigned size,
  382. unsigned shift,
  383. uint64_t mask)
  384. {
  385. uint64_t tmp;
  386. if (mr->flush_coalesced_mmio) {
  387. qemu_flush_coalesced_mmio_buffer();
  388. }
  389. tmp = (*value >> shift) & mask;
  390. trace_memory_region_ops_write(mr, addr, tmp, size);
  391. mr->ops->write(mr->opaque, addr, tmp, size);
  392. }
  393. static void access_with_adjusted_size(hwaddr addr,
  394. uint64_t *value,
  395. unsigned size,
  396. unsigned access_size_min,
  397. unsigned access_size_max,
  398. void (*access)(MemoryRegion *mr,
  399. hwaddr addr,
  400. uint64_t *value,
  401. unsigned size,
  402. unsigned shift,
  403. uint64_t mask),
  404. MemoryRegion *mr)
  405. {
  406. uint64_t access_mask;
  407. unsigned access_size;
  408. unsigned i;
  409. if (!access_size_min) {
  410. access_size_min = 1;
  411. }
  412. if (!access_size_max) {
  413. access_size_max = 4;
  414. }
  415. /* FIXME: support unaligned access? */
  416. access_size = MAX(MIN(size, access_size_max), access_size_min);
  417. access_mask = -1ULL >> (64 - access_size * 8);
  418. if (memory_region_big_endian(mr)) {
  419. for (i = 0; i < size; i += access_size) {
  420. access(mr, addr + i, value, access_size,
  421. (size - access_size - i) * 8, access_mask);
  422. }
  423. } else {
  424. for (i = 0; i < size; i += access_size) {
  425. access(mr, addr + i, value, access_size, i * 8, access_mask);
  426. }
  427. }
  428. }
  429. static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
  430. {
  431. AddressSpace *as;
  432. while (mr->container) {
  433. mr = mr->container;
  434. }
  435. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  436. if (mr == as->root) {
  437. return as;
  438. }
  439. }
  440. return NULL;
  441. }
  442. /* Render a memory region into the global view. Ranges in @view obscure
  443. * ranges in @mr.
  444. */
  445. static void render_memory_region(FlatView *view,
  446. MemoryRegion *mr,
  447. Int128 base,
  448. AddrRange clip,
  449. bool readonly)
  450. {
  451. MemoryRegion *subregion;
  452. unsigned i;
  453. hwaddr offset_in_region;
  454. Int128 remain;
  455. Int128 now;
  456. FlatRange fr;
  457. AddrRange tmp;
  458. if (!mr->enabled) {
  459. return;
  460. }
  461. int128_addto(&base, int128_make64(mr->addr));
  462. readonly |= mr->readonly;
  463. tmp = addrrange_make(base, mr->size);
  464. if (!addrrange_intersects(tmp, clip)) {
  465. return;
  466. }
  467. clip = addrrange_intersection(tmp, clip);
  468. if (mr->alias) {
  469. int128_subfrom(&base, int128_make64(mr->alias->addr));
  470. int128_subfrom(&base, int128_make64(mr->alias_offset));
  471. render_memory_region(view, mr->alias, base, clip, readonly);
  472. return;
  473. }
  474. /* Render subregions in priority order. */
  475. QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
  476. render_memory_region(view, subregion, base, clip, readonly);
  477. }
  478. if (!mr->terminates) {
  479. return;
  480. }
  481. offset_in_region = int128_get64(int128_sub(clip.start, base));
  482. base = clip.start;
  483. remain = clip.size;
  484. fr.mr = mr;
  485. fr.dirty_log_mask = mr->dirty_log_mask;
  486. fr.romd_mode = mr->romd_mode;
  487. fr.readonly = readonly;
  488. /* Render the region itself into any gaps left by the current view. */
  489. for (i = 0; i < view->nr && int128_nz(remain); ++i) {
  490. if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
  491. continue;
  492. }
  493. if (int128_lt(base, view->ranges[i].addr.start)) {
  494. now = int128_min(remain,
  495. int128_sub(view->ranges[i].addr.start, base));
  496. fr.offset_in_region = offset_in_region;
  497. fr.addr = addrrange_make(base, now);
  498. flatview_insert(view, i, &fr);
  499. ++i;
  500. int128_addto(&base, now);
  501. offset_in_region += int128_get64(now);
  502. int128_subfrom(&remain, now);
  503. }
  504. now = int128_sub(int128_min(int128_add(base, remain),
  505. addrrange_end(view->ranges[i].addr)),
  506. base);
  507. int128_addto(&base, now);
  508. offset_in_region += int128_get64(now);
  509. int128_subfrom(&remain, now);
  510. }
  511. if (int128_nz(remain)) {
  512. fr.offset_in_region = offset_in_region;
  513. fr.addr = addrrange_make(base, remain);
  514. flatview_insert(view, i, &fr);
  515. }
  516. }
  517. /* Render a memory topology into a list of disjoint absolute ranges. */
  518. static FlatView *generate_memory_topology(MemoryRegion *mr)
  519. {
  520. FlatView *view;
  521. view = g_new(FlatView, 1);
  522. flatview_init(view);
  523. if (mr) {
  524. render_memory_region(view, mr, int128_zero(),
  525. addrrange_make(int128_zero(), int128_2_64()), false);
  526. }
  527. flatview_simplify(view);
  528. return view;
  529. }
  530. static void address_space_add_del_ioeventfds(AddressSpace *as,
  531. MemoryRegionIoeventfd *fds_new,
  532. unsigned fds_new_nb,
  533. MemoryRegionIoeventfd *fds_old,
  534. unsigned fds_old_nb)
  535. {
  536. unsigned iold, inew;
  537. MemoryRegionIoeventfd *fd;
  538. MemoryRegionSection section;
  539. /* Generate a symmetric difference of the old and new fd sets, adding
  540. * and deleting as necessary.
  541. */
  542. iold = inew = 0;
  543. while (iold < fds_old_nb || inew < fds_new_nb) {
  544. if (iold < fds_old_nb
  545. && (inew == fds_new_nb
  546. || memory_region_ioeventfd_before(fds_old[iold],
  547. fds_new[inew]))) {
  548. fd = &fds_old[iold];
  549. section = (MemoryRegionSection) {
  550. .address_space = as,
  551. .offset_within_address_space = int128_get64(fd->addr.start),
  552. .size = fd->addr.size,
  553. };
  554. MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
  555. fd->match_data, fd->data, fd->e);
  556. ++iold;
  557. } else if (inew < fds_new_nb
  558. && (iold == fds_old_nb
  559. || memory_region_ioeventfd_before(fds_new[inew],
  560. fds_old[iold]))) {
  561. fd = &fds_new[inew];
  562. section = (MemoryRegionSection) {
  563. .address_space = as,
  564. .offset_within_address_space = int128_get64(fd->addr.start),
  565. .size = fd->addr.size,
  566. };
  567. MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
  568. fd->match_data, fd->data, fd->e);
  569. ++inew;
  570. } else {
  571. ++iold;
  572. ++inew;
  573. }
  574. }
  575. }
  576. static FlatView *address_space_get_flatview(AddressSpace *as)
  577. {
  578. FlatView *view;
  579. qemu_mutex_lock(&flat_view_mutex);
  580. view = as->current_map;
  581. flatview_ref(view);
  582. qemu_mutex_unlock(&flat_view_mutex);
  583. return view;
  584. }
  585. static void address_space_update_ioeventfds(AddressSpace *as)
  586. {
  587. FlatView *view;
  588. FlatRange *fr;
  589. unsigned ioeventfd_nb = 0;
  590. MemoryRegionIoeventfd *ioeventfds = NULL;
  591. AddrRange tmp;
  592. unsigned i;
  593. view = address_space_get_flatview(as);
  594. FOR_EACH_FLAT_RANGE(fr, view) {
  595. for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
  596. tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
  597. int128_sub(fr->addr.start,
  598. int128_make64(fr->offset_in_region)));
  599. if (addrrange_intersects(fr->addr, tmp)) {
  600. ++ioeventfd_nb;
  601. ioeventfds = g_realloc(ioeventfds,
  602. ioeventfd_nb * sizeof(*ioeventfds));
  603. ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
  604. ioeventfds[ioeventfd_nb-1].addr = tmp;
  605. }
  606. }
  607. }
  608. address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
  609. as->ioeventfds, as->ioeventfd_nb);
  610. g_free(as->ioeventfds);
  611. as->ioeventfds = ioeventfds;
  612. as->ioeventfd_nb = ioeventfd_nb;
  613. flatview_unref(view);
  614. }
  615. static void address_space_update_topology_pass(AddressSpace *as,
  616. const FlatView *old_view,
  617. const FlatView *new_view,
  618. bool adding)
  619. {
  620. unsigned iold, inew;
  621. FlatRange *frold, *frnew;
  622. /* Generate a symmetric difference of the old and new memory maps.
  623. * Kill ranges in the old map, and instantiate ranges in the new map.
  624. */
  625. iold = inew = 0;
  626. while (iold < old_view->nr || inew < new_view->nr) {
  627. if (iold < old_view->nr) {
  628. frold = &old_view->ranges[iold];
  629. } else {
  630. frold = NULL;
  631. }
  632. if (inew < new_view->nr) {
  633. frnew = &new_view->ranges[inew];
  634. } else {
  635. frnew = NULL;
  636. }
  637. if (frold
  638. && (!frnew
  639. || int128_lt(frold->addr.start, frnew->addr.start)
  640. || (int128_eq(frold->addr.start, frnew->addr.start)
  641. && !flatrange_equal(frold, frnew)))) {
  642. /* In old but not in new, or in both but attributes changed. */
  643. if (!adding) {
  644. MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
  645. }
  646. ++iold;
  647. } else if (frold && frnew && flatrange_equal(frold, frnew)) {
  648. /* In both and unchanged (except logging may have changed) */
  649. if (adding) {
  650. MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
  651. if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
  652. MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
  653. } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
  654. MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
  655. }
  656. }
  657. ++iold;
  658. ++inew;
  659. } else {
  660. /* In new */
  661. if (adding) {
  662. MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
  663. }
  664. ++inew;
  665. }
  666. }
  667. }
  668. static void address_space_update_topology(AddressSpace *as)
  669. {
  670. FlatView *old_view = address_space_get_flatview(as);
  671. FlatView *new_view = generate_memory_topology(as->root);
  672. address_space_update_topology_pass(as, old_view, new_view, false);
  673. address_space_update_topology_pass(as, old_view, new_view, true);
  674. qemu_mutex_lock(&flat_view_mutex);
  675. flatview_unref(as->current_map);
  676. as->current_map = new_view;
  677. qemu_mutex_unlock(&flat_view_mutex);
  678. /* Note that all the old MemoryRegions are still alive up to this
  679. * point. This relieves most MemoryListeners from the need to
  680. * ref/unref the MemoryRegions they get---unless they use them
  681. * outside the iothread mutex, in which case precise reference
  682. * counting is necessary.
  683. */
  684. flatview_unref(old_view);
  685. address_space_update_ioeventfds(as);
  686. }
  687. void memory_region_transaction_begin(void)
  688. {
  689. qemu_flush_coalesced_mmio_buffer();
  690. ++memory_region_transaction_depth;
  691. }
  692. static void memory_region_clear_pending(void)
  693. {
  694. memory_region_update_pending = false;
  695. ioeventfd_update_pending = false;
  696. }
  697. void memory_region_transaction_commit(void)
  698. {
  699. AddressSpace *as;
  700. assert(memory_region_transaction_depth);
  701. --memory_region_transaction_depth;
  702. if (!memory_region_transaction_depth) {
  703. if (memory_region_update_pending) {
  704. MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
  705. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  706. address_space_update_topology(as);
  707. }
  708. MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
  709. } else if (ioeventfd_update_pending) {
  710. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  711. address_space_update_ioeventfds(as);
  712. }
  713. }
  714. memory_region_clear_pending();
  715. }
  716. }
  717. static void memory_region_destructor_none(MemoryRegion *mr)
  718. {
  719. }
  720. static void memory_region_destructor_ram(MemoryRegion *mr)
  721. {
  722. qemu_ram_free(mr->ram_addr);
  723. }
  724. static void memory_region_destructor_alias(MemoryRegion *mr)
  725. {
  726. memory_region_unref(mr->alias);
  727. }
  728. static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
  729. {
  730. qemu_ram_free_from_ptr(mr->ram_addr);
  731. }
  732. static void memory_region_destructor_rom_device(MemoryRegion *mr)
  733. {
  734. qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
  735. }
  736. static bool memory_region_need_escape(char c)
  737. {
  738. return c == '/' || c == '[' || c == '\\' || c == ']';
  739. }
  740. static char *memory_region_escape_name(const char *name)
  741. {
  742. const char *p;
  743. char *escaped, *q;
  744. uint8_t c;
  745. size_t bytes = 0;
  746. for (p = name; *p; p++) {
  747. bytes += memory_region_need_escape(*p) ? 4 : 1;
  748. }
  749. if (bytes == p - name) {
  750. return g_memdup(name, bytes + 1);
  751. }
  752. escaped = g_malloc(bytes + 1);
  753. for (p = name, q = escaped; *p; p++) {
  754. c = *p;
  755. if (unlikely(memory_region_need_escape(c))) {
  756. *q++ = '\\';
  757. *q++ = 'x';
  758. *q++ = "0123456789abcdef"[c >> 4];
  759. c = "0123456789abcdef"[c & 15];
  760. }
  761. *q++ = c;
  762. }
  763. *q = 0;
  764. return escaped;
  765. }
  766. void memory_region_init(MemoryRegion *mr,
  767. Object *owner,
  768. const char *name,
  769. uint64_t size)
  770. {
  771. if (!owner) {
  772. owner = qdev_get_machine();
  773. }
  774. object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
  775. mr->size = int128_make64(size);
  776. if (size == UINT64_MAX) {
  777. mr->size = int128_2_64();
  778. }
  779. mr->name = g_strdup(name);
  780. if (name) {
  781. char *escaped_name = memory_region_escape_name(name);
  782. char *name_array = g_strdup_printf("%s[*]", escaped_name);
  783. object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
  784. object_unref(OBJECT(mr));
  785. g_free(name_array);
  786. g_free(escaped_name);
  787. }
  788. }
  789. static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
  790. const char *name, Error **errp)
  791. {
  792. MemoryRegion *mr = MEMORY_REGION(obj);
  793. uint64_t value = mr->addr;
  794. visit_type_uint64(v, &value, name, errp);
  795. }
  796. static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
  797. const char *name, Error **errp)
  798. {
  799. MemoryRegion *mr = MEMORY_REGION(obj);
  800. gchar *path = (gchar *)"";
  801. if (mr->container) {
  802. path = object_get_canonical_path(OBJECT(mr->container));
  803. }
  804. visit_type_str(v, &path, name, errp);
  805. if (mr->container) {
  806. g_free(path);
  807. }
  808. }
  809. static Object *memory_region_resolve_container(Object *obj, void *opaque,
  810. const char *part)
  811. {
  812. MemoryRegion *mr = MEMORY_REGION(obj);
  813. return OBJECT(mr->container);
  814. }
  815. static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
  816. const char *name, Error **errp)
  817. {
  818. MemoryRegion *mr = MEMORY_REGION(obj);
  819. int32_t value = mr->priority;
  820. visit_type_int32(v, &value, name, errp);
  821. }
  822. static bool memory_region_get_may_overlap(Object *obj, Error **errp)
  823. {
  824. MemoryRegion *mr = MEMORY_REGION(obj);
  825. return mr->may_overlap;
  826. }
  827. static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
  828. const char *name, Error **errp)
  829. {
  830. MemoryRegion *mr = MEMORY_REGION(obj);
  831. uint64_t value = memory_region_size(mr);
  832. visit_type_uint64(v, &value, name, errp);
  833. }
  834. static void memory_region_initfn(Object *obj)
  835. {
  836. MemoryRegion *mr = MEMORY_REGION(obj);
  837. ObjectProperty *op;
  838. mr->ops = &unassigned_mem_ops;
  839. mr->enabled = true;
  840. mr->romd_mode = true;
  841. mr->destructor = memory_region_destructor_none;
  842. QTAILQ_INIT(&mr->subregions);
  843. QTAILQ_INIT(&mr->coalesced);
  844. op = object_property_add(OBJECT(mr), "container",
  845. "link<" TYPE_MEMORY_REGION ">",
  846. memory_region_get_container,
  847. NULL, /* memory_region_set_container */
  848. NULL, NULL, &error_abort);
  849. op->resolve = memory_region_resolve_container;
  850. object_property_add(OBJECT(mr), "addr", "uint64",
  851. memory_region_get_addr,
  852. NULL, /* memory_region_set_addr */
  853. NULL, NULL, &error_abort);
  854. object_property_add(OBJECT(mr), "priority", "uint32",
  855. memory_region_get_priority,
  856. NULL, /* memory_region_set_priority */
  857. NULL, NULL, &error_abort);
  858. object_property_add_bool(OBJECT(mr), "may-overlap",
  859. memory_region_get_may_overlap,
  860. NULL, /* memory_region_set_may_overlap */
  861. &error_abort);
  862. object_property_add(OBJECT(mr), "size", "uint64",
  863. memory_region_get_size,
  864. NULL, /* memory_region_set_size, */
  865. NULL, NULL, &error_abort);
  866. }
  867. static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
  868. unsigned size)
  869. {
  870. #ifdef DEBUG_UNASSIGNED
  871. printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
  872. #endif
  873. if (current_cpu != NULL) {
  874. cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
  875. }
  876. return 0;
  877. }
  878. static void unassigned_mem_write(void *opaque, hwaddr addr,
  879. uint64_t val, unsigned size)
  880. {
  881. #ifdef DEBUG_UNASSIGNED
  882. printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
  883. #endif
  884. if (current_cpu != NULL) {
  885. cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
  886. }
  887. }
  888. static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
  889. unsigned size, bool is_write)
  890. {
  891. return false;
  892. }
  893. const MemoryRegionOps unassigned_mem_ops = {
  894. .valid.accepts = unassigned_mem_accepts,
  895. .endianness = DEVICE_NATIVE_ENDIAN,
  896. };
  897. bool memory_region_access_valid(MemoryRegion *mr,
  898. hwaddr addr,
  899. unsigned size,
  900. bool is_write)
  901. {
  902. int access_size_min, access_size_max;
  903. int access_size, i;
  904. if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
  905. return false;
  906. }
  907. if (!mr->ops->valid.accepts) {
  908. return true;
  909. }
  910. access_size_min = mr->ops->valid.min_access_size;
  911. if (!mr->ops->valid.min_access_size) {
  912. access_size_min = 1;
  913. }
  914. access_size_max = mr->ops->valid.max_access_size;
  915. if (!mr->ops->valid.max_access_size) {
  916. access_size_max = 4;
  917. }
  918. access_size = MAX(MIN(size, access_size_max), access_size_min);
  919. for (i = 0; i < size; i += access_size) {
  920. if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
  921. is_write)) {
  922. return false;
  923. }
  924. }
  925. return true;
  926. }
  927. static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
  928. hwaddr addr,
  929. unsigned size)
  930. {
  931. uint64_t data = 0;
  932. if (mr->ops->read) {
  933. access_with_adjusted_size(addr, &data, size,
  934. mr->ops->impl.min_access_size,
  935. mr->ops->impl.max_access_size,
  936. memory_region_read_accessor, mr);
  937. } else {
  938. access_with_adjusted_size(addr, &data, size, 1, 4,
  939. memory_region_oldmmio_read_accessor, mr);
  940. }
  941. return data;
  942. }
  943. static bool memory_region_dispatch_read(MemoryRegion *mr,
  944. hwaddr addr,
  945. uint64_t *pval,
  946. unsigned size)
  947. {
  948. if (!memory_region_access_valid(mr, addr, size, false)) {
  949. *pval = unassigned_mem_read(mr, addr, size);
  950. return true;
  951. }
  952. *pval = memory_region_dispatch_read1(mr, addr, size);
  953. adjust_endianness(mr, pval, size);
  954. return false;
  955. }
  956. static bool memory_region_dispatch_write(MemoryRegion *mr,
  957. hwaddr addr,
  958. uint64_t data,
  959. unsigned size)
  960. {
  961. if (!memory_region_access_valid(mr, addr, size, true)) {
  962. unassigned_mem_write(mr, addr, data, size);
  963. return true;
  964. }
  965. adjust_endianness(mr, &data, size);
  966. if (mr->ops->write) {
  967. access_with_adjusted_size(addr, &data, size,
  968. mr->ops->impl.min_access_size,
  969. mr->ops->impl.max_access_size,
  970. memory_region_write_accessor, mr);
  971. } else {
  972. access_with_adjusted_size(addr, &data, size, 1, 4,
  973. memory_region_oldmmio_write_accessor, mr);
  974. }
  975. return false;
  976. }
  977. void memory_region_init_io(MemoryRegion *mr,
  978. Object *owner,
  979. const MemoryRegionOps *ops,
  980. void *opaque,
  981. const char *name,
  982. uint64_t size)
  983. {
  984. memory_region_init(mr, owner, name, size);
  985. mr->ops = ops;
  986. mr->opaque = opaque;
  987. mr->terminates = true;
  988. mr->ram_addr = ~(ram_addr_t)0;
  989. }
  990. void memory_region_init_ram(MemoryRegion *mr,
  991. Object *owner,
  992. const char *name,
  993. uint64_t size,
  994. Error **errp)
  995. {
  996. memory_region_init(mr, owner, name, size);
  997. mr->ram = true;
  998. mr->terminates = true;
  999. mr->destructor = memory_region_destructor_ram;
  1000. mr->ram_addr = qemu_ram_alloc(size, mr, errp);
  1001. }
  1002. #ifdef __linux__
  1003. void memory_region_init_ram_from_file(MemoryRegion *mr,
  1004. struct Object *owner,
  1005. const char *name,
  1006. uint64_t size,
  1007. bool share,
  1008. const char *path,
  1009. Error **errp)
  1010. {
  1011. memory_region_init(mr, owner, name, size);
  1012. mr->ram = true;
  1013. mr->terminates = true;
  1014. mr->destructor = memory_region_destructor_ram;
  1015. mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
  1016. }
  1017. #endif
  1018. void memory_region_init_ram_ptr(MemoryRegion *mr,
  1019. Object *owner,
  1020. const char *name,
  1021. uint64_t size,
  1022. void *ptr)
  1023. {
  1024. memory_region_init(mr, owner, name, size);
  1025. mr->ram = true;
  1026. mr->terminates = true;
  1027. mr->destructor = memory_region_destructor_ram_from_ptr;
  1028. /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
  1029. assert(ptr != NULL);
  1030. mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
  1031. }
  1032. void memory_region_set_skip_dump(MemoryRegion *mr)
  1033. {
  1034. mr->skip_dump = true;
  1035. }
  1036. void memory_region_init_alias(MemoryRegion *mr,
  1037. Object *owner,
  1038. const char *name,
  1039. MemoryRegion *orig,
  1040. hwaddr offset,
  1041. uint64_t size)
  1042. {
  1043. memory_region_init(mr, owner, name, size);
  1044. memory_region_ref(orig);
  1045. mr->destructor = memory_region_destructor_alias;
  1046. mr->alias = orig;
  1047. mr->alias_offset = offset;
  1048. }
  1049. void memory_region_init_rom_device(MemoryRegion *mr,
  1050. Object *owner,
  1051. const MemoryRegionOps *ops,
  1052. void *opaque,
  1053. const char *name,
  1054. uint64_t size,
  1055. Error **errp)
  1056. {
  1057. memory_region_init(mr, owner, name, size);
  1058. mr->ops = ops;
  1059. mr->opaque = opaque;
  1060. mr->terminates = true;
  1061. mr->rom_device = true;
  1062. mr->destructor = memory_region_destructor_rom_device;
  1063. mr->ram_addr = qemu_ram_alloc(size, mr, errp);
  1064. }
  1065. void memory_region_init_iommu(MemoryRegion *mr,
  1066. Object *owner,
  1067. const MemoryRegionIOMMUOps *ops,
  1068. const char *name,
  1069. uint64_t size)
  1070. {
  1071. memory_region_init(mr, owner, name, size);
  1072. mr->iommu_ops = ops,
  1073. mr->terminates = true; /* then re-forwards */
  1074. notifier_list_init(&mr->iommu_notify);
  1075. }
  1076. void memory_region_init_reservation(MemoryRegion *mr,
  1077. Object *owner,
  1078. const char *name,
  1079. uint64_t size)
  1080. {
  1081. memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
  1082. }
  1083. static void memory_region_finalize(Object *obj)
  1084. {
  1085. MemoryRegion *mr = MEMORY_REGION(obj);
  1086. assert(QTAILQ_EMPTY(&mr->subregions));
  1087. assert(memory_region_transaction_depth == 0);
  1088. mr->destructor(mr);
  1089. memory_region_clear_coalescing(mr);
  1090. g_free((char *)mr->name);
  1091. g_free(mr->ioeventfds);
  1092. }
  1093. Object *memory_region_owner(MemoryRegion *mr)
  1094. {
  1095. Object *obj = OBJECT(mr);
  1096. return obj->parent;
  1097. }
  1098. void memory_region_ref(MemoryRegion *mr)
  1099. {
  1100. /* MMIO callbacks most likely will access data that belongs
  1101. * to the owner, hence the need to ref/unref the owner whenever
  1102. * the memory region is in use.
  1103. *
  1104. * The memory region is a child of its owner. As long as the
  1105. * owner doesn't call unparent itself on the memory region,
  1106. * ref-ing the owner will also keep the memory region alive.
  1107. * Memory regions without an owner are supposed to never go away,
  1108. * but we still ref/unref them for debugging purposes.
  1109. */
  1110. Object *obj = OBJECT(mr);
  1111. if (obj && obj->parent) {
  1112. object_ref(obj->parent);
  1113. } else {
  1114. object_ref(obj);
  1115. }
  1116. }
  1117. void memory_region_unref(MemoryRegion *mr)
  1118. {
  1119. Object *obj = OBJECT(mr);
  1120. if (obj && obj->parent) {
  1121. object_unref(obj->parent);
  1122. } else {
  1123. object_unref(obj);
  1124. }
  1125. }
  1126. uint64_t memory_region_size(MemoryRegion *mr)
  1127. {
  1128. if (int128_eq(mr->size, int128_2_64())) {
  1129. return UINT64_MAX;
  1130. }
  1131. return int128_get64(mr->size);
  1132. }
  1133. const char *memory_region_name(const MemoryRegion *mr)
  1134. {
  1135. if (!mr->name) {
  1136. ((MemoryRegion *)mr)->name =
  1137. object_get_canonical_path_component(OBJECT(mr));
  1138. }
  1139. return mr->name;
  1140. }
  1141. bool memory_region_is_ram(MemoryRegion *mr)
  1142. {
  1143. return mr->ram;
  1144. }
  1145. bool memory_region_is_skip_dump(MemoryRegion *mr)
  1146. {
  1147. return mr->skip_dump;
  1148. }
  1149. bool memory_region_is_logging(MemoryRegion *mr)
  1150. {
  1151. return mr->dirty_log_mask;
  1152. }
  1153. bool memory_region_is_rom(MemoryRegion *mr)
  1154. {
  1155. return mr->ram && mr->readonly;
  1156. }
  1157. bool memory_region_is_iommu(MemoryRegion *mr)
  1158. {
  1159. return mr->iommu_ops;
  1160. }
  1161. void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
  1162. {
  1163. notifier_list_add(&mr->iommu_notify, n);
  1164. }
  1165. void memory_region_unregister_iommu_notifier(Notifier *n)
  1166. {
  1167. notifier_remove(n);
  1168. }
  1169. void memory_region_notify_iommu(MemoryRegion *mr,
  1170. IOMMUTLBEntry entry)
  1171. {
  1172. assert(memory_region_is_iommu(mr));
  1173. notifier_list_notify(&mr->iommu_notify, &entry);
  1174. }
  1175. void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
  1176. {
  1177. uint8_t mask = 1 << client;
  1178. memory_region_transaction_begin();
  1179. mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
  1180. memory_region_update_pending |= mr->enabled;
  1181. memory_region_transaction_commit();
  1182. }
  1183. bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
  1184. hwaddr size, unsigned client)
  1185. {
  1186. assert(mr->terminates);
  1187. return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
  1188. }
  1189. void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
  1190. hwaddr size)
  1191. {
  1192. assert(mr->terminates);
  1193. cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
  1194. }
  1195. bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
  1196. hwaddr size, unsigned client)
  1197. {
  1198. bool ret;
  1199. assert(mr->terminates);
  1200. ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
  1201. if (ret) {
  1202. cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
  1203. }
  1204. return ret;
  1205. }
  1206. void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
  1207. {
  1208. AddressSpace *as;
  1209. FlatRange *fr;
  1210. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  1211. FlatView *view = address_space_get_flatview(as);
  1212. FOR_EACH_FLAT_RANGE(fr, view) {
  1213. if (fr->mr == mr) {
  1214. MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
  1215. }
  1216. }
  1217. flatview_unref(view);
  1218. }
  1219. }
  1220. void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
  1221. {
  1222. if (mr->readonly != readonly) {
  1223. memory_region_transaction_begin();
  1224. mr->readonly = readonly;
  1225. memory_region_update_pending |= mr->enabled;
  1226. memory_region_transaction_commit();
  1227. }
  1228. }
  1229. void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
  1230. {
  1231. if (mr->romd_mode != romd_mode) {
  1232. memory_region_transaction_begin();
  1233. mr->romd_mode = romd_mode;
  1234. memory_region_update_pending |= mr->enabled;
  1235. memory_region_transaction_commit();
  1236. }
  1237. }
  1238. void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
  1239. hwaddr size, unsigned client)
  1240. {
  1241. assert(mr->terminates);
  1242. cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
  1243. }
  1244. int memory_region_get_fd(MemoryRegion *mr)
  1245. {
  1246. if (mr->alias) {
  1247. return memory_region_get_fd(mr->alias);
  1248. }
  1249. assert(mr->terminates);
  1250. return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
  1251. }
  1252. void *memory_region_get_ram_ptr(MemoryRegion *mr)
  1253. {
  1254. if (mr->alias) {
  1255. return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
  1256. }
  1257. assert(mr->terminates);
  1258. return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
  1259. }
  1260. static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
  1261. {
  1262. FlatView *view;
  1263. FlatRange *fr;
  1264. CoalescedMemoryRange *cmr;
  1265. AddrRange tmp;
  1266. MemoryRegionSection section;
  1267. view = address_space_get_flatview(as);
  1268. FOR_EACH_FLAT_RANGE(fr, view) {
  1269. if (fr->mr == mr) {
  1270. section = (MemoryRegionSection) {
  1271. .address_space = as,
  1272. .offset_within_address_space = int128_get64(fr->addr.start),
  1273. .size = fr->addr.size,
  1274. };
  1275. MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
  1276. int128_get64(fr->addr.start),
  1277. int128_get64(fr->addr.size));
  1278. QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
  1279. tmp = addrrange_shift(cmr->addr,
  1280. int128_sub(fr->addr.start,
  1281. int128_make64(fr->offset_in_region)));
  1282. if (!addrrange_intersects(tmp, fr->addr)) {
  1283. continue;
  1284. }
  1285. tmp = addrrange_intersection(tmp, fr->addr);
  1286. MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
  1287. int128_get64(tmp.start),
  1288. int128_get64(tmp.size));
  1289. }
  1290. }
  1291. }
  1292. flatview_unref(view);
  1293. }
  1294. static void memory_region_update_coalesced_range(MemoryRegion *mr)
  1295. {
  1296. AddressSpace *as;
  1297. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  1298. memory_region_update_coalesced_range_as(mr, as);
  1299. }
  1300. }
  1301. void memory_region_set_coalescing(MemoryRegion *mr)
  1302. {
  1303. memory_region_clear_coalescing(mr);
  1304. memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
  1305. }
  1306. void memory_region_add_coalescing(MemoryRegion *mr,
  1307. hwaddr offset,
  1308. uint64_t size)
  1309. {
  1310. CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
  1311. cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
  1312. QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
  1313. memory_region_update_coalesced_range(mr);
  1314. memory_region_set_flush_coalesced(mr);
  1315. }
  1316. void memory_region_clear_coalescing(MemoryRegion *mr)
  1317. {
  1318. CoalescedMemoryRange *cmr;
  1319. bool updated = false;
  1320. qemu_flush_coalesced_mmio_buffer();
  1321. mr->flush_coalesced_mmio = false;
  1322. while (!QTAILQ_EMPTY(&mr->coalesced)) {
  1323. cmr = QTAILQ_FIRST(&mr->coalesced);
  1324. QTAILQ_REMOVE(&mr->coalesced, cmr, link);
  1325. g_free(cmr);
  1326. updated = true;
  1327. }
  1328. if (updated) {
  1329. memory_region_update_coalesced_range(mr);
  1330. }
  1331. }
  1332. void memory_region_set_flush_coalesced(MemoryRegion *mr)
  1333. {
  1334. mr->flush_coalesced_mmio = true;
  1335. }
  1336. void memory_region_clear_flush_coalesced(MemoryRegion *mr)
  1337. {
  1338. qemu_flush_coalesced_mmio_buffer();
  1339. if (QTAILQ_EMPTY(&mr->coalesced)) {
  1340. mr->flush_coalesced_mmio = false;
  1341. }
  1342. }
  1343. void memory_region_add_eventfd(MemoryRegion *mr,
  1344. hwaddr addr,
  1345. unsigned size,
  1346. bool match_data,
  1347. uint64_t data,
  1348. EventNotifier *e)
  1349. {
  1350. MemoryRegionIoeventfd mrfd = {
  1351. .addr.start = int128_make64(addr),
  1352. .addr.size = int128_make64(size),
  1353. .match_data = match_data,
  1354. .data = data,
  1355. .e = e,
  1356. };
  1357. unsigned i;
  1358. adjust_endianness(mr, &mrfd.data, size);
  1359. memory_region_transaction_begin();
  1360. for (i = 0; i < mr->ioeventfd_nb; ++i) {
  1361. if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
  1362. break;
  1363. }
  1364. }
  1365. ++mr->ioeventfd_nb;
  1366. mr->ioeventfds = g_realloc(mr->ioeventfds,
  1367. sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
  1368. memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
  1369. sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
  1370. mr->ioeventfds[i] = mrfd;
  1371. ioeventfd_update_pending |= mr->enabled;
  1372. memory_region_transaction_commit();
  1373. }
  1374. void memory_region_del_eventfd(MemoryRegion *mr,
  1375. hwaddr addr,
  1376. unsigned size,
  1377. bool match_data,
  1378. uint64_t data,
  1379. EventNotifier *e)
  1380. {
  1381. MemoryRegionIoeventfd mrfd = {
  1382. .addr.start = int128_make64(addr),
  1383. .addr.size = int128_make64(size),
  1384. .match_data = match_data,
  1385. .data = data,
  1386. .e = e,
  1387. };
  1388. unsigned i;
  1389. adjust_endianness(mr, &mrfd.data, size);
  1390. memory_region_transaction_begin();
  1391. for (i = 0; i < mr->ioeventfd_nb; ++i) {
  1392. if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
  1393. break;
  1394. }
  1395. }
  1396. assert(i != mr->ioeventfd_nb);
  1397. memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
  1398. sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
  1399. --mr->ioeventfd_nb;
  1400. mr->ioeventfds = g_realloc(mr->ioeventfds,
  1401. sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
  1402. ioeventfd_update_pending |= mr->enabled;
  1403. memory_region_transaction_commit();
  1404. }
  1405. static void memory_region_update_container_subregions(MemoryRegion *subregion)
  1406. {
  1407. hwaddr offset = subregion->addr;
  1408. MemoryRegion *mr = subregion->container;
  1409. MemoryRegion *other;
  1410. memory_region_transaction_begin();
  1411. memory_region_ref(subregion);
  1412. QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
  1413. if (subregion->may_overlap || other->may_overlap) {
  1414. continue;
  1415. }
  1416. if (int128_ge(int128_make64(offset),
  1417. int128_add(int128_make64(other->addr), other->size))
  1418. || int128_le(int128_add(int128_make64(offset), subregion->size),
  1419. int128_make64(other->addr))) {
  1420. continue;
  1421. }
  1422. #if 0
  1423. printf("warning: subregion collision %llx/%llx (%s) "
  1424. "vs %llx/%llx (%s)\n",
  1425. (unsigned long long)offset,
  1426. (unsigned long long)int128_get64(subregion->size),
  1427. subregion->name,
  1428. (unsigned long long)other->addr,
  1429. (unsigned long long)int128_get64(other->size),
  1430. other->name);
  1431. #endif
  1432. }
  1433. QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
  1434. if (subregion->priority >= other->priority) {
  1435. QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
  1436. goto done;
  1437. }
  1438. }
  1439. QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
  1440. done:
  1441. memory_region_update_pending |= mr->enabled && subregion->enabled;
  1442. memory_region_transaction_commit();
  1443. }
  1444. static void memory_region_add_subregion_common(MemoryRegion *mr,
  1445. hwaddr offset,
  1446. MemoryRegion *subregion)
  1447. {
  1448. assert(!subregion->container);
  1449. subregion->container = mr;
  1450. subregion->addr = offset;
  1451. memory_region_update_container_subregions(subregion);
  1452. }
  1453. void memory_region_add_subregion(MemoryRegion *mr,
  1454. hwaddr offset,
  1455. MemoryRegion *subregion)
  1456. {
  1457. subregion->may_overlap = false;
  1458. subregion->priority = 0;
  1459. memory_region_add_subregion_common(mr, offset, subregion);
  1460. }
  1461. void memory_region_add_subregion_overlap(MemoryRegion *mr,
  1462. hwaddr offset,
  1463. MemoryRegion *subregion,
  1464. int priority)
  1465. {
  1466. subregion->may_overlap = true;
  1467. subregion->priority = priority;
  1468. memory_region_add_subregion_common(mr, offset, subregion);
  1469. }
  1470. void memory_region_del_subregion(MemoryRegion *mr,
  1471. MemoryRegion *subregion)
  1472. {
  1473. memory_region_transaction_begin();
  1474. assert(subregion->container == mr);
  1475. subregion->container = NULL;
  1476. QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
  1477. memory_region_unref(subregion);
  1478. memory_region_update_pending |= mr->enabled && subregion->enabled;
  1479. memory_region_transaction_commit();
  1480. }
  1481. void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
  1482. {
  1483. if (enabled == mr->enabled) {
  1484. return;
  1485. }
  1486. memory_region_transaction_begin();
  1487. mr->enabled = enabled;
  1488. memory_region_update_pending = true;
  1489. memory_region_transaction_commit();
  1490. }
  1491. static void memory_region_readd_subregion(MemoryRegion *mr)
  1492. {
  1493. MemoryRegion *container = mr->container;
  1494. if (container) {
  1495. memory_region_transaction_begin();
  1496. memory_region_ref(mr);
  1497. memory_region_del_subregion(container, mr);
  1498. mr->container = container;
  1499. memory_region_update_container_subregions(mr);
  1500. memory_region_unref(mr);
  1501. memory_region_transaction_commit();
  1502. }
  1503. }
  1504. void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
  1505. {
  1506. if (addr != mr->addr) {
  1507. mr->addr = addr;
  1508. memory_region_readd_subregion(mr);
  1509. }
  1510. }
  1511. void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
  1512. {
  1513. assert(mr->alias);
  1514. if (offset == mr->alias_offset) {
  1515. return;
  1516. }
  1517. memory_region_transaction_begin();
  1518. mr->alias_offset = offset;
  1519. memory_region_update_pending |= mr->enabled;
  1520. memory_region_transaction_commit();
  1521. }
  1522. ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
  1523. {
  1524. return mr->ram_addr;
  1525. }
  1526. uint64_t memory_region_get_alignment(const MemoryRegion *mr)
  1527. {
  1528. return mr->align;
  1529. }
  1530. static int cmp_flatrange_addr(const void *addr_, const void *fr_)
  1531. {
  1532. const AddrRange *addr = addr_;
  1533. const FlatRange *fr = fr_;
  1534. if (int128_le(addrrange_end(*addr), fr->addr.start)) {
  1535. return -1;
  1536. } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
  1537. return 1;
  1538. }
  1539. return 0;
  1540. }
  1541. static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
  1542. {
  1543. return bsearch(&addr, view->ranges, view->nr,
  1544. sizeof(FlatRange), cmp_flatrange_addr);
  1545. }
  1546. bool memory_region_present(MemoryRegion *container, hwaddr addr)
  1547. {
  1548. MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
  1549. if (!mr || (mr == container)) {
  1550. return false;
  1551. }
  1552. memory_region_unref(mr);
  1553. return true;
  1554. }
  1555. bool memory_region_is_mapped(MemoryRegion *mr)
  1556. {
  1557. return mr->container ? true : false;
  1558. }
  1559. MemoryRegionSection memory_region_find(MemoryRegion *mr,
  1560. hwaddr addr, uint64_t size)
  1561. {
  1562. MemoryRegionSection ret = { .mr = NULL };
  1563. MemoryRegion *root;
  1564. AddressSpace *as;
  1565. AddrRange range;
  1566. FlatView *view;
  1567. FlatRange *fr;
  1568. addr += mr->addr;
  1569. for (root = mr; root->container; ) {
  1570. root = root->container;
  1571. addr += root->addr;
  1572. }
  1573. as = memory_region_to_address_space(root);
  1574. if (!as) {
  1575. return ret;
  1576. }
  1577. range = addrrange_make(int128_make64(addr), int128_make64(size));
  1578. view = address_space_get_flatview(as);
  1579. fr = flatview_lookup(view, range);
  1580. if (!fr) {
  1581. flatview_unref(view);
  1582. return ret;
  1583. }
  1584. while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
  1585. --fr;
  1586. }
  1587. ret.mr = fr->mr;
  1588. ret.address_space = as;
  1589. range = addrrange_intersection(range, fr->addr);
  1590. ret.offset_within_region = fr->offset_in_region;
  1591. ret.offset_within_region += int128_get64(int128_sub(range.start,
  1592. fr->addr.start));
  1593. ret.size = range.size;
  1594. ret.offset_within_address_space = int128_get64(range.start);
  1595. ret.readonly = fr->readonly;
  1596. memory_region_ref(ret.mr);
  1597. flatview_unref(view);
  1598. return ret;
  1599. }
  1600. void address_space_sync_dirty_bitmap(AddressSpace *as)
  1601. {
  1602. FlatView *view;
  1603. FlatRange *fr;
  1604. view = address_space_get_flatview(as);
  1605. FOR_EACH_FLAT_RANGE(fr, view) {
  1606. MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
  1607. }
  1608. flatview_unref(view);
  1609. }
  1610. void memory_global_dirty_log_start(void)
  1611. {
  1612. global_dirty_log = true;
  1613. MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
  1614. }
  1615. void memory_global_dirty_log_stop(void)
  1616. {
  1617. global_dirty_log = false;
  1618. MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
  1619. }
  1620. static void listener_add_address_space(MemoryListener *listener,
  1621. AddressSpace *as)
  1622. {
  1623. FlatView *view;
  1624. FlatRange *fr;
  1625. if (listener->address_space_filter
  1626. && listener->address_space_filter != as) {
  1627. return;
  1628. }
  1629. if (global_dirty_log) {
  1630. if (listener->log_global_start) {
  1631. listener->log_global_start(listener);
  1632. }
  1633. }
  1634. view = address_space_get_flatview(as);
  1635. FOR_EACH_FLAT_RANGE(fr, view) {
  1636. MemoryRegionSection section = {
  1637. .mr = fr->mr,
  1638. .address_space = as,
  1639. .offset_within_region = fr->offset_in_region,
  1640. .size = fr->addr.size,
  1641. .offset_within_address_space = int128_get64(fr->addr.start),
  1642. .readonly = fr->readonly,
  1643. };
  1644. if (listener->region_add) {
  1645. listener->region_add(listener, &section);
  1646. }
  1647. }
  1648. flatview_unref(view);
  1649. }
  1650. void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
  1651. {
  1652. MemoryListener *other = NULL;
  1653. AddressSpace *as;
  1654. listener->address_space_filter = filter;
  1655. if (QTAILQ_EMPTY(&memory_listeners)
  1656. || listener->priority >= QTAILQ_LAST(&memory_listeners,
  1657. memory_listeners)->priority) {
  1658. QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
  1659. } else {
  1660. QTAILQ_FOREACH(other, &memory_listeners, link) {
  1661. if (listener->priority < other->priority) {
  1662. break;
  1663. }
  1664. }
  1665. QTAILQ_INSERT_BEFORE(other, listener, link);
  1666. }
  1667. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  1668. listener_add_address_space(listener, as);
  1669. }
  1670. }
  1671. void memory_listener_unregister(MemoryListener *listener)
  1672. {
  1673. QTAILQ_REMOVE(&memory_listeners, listener, link);
  1674. }
  1675. void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
  1676. {
  1677. if (QTAILQ_EMPTY(&address_spaces)) {
  1678. memory_init();
  1679. }
  1680. memory_region_transaction_begin();
  1681. as->root = root;
  1682. as->current_map = g_new(FlatView, 1);
  1683. flatview_init(as->current_map);
  1684. as->ioeventfd_nb = 0;
  1685. as->ioeventfds = NULL;
  1686. QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
  1687. as->name = g_strdup(name ? name : "anonymous");
  1688. address_space_init_dispatch(as);
  1689. memory_region_update_pending |= root->enabled;
  1690. memory_region_transaction_commit();
  1691. }
  1692. void address_space_destroy(AddressSpace *as)
  1693. {
  1694. MemoryListener *listener;
  1695. /* Flush out anything from MemoryListeners listening in on this */
  1696. memory_region_transaction_begin();
  1697. as->root = NULL;
  1698. memory_region_transaction_commit();
  1699. QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
  1700. address_space_destroy_dispatch(as);
  1701. QTAILQ_FOREACH(listener, &memory_listeners, link) {
  1702. assert(listener->address_space_filter != as);
  1703. }
  1704. flatview_unref(as->current_map);
  1705. g_free(as->name);
  1706. g_free(as->ioeventfds);
  1707. }
  1708. bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
  1709. {
  1710. return memory_region_dispatch_read(mr, addr, pval, size);
  1711. }
  1712. bool io_mem_write(MemoryRegion *mr, hwaddr addr,
  1713. uint64_t val, unsigned size)
  1714. {
  1715. return memory_region_dispatch_write(mr, addr, val, size);
  1716. }
  1717. typedef struct MemoryRegionList MemoryRegionList;
  1718. struct MemoryRegionList {
  1719. const MemoryRegion *mr;
  1720. QTAILQ_ENTRY(MemoryRegionList) queue;
  1721. };
  1722. typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
  1723. static void mtree_print_mr(fprintf_function mon_printf, void *f,
  1724. const MemoryRegion *mr, unsigned int level,
  1725. hwaddr base,
  1726. MemoryRegionListHead *alias_print_queue)
  1727. {
  1728. MemoryRegionList *new_ml, *ml, *next_ml;
  1729. MemoryRegionListHead submr_print_queue;
  1730. const MemoryRegion *submr;
  1731. unsigned int i;
  1732. if (!mr || !mr->enabled) {
  1733. return;
  1734. }
  1735. for (i = 0; i < level; i++) {
  1736. mon_printf(f, " ");
  1737. }
  1738. if (mr->alias) {
  1739. MemoryRegionList *ml;
  1740. bool found = false;
  1741. /* check if the alias is already in the queue */
  1742. QTAILQ_FOREACH(ml, alias_print_queue, queue) {
  1743. if (ml->mr == mr->alias) {
  1744. found = true;
  1745. }
  1746. }
  1747. if (!found) {
  1748. ml = g_new(MemoryRegionList, 1);
  1749. ml->mr = mr->alias;
  1750. QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
  1751. }
  1752. mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
  1753. " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
  1754. "-" TARGET_FMT_plx "\n",
  1755. base + mr->addr,
  1756. base + mr->addr
  1757. + (int128_nz(mr->size) ?
  1758. (hwaddr)int128_get64(int128_sub(mr->size,
  1759. int128_one())) : 0),
  1760. mr->priority,
  1761. mr->romd_mode ? 'R' : '-',
  1762. !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
  1763. : '-',
  1764. memory_region_name(mr),
  1765. memory_region_name(mr->alias),
  1766. mr->alias_offset,
  1767. mr->alias_offset
  1768. + (int128_nz(mr->size) ?
  1769. (hwaddr)int128_get64(int128_sub(mr->size,
  1770. int128_one())) : 0));
  1771. } else {
  1772. mon_printf(f,
  1773. TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
  1774. base + mr->addr,
  1775. base + mr->addr
  1776. + (int128_nz(mr->size) ?
  1777. (hwaddr)int128_get64(int128_sub(mr->size,
  1778. int128_one())) : 0),
  1779. mr->priority,
  1780. mr->romd_mode ? 'R' : '-',
  1781. !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
  1782. : '-',
  1783. memory_region_name(mr));
  1784. }
  1785. QTAILQ_INIT(&submr_print_queue);
  1786. QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
  1787. new_ml = g_new(MemoryRegionList, 1);
  1788. new_ml->mr = submr;
  1789. QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
  1790. if (new_ml->mr->addr < ml->mr->addr ||
  1791. (new_ml->mr->addr == ml->mr->addr &&
  1792. new_ml->mr->priority > ml->mr->priority)) {
  1793. QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
  1794. new_ml = NULL;
  1795. break;
  1796. }
  1797. }
  1798. if (new_ml) {
  1799. QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
  1800. }
  1801. }
  1802. QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
  1803. mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
  1804. alias_print_queue);
  1805. }
  1806. QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
  1807. g_free(ml);
  1808. }
  1809. }
  1810. void mtree_info(fprintf_function mon_printf, void *f)
  1811. {
  1812. MemoryRegionListHead ml_head;
  1813. MemoryRegionList *ml, *ml2;
  1814. AddressSpace *as;
  1815. QTAILQ_INIT(&ml_head);
  1816. QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
  1817. mon_printf(f, "%s\n", as->name);
  1818. mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
  1819. }
  1820. mon_printf(f, "aliases\n");
  1821. /* print aliased regions */
  1822. QTAILQ_FOREACH(ml, &ml_head, queue) {
  1823. mon_printf(f, "%s\n", memory_region_name(ml->mr));
  1824. mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
  1825. }
  1826. QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
  1827. g_free(ml);
  1828. }
  1829. }
  1830. static const TypeInfo memory_region_info = {
  1831. .parent = TYPE_OBJECT,
  1832. .name = TYPE_MEMORY_REGION,
  1833. .instance_size = sizeof(MemoryRegion),
  1834. .instance_init = memory_region_initfn,
  1835. .instance_finalize = memory_region_finalize,
  1836. };
  1837. static void memory_register_types(void)
  1838. {
  1839. type_register_static(&memory_region_info);
  1840. }
  1841. type_init(memory_register_types)