kvm-all.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275
  1. /*
  2. * QEMU KVM support
  3. *
  4. * Copyright IBM, Corp. 2008
  5. * Red Hat, Inc. 2008
  6. *
  7. * Authors:
  8. * Anthony Liguori <aliguori@us.ibm.com>
  9. * Glauber Costa <gcosta@redhat.com>
  10. *
  11. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12. * See the COPYING file in the top-level directory.
  13. *
  14. */
  15. #include <sys/types.h>
  16. #include <sys/ioctl.h>
  17. #include <sys/mman.h>
  18. #include <stdarg.h>
  19. #include <linux/kvm.h>
  20. #include "qemu-common.h"
  21. #include "qemu/atomic.h"
  22. #include "qemu/option.h"
  23. #include "qemu/config-file.h"
  24. #include "sysemu/sysemu.h"
  25. #include "sysemu/accel.h"
  26. #include "hw/hw.h"
  27. #include "hw/pci/msi.h"
  28. #include "hw/s390x/adapter.h"
  29. #include "exec/gdbstub.h"
  30. #include "sysemu/kvm.h"
  31. #include "qemu/bswap.h"
  32. #include "exec/memory.h"
  33. #include "exec/ram_addr.h"
  34. #include "exec/address-spaces.h"
  35. #include "qemu/event_notifier.h"
  36. #include "trace.h"
  37. #include "hw/boards.h"
  38. /* This check must be after config-host.h is included */
  39. #ifdef CONFIG_EVENTFD
  40. #include <sys/eventfd.h>
  41. #endif
  42. /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
  43. #define PAGE_SIZE TARGET_PAGE_SIZE
  44. //#define DEBUG_KVM
  45. #ifdef DEBUG_KVM
  46. #define DPRINTF(fmt, ...) \
  47. do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  48. #else
  49. #define DPRINTF(fmt, ...) \
  50. do { } while (0)
  51. #endif
  52. #define KVM_MSI_HASHTAB_SIZE 256
  53. typedef struct KVMSlot
  54. {
  55. hwaddr start_addr;
  56. ram_addr_t memory_size;
  57. void *ram;
  58. int slot;
  59. int flags;
  60. } KVMSlot;
  61. typedef struct kvm_dirty_log KVMDirtyLog;
  62. struct KVMState
  63. {
  64. AccelState parent_obj;
  65. KVMSlot *slots;
  66. int nr_slots;
  67. int fd;
  68. int vmfd;
  69. int coalesced_mmio;
  70. struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
  71. bool coalesced_flush_in_progress;
  72. int broken_set_mem_region;
  73. int migration_log;
  74. int vcpu_events;
  75. int robust_singlestep;
  76. int debugregs;
  77. #ifdef KVM_CAP_SET_GUEST_DEBUG
  78. struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
  79. #endif
  80. int pit_state2;
  81. int xsave, xcrs;
  82. int many_ioeventfds;
  83. int intx_set_mask;
  84. /* The man page (and posix) say ioctl numbers are signed int, but
  85. * they're not. Linux, glibc and *BSD all treat ioctl numbers as
  86. * unsigned, and treating them as signed here can break things */
  87. unsigned irq_set_ioctl;
  88. unsigned int sigmask_len;
  89. #ifdef KVM_CAP_IRQ_ROUTING
  90. struct kvm_irq_routing *irq_routes;
  91. int nr_allocated_irq_routes;
  92. uint32_t *used_gsi_bitmap;
  93. unsigned int gsi_count;
  94. QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
  95. bool direct_msi;
  96. #endif
  97. };
  98. #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
  99. #define KVM_STATE(obj) \
  100. OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
  101. KVMState *kvm_state;
  102. bool kvm_kernel_irqchip;
  103. bool kvm_async_interrupts_allowed;
  104. bool kvm_halt_in_kernel_allowed;
  105. bool kvm_eventfds_allowed;
  106. bool kvm_irqfds_allowed;
  107. bool kvm_msi_via_irqfd_allowed;
  108. bool kvm_gsi_routing_allowed;
  109. bool kvm_gsi_direct_mapping;
  110. bool kvm_allowed;
  111. bool kvm_readonly_mem_allowed;
  112. static const KVMCapabilityInfo kvm_required_capabilites[] = {
  113. KVM_CAP_INFO(USER_MEMORY),
  114. KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
  115. KVM_CAP_LAST_INFO
  116. };
  117. static KVMSlot *kvm_get_free_slot(KVMState *s)
  118. {
  119. int i;
  120. for (i = 0; i < s->nr_slots; i++) {
  121. if (s->slots[i].memory_size == 0) {
  122. return &s->slots[i];
  123. }
  124. }
  125. return NULL;
  126. }
  127. bool kvm_has_free_slot(MachineState *ms)
  128. {
  129. return kvm_get_free_slot(KVM_STATE(ms->accelerator));
  130. }
  131. static KVMSlot *kvm_alloc_slot(KVMState *s)
  132. {
  133. KVMSlot *slot = kvm_get_free_slot(s);
  134. if (slot) {
  135. return slot;
  136. }
  137. fprintf(stderr, "%s: no free slot available\n", __func__);
  138. abort();
  139. }
  140. static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
  141. hwaddr start_addr,
  142. hwaddr end_addr)
  143. {
  144. int i;
  145. for (i = 0; i < s->nr_slots; i++) {
  146. KVMSlot *mem = &s->slots[i];
  147. if (start_addr == mem->start_addr &&
  148. end_addr == mem->start_addr + mem->memory_size) {
  149. return mem;
  150. }
  151. }
  152. return NULL;
  153. }
  154. /*
  155. * Find overlapping slot with lowest start address
  156. */
  157. static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
  158. hwaddr start_addr,
  159. hwaddr end_addr)
  160. {
  161. KVMSlot *found = NULL;
  162. int i;
  163. for (i = 0; i < s->nr_slots; i++) {
  164. KVMSlot *mem = &s->slots[i];
  165. if (mem->memory_size == 0 ||
  166. (found && found->start_addr < mem->start_addr)) {
  167. continue;
  168. }
  169. if (end_addr > mem->start_addr &&
  170. start_addr < mem->start_addr + mem->memory_size) {
  171. found = mem;
  172. }
  173. }
  174. return found;
  175. }
  176. int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
  177. hwaddr *phys_addr)
  178. {
  179. int i;
  180. for (i = 0; i < s->nr_slots; i++) {
  181. KVMSlot *mem = &s->slots[i];
  182. if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
  183. *phys_addr = mem->start_addr + (ram - mem->ram);
  184. return 1;
  185. }
  186. }
  187. return 0;
  188. }
  189. static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
  190. {
  191. struct kvm_userspace_memory_region mem;
  192. mem.slot = slot->slot;
  193. mem.guest_phys_addr = slot->start_addr;
  194. mem.userspace_addr = (unsigned long)slot->ram;
  195. mem.flags = slot->flags;
  196. if (s->migration_log) {
  197. mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
  198. }
  199. if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
  200. /* Set the slot size to 0 before setting the slot to the desired
  201. * value. This is needed based on KVM commit 75d61fbc. */
  202. mem.memory_size = 0;
  203. kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
  204. }
  205. mem.memory_size = slot->memory_size;
  206. return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
  207. }
  208. int kvm_init_vcpu(CPUState *cpu)
  209. {
  210. KVMState *s = kvm_state;
  211. long mmap_size;
  212. int ret;
  213. DPRINTF("kvm_init_vcpu\n");
  214. ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
  215. if (ret < 0) {
  216. DPRINTF("kvm_create_vcpu failed\n");
  217. goto err;
  218. }
  219. cpu->kvm_fd = ret;
  220. cpu->kvm_state = s;
  221. cpu->kvm_vcpu_dirty = true;
  222. mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
  223. if (mmap_size < 0) {
  224. ret = mmap_size;
  225. DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
  226. goto err;
  227. }
  228. cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
  229. cpu->kvm_fd, 0);
  230. if (cpu->kvm_run == MAP_FAILED) {
  231. ret = -errno;
  232. DPRINTF("mmap'ing vcpu state failed\n");
  233. goto err;
  234. }
  235. if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
  236. s->coalesced_mmio_ring =
  237. (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
  238. }
  239. ret = kvm_arch_init_vcpu(cpu);
  240. err:
  241. return ret;
  242. }
  243. /*
  244. * dirty pages logging control
  245. */
  246. static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
  247. {
  248. int flags = 0;
  249. flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
  250. if (readonly && kvm_readonly_mem_allowed) {
  251. flags |= KVM_MEM_READONLY;
  252. }
  253. return flags;
  254. }
  255. static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
  256. {
  257. KVMState *s = kvm_state;
  258. int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
  259. int old_flags;
  260. old_flags = mem->flags;
  261. flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
  262. mem->flags = flags;
  263. /* If nothing changed effectively, no need to issue ioctl */
  264. if (s->migration_log) {
  265. flags |= KVM_MEM_LOG_DIRTY_PAGES;
  266. }
  267. if (flags == old_flags) {
  268. return 0;
  269. }
  270. return kvm_set_user_memory_region(s, mem);
  271. }
  272. static int kvm_dirty_pages_log_change(hwaddr phys_addr,
  273. ram_addr_t size, bool log_dirty)
  274. {
  275. KVMState *s = kvm_state;
  276. KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
  277. if (mem == NULL) {
  278. fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
  279. TARGET_FMT_plx "\n", __func__, phys_addr,
  280. (hwaddr)(phys_addr + size - 1));
  281. return -EINVAL;
  282. }
  283. return kvm_slot_dirty_pages_log_change(mem, log_dirty);
  284. }
  285. static void kvm_log_start(MemoryListener *listener,
  286. MemoryRegionSection *section)
  287. {
  288. int r;
  289. r = kvm_dirty_pages_log_change(section->offset_within_address_space,
  290. int128_get64(section->size), true);
  291. if (r < 0) {
  292. abort();
  293. }
  294. }
  295. static void kvm_log_stop(MemoryListener *listener,
  296. MemoryRegionSection *section)
  297. {
  298. int r;
  299. r = kvm_dirty_pages_log_change(section->offset_within_address_space,
  300. int128_get64(section->size), false);
  301. if (r < 0) {
  302. abort();
  303. }
  304. }
  305. static int kvm_set_migration_log(int enable)
  306. {
  307. KVMState *s = kvm_state;
  308. KVMSlot *mem;
  309. int i, err;
  310. s->migration_log = enable;
  311. for (i = 0; i < s->nr_slots; i++) {
  312. mem = &s->slots[i];
  313. if (!mem->memory_size) {
  314. continue;
  315. }
  316. if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
  317. continue;
  318. }
  319. err = kvm_set_user_memory_region(s, mem);
  320. if (err) {
  321. return err;
  322. }
  323. }
  324. return 0;
  325. }
  326. /* get kvm's dirty pages bitmap and update qemu's */
  327. static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
  328. unsigned long *bitmap)
  329. {
  330. ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
  331. ram_addr_t pages = int128_get64(section->size) / getpagesize();
  332. cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
  333. return 0;
  334. }
  335. #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
  336. /**
  337. * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
  338. * This function updates qemu's dirty bitmap using
  339. * memory_region_set_dirty(). This means all bits are set
  340. * to dirty.
  341. *
  342. * @start_add: start of logged region.
  343. * @end_addr: end of logged region.
  344. */
  345. static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
  346. {
  347. KVMState *s = kvm_state;
  348. unsigned long size, allocated_size = 0;
  349. KVMDirtyLog d;
  350. KVMSlot *mem;
  351. int ret = 0;
  352. hwaddr start_addr = section->offset_within_address_space;
  353. hwaddr end_addr = start_addr + int128_get64(section->size);
  354. d.dirty_bitmap = NULL;
  355. while (start_addr < end_addr) {
  356. mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
  357. if (mem == NULL) {
  358. break;
  359. }
  360. /* XXX bad kernel interface alert
  361. * For dirty bitmap, kernel allocates array of size aligned to
  362. * bits-per-long. But for case when the kernel is 64bits and
  363. * the userspace is 32bits, userspace can't align to the same
  364. * bits-per-long, since sizeof(long) is different between kernel
  365. * and user space. This way, userspace will provide buffer which
  366. * may be 4 bytes less than the kernel will use, resulting in
  367. * userspace memory corruption (which is not detectable by valgrind
  368. * too, in most cases).
  369. * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
  370. * a hope that sizeof(long) wont become >8 any time soon.
  371. */
  372. size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
  373. /*HOST_LONG_BITS*/ 64) / 8;
  374. if (!d.dirty_bitmap) {
  375. d.dirty_bitmap = g_malloc(size);
  376. } else if (size > allocated_size) {
  377. d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
  378. }
  379. allocated_size = size;
  380. memset(d.dirty_bitmap, 0, allocated_size);
  381. d.slot = mem->slot;
  382. if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
  383. DPRINTF("ioctl failed %d\n", errno);
  384. ret = -1;
  385. break;
  386. }
  387. kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
  388. start_addr = mem->start_addr + mem->memory_size;
  389. }
  390. g_free(d.dirty_bitmap);
  391. return ret;
  392. }
  393. static void kvm_coalesce_mmio_region(MemoryListener *listener,
  394. MemoryRegionSection *secion,
  395. hwaddr start, hwaddr size)
  396. {
  397. KVMState *s = kvm_state;
  398. if (s->coalesced_mmio) {
  399. struct kvm_coalesced_mmio_zone zone;
  400. zone.addr = start;
  401. zone.size = size;
  402. zone.pad = 0;
  403. (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
  404. }
  405. }
  406. static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
  407. MemoryRegionSection *secion,
  408. hwaddr start, hwaddr size)
  409. {
  410. KVMState *s = kvm_state;
  411. if (s->coalesced_mmio) {
  412. struct kvm_coalesced_mmio_zone zone;
  413. zone.addr = start;
  414. zone.size = size;
  415. zone.pad = 0;
  416. (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
  417. }
  418. }
  419. int kvm_check_extension(KVMState *s, unsigned int extension)
  420. {
  421. int ret;
  422. ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
  423. if (ret < 0) {
  424. ret = 0;
  425. }
  426. return ret;
  427. }
  428. int kvm_vm_check_extension(KVMState *s, unsigned int extension)
  429. {
  430. int ret;
  431. ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
  432. if (ret < 0) {
  433. /* VM wide version not implemented, use global one instead */
  434. ret = kvm_check_extension(s, extension);
  435. }
  436. return ret;
  437. }
  438. static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
  439. bool assign, uint32_t size, bool datamatch)
  440. {
  441. int ret;
  442. struct kvm_ioeventfd iofd;
  443. iofd.datamatch = datamatch ? val : 0;
  444. iofd.addr = addr;
  445. iofd.len = size;
  446. iofd.flags = 0;
  447. iofd.fd = fd;
  448. if (!kvm_enabled()) {
  449. return -ENOSYS;
  450. }
  451. if (datamatch) {
  452. iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
  453. }
  454. if (!assign) {
  455. iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
  456. }
  457. ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
  458. if (ret < 0) {
  459. return -errno;
  460. }
  461. return 0;
  462. }
  463. static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
  464. bool assign, uint32_t size, bool datamatch)
  465. {
  466. struct kvm_ioeventfd kick = {
  467. .datamatch = datamatch ? val : 0,
  468. .addr = addr,
  469. .flags = KVM_IOEVENTFD_FLAG_PIO,
  470. .len = size,
  471. .fd = fd,
  472. };
  473. int r;
  474. if (!kvm_enabled()) {
  475. return -ENOSYS;
  476. }
  477. if (datamatch) {
  478. kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
  479. }
  480. if (!assign) {
  481. kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
  482. }
  483. r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
  484. if (r < 0) {
  485. return r;
  486. }
  487. return 0;
  488. }
  489. static int kvm_check_many_ioeventfds(void)
  490. {
  491. /* Userspace can use ioeventfd for io notification. This requires a host
  492. * that supports eventfd(2) and an I/O thread; since eventfd does not
  493. * support SIGIO it cannot interrupt the vcpu.
  494. *
  495. * Older kernels have a 6 device limit on the KVM io bus. Find out so we
  496. * can avoid creating too many ioeventfds.
  497. */
  498. #if defined(CONFIG_EVENTFD)
  499. int ioeventfds[7];
  500. int i, ret = 0;
  501. for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
  502. ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
  503. if (ioeventfds[i] < 0) {
  504. break;
  505. }
  506. ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
  507. if (ret < 0) {
  508. close(ioeventfds[i]);
  509. break;
  510. }
  511. }
  512. /* Decide whether many devices are supported or not */
  513. ret = i == ARRAY_SIZE(ioeventfds);
  514. while (i-- > 0) {
  515. kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
  516. close(ioeventfds[i]);
  517. }
  518. return ret;
  519. #else
  520. return 0;
  521. #endif
  522. }
  523. static const KVMCapabilityInfo *
  524. kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
  525. {
  526. while (list->name) {
  527. if (!kvm_check_extension(s, list->value)) {
  528. return list;
  529. }
  530. list++;
  531. }
  532. return NULL;
  533. }
  534. static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
  535. {
  536. KVMState *s = kvm_state;
  537. KVMSlot *mem, old;
  538. int err;
  539. MemoryRegion *mr = section->mr;
  540. bool log_dirty = memory_region_is_logging(mr);
  541. bool writeable = !mr->readonly && !mr->rom_device;
  542. bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
  543. hwaddr start_addr = section->offset_within_address_space;
  544. ram_addr_t size = int128_get64(section->size);
  545. void *ram = NULL;
  546. unsigned delta;
  547. /* kvm works in page size chunks, but the function may be called
  548. with sub-page size and unaligned start address. Pad the start
  549. address to next and truncate size to previous page boundary. */
  550. delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
  551. delta &= ~TARGET_PAGE_MASK;
  552. if (delta > size) {
  553. return;
  554. }
  555. start_addr += delta;
  556. size -= delta;
  557. size &= TARGET_PAGE_MASK;
  558. if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
  559. return;
  560. }
  561. if (!memory_region_is_ram(mr)) {
  562. if (writeable || !kvm_readonly_mem_allowed) {
  563. return;
  564. } else if (!mr->romd_mode) {
  565. /* If the memory device is not in romd_mode, then we actually want
  566. * to remove the kvm memory slot so all accesses will trap. */
  567. add = false;
  568. }
  569. }
  570. ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
  571. while (1) {
  572. mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
  573. if (!mem) {
  574. break;
  575. }
  576. if (add && start_addr >= mem->start_addr &&
  577. (start_addr + size <= mem->start_addr + mem->memory_size) &&
  578. (ram - start_addr == mem->ram - mem->start_addr)) {
  579. /* The new slot fits into the existing one and comes with
  580. * identical parameters - update flags and done. */
  581. kvm_slot_dirty_pages_log_change(mem, log_dirty);
  582. return;
  583. }
  584. old = *mem;
  585. if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
  586. kvm_physical_sync_dirty_bitmap(section);
  587. }
  588. /* unregister the overlapping slot */
  589. mem->memory_size = 0;
  590. err = kvm_set_user_memory_region(s, mem);
  591. if (err) {
  592. fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
  593. __func__, strerror(-err));
  594. abort();
  595. }
  596. /* Workaround for older KVM versions: we can't join slots, even not by
  597. * unregistering the previous ones and then registering the larger
  598. * slot. We have to maintain the existing fragmentation. Sigh.
  599. *
  600. * This workaround assumes that the new slot starts at the same
  601. * address as the first existing one. If not or if some overlapping
  602. * slot comes around later, we will fail (not seen in practice so far)
  603. * - and actually require a recent KVM version. */
  604. if (s->broken_set_mem_region &&
  605. old.start_addr == start_addr && old.memory_size < size && add) {
  606. mem = kvm_alloc_slot(s);
  607. mem->memory_size = old.memory_size;
  608. mem->start_addr = old.start_addr;
  609. mem->ram = old.ram;
  610. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  611. err = kvm_set_user_memory_region(s, mem);
  612. if (err) {
  613. fprintf(stderr, "%s: error updating slot: %s\n", __func__,
  614. strerror(-err));
  615. abort();
  616. }
  617. start_addr += old.memory_size;
  618. ram += old.memory_size;
  619. size -= old.memory_size;
  620. continue;
  621. }
  622. /* register prefix slot */
  623. if (old.start_addr < start_addr) {
  624. mem = kvm_alloc_slot(s);
  625. mem->memory_size = start_addr - old.start_addr;
  626. mem->start_addr = old.start_addr;
  627. mem->ram = old.ram;
  628. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  629. err = kvm_set_user_memory_region(s, mem);
  630. if (err) {
  631. fprintf(stderr, "%s: error registering prefix slot: %s\n",
  632. __func__, strerror(-err));
  633. #ifdef TARGET_PPC
  634. fprintf(stderr, "%s: This is probably because your kernel's " \
  635. "PAGE_SIZE is too big. Please try to use 4k " \
  636. "PAGE_SIZE!\n", __func__);
  637. #endif
  638. abort();
  639. }
  640. }
  641. /* register suffix slot */
  642. if (old.start_addr + old.memory_size > start_addr + size) {
  643. ram_addr_t size_delta;
  644. mem = kvm_alloc_slot(s);
  645. mem->start_addr = start_addr + size;
  646. size_delta = mem->start_addr - old.start_addr;
  647. mem->memory_size = old.memory_size - size_delta;
  648. mem->ram = old.ram + size_delta;
  649. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  650. err = kvm_set_user_memory_region(s, mem);
  651. if (err) {
  652. fprintf(stderr, "%s: error registering suffix slot: %s\n",
  653. __func__, strerror(-err));
  654. abort();
  655. }
  656. }
  657. }
  658. /* in case the KVM bug workaround already "consumed" the new slot */
  659. if (!size) {
  660. return;
  661. }
  662. if (!add) {
  663. return;
  664. }
  665. mem = kvm_alloc_slot(s);
  666. mem->memory_size = size;
  667. mem->start_addr = start_addr;
  668. mem->ram = ram;
  669. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  670. err = kvm_set_user_memory_region(s, mem);
  671. if (err) {
  672. fprintf(stderr, "%s: error registering slot: %s\n", __func__,
  673. strerror(-err));
  674. abort();
  675. }
  676. }
  677. static void kvm_region_add(MemoryListener *listener,
  678. MemoryRegionSection *section)
  679. {
  680. memory_region_ref(section->mr);
  681. kvm_set_phys_mem(section, true);
  682. }
  683. static void kvm_region_del(MemoryListener *listener,
  684. MemoryRegionSection *section)
  685. {
  686. kvm_set_phys_mem(section, false);
  687. memory_region_unref(section->mr);
  688. }
  689. static void kvm_log_sync(MemoryListener *listener,
  690. MemoryRegionSection *section)
  691. {
  692. int r;
  693. r = kvm_physical_sync_dirty_bitmap(section);
  694. if (r < 0) {
  695. abort();
  696. }
  697. }
  698. static void kvm_log_global_start(struct MemoryListener *listener)
  699. {
  700. int r;
  701. r = kvm_set_migration_log(1);
  702. assert(r >= 0);
  703. }
  704. static void kvm_log_global_stop(struct MemoryListener *listener)
  705. {
  706. int r;
  707. r = kvm_set_migration_log(0);
  708. assert(r >= 0);
  709. }
  710. static void kvm_mem_ioeventfd_add(MemoryListener *listener,
  711. MemoryRegionSection *section,
  712. bool match_data, uint64_t data,
  713. EventNotifier *e)
  714. {
  715. int fd = event_notifier_get_fd(e);
  716. int r;
  717. r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
  718. data, true, int128_get64(section->size),
  719. match_data);
  720. if (r < 0) {
  721. fprintf(stderr, "%s: error adding ioeventfd: %s\n",
  722. __func__, strerror(-r));
  723. abort();
  724. }
  725. }
  726. static void kvm_mem_ioeventfd_del(MemoryListener *listener,
  727. MemoryRegionSection *section,
  728. bool match_data, uint64_t data,
  729. EventNotifier *e)
  730. {
  731. int fd = event_notifier_get_fd(e);
  732. int r;
  733. r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
  734. data, false, int128_get64(section->size),
  735. match_data);
  736. if (r < 0) {
  737. abort();
  738. }
  739. }
  740. static void kvm_io_ioeventfd_add(MemoryListener *listener,
  741. MemoryRegionSection *section,
  742. bool match_data, uint64_t data,
  743. EventNotifier *e)
  744. {
  745. int fd = event_notifier_get_fd(e);
  746. int r;
  747. r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
  748. data, true, int128_get64(section->size),
  749. match_data);
  750. if (r < 0) {
  751. fprintf(stderr, "%s: error adding ioeventfd: %s\n",
  752. __func__, strerror(-r));
  753. abort();
  754. }
  755. }
  756. static void kvm_io_ioeventfd_del(MemoryListener *listener,
  757. MemoryRegionSection *section,
  758. bool match_data, uint64_t data,
  759. EventNotifier *e)
  760. {
  761. int fd = event_notifier_get_fd(e);
  762. int r;
  763. r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
  764. data, false, int128_get64(section->size),
  765. match_data);
  766. if (r < 0) {
  767. abort();
  768. }
  769. }
  770. static MemoryListener kvm_memory_listener = {
  771. .region_add = kvm_region_add,
  772. .region_del = kvm_region_del,
  773. .log_start = kvm_log_start,
  774. .log_stop = kvm_log_stop,
  775. .log_sync = kvm_log_sync,
  776. .log_global_start = kvm_log_global_start,
  777. .log_global_stop = kvm_log_global_stop,
  778. .eventfd_add = kvm_mem_ioeventfd_add,
  779. .eventfd_del = kvm_mem_ioeventfd_del,
  780. .coalesced_mmio_add = kvm_coalesce_mmio_region,
  781. .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
  782. .priority = 10,
  783. };
  784. static MemoryListener kvm_io_listener = {
  785. .eventfd_add = kvm_io_ioeventfd_add,
  786. .eventfd_del = kvm_io_ioeventfd_del,
  787. .priority = 10,
  788. };
  789. static void kvm_handle_interrupt(CPUState *cpu, int mask)
  790. {
  791. cpu->interrupt_request |= mask;
  792. if (!qemu_cpu_is_self(cpu)) {
  793. qemu_cpu_kick(cpu);
  794. }
  795. }
  796. int kvm_set_irq(KVMState *s, int irq, int level)
  797. {
  798. struct kvm_irq_level event;
  799. int ret;
  800. assert(kvm_async_interrupts_enabled());
  801. event.level = level;
  802. event.irq = irq;
  803. ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
  804. if (ret < 0) {
  805. perror("kvm_set_irq");
  806. abort();
  807. }
  808. return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
  809. }
  810. #ifdef KVM_CAP_IRQ_ROUTING
  811. typedef struct KVMMSIRoute {
  812. struct kvm_irq_routing_entry kroute;
  813. QTAILQ_ENTRY(KVMMSIRoute) entry;
  814. } KVMMSIRoute;
  815. static void set_gsi(KVMState *s, unsigned int gsi)
  816. {
  817. s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
  818. }
  819. static void clear_gsi(KVMState *s, unsigned int gsi)
  820. {
  821. s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
  822. }
  823. void kvm_init_irq_routing(KVMState *s)
  824. {
  825. int gsi_count, i;
  826. gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
  827. if (gsi_count > 0) {
  828. unsigned int gsi_bits, i;
  829. /* Round up so we can search ints using ffs */
  830. gsi_bits = ALIGN(gsi_count, 32);
  831. s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
  832. s->gsi_count = gsi_count;
  833. /* Mark any over-allocated bits as already in use */
  834. for (i = gsi_count; i < gsi_bits; i++) {
  835. set_gsi(s, i);
  836. }
  837. }
  838. s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
  839. s->nr_allocated_irq_routes = 0;
  840. if (!s->direct_msi) {
  841. for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
  842. QTAILQ_INIT(&s->msi_hashtab[i]);
  843. }
  844. }
  845. kvm_arch_init_irq_routing(s);
  846. }
  847. void kvm_irqchip_commit_routes(KVMState *s)
  848. {
  849. int ret;
  850. s->irq_routes->flags = 0;
  851. ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
  852. assert(ret == 0);
  853. }
  854. static void kvm_add_routing_entry(KVMState *s,
  855. struct kvm_irq_routing_entry *entry)
  856. {
  857. struct kvm_irq_routing_entry *new;
  858. int n, size;
  859. if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
  860. n = s->nr_allocated_irq_routes * 2;
  861. if (n < 64) {
  862. n = 64;
  863. }
  864. size = sizeof(struct kvm_irq_routing);
  865. size += n * sizeof(*new);
  866. s->irq_routes = g_realloc(s->irq_routes, size);
  867. s->nr_allocated_irq_routes = n;
  868. }
  869. n = s->irq_routes->nr++;
  870. new = &s->irq_routes->entries[n];
  871. *new = *entry;
  872. set_gsi(s, entry->gsi);
  873. }
  874. static int kvm_update_routing_entry(KVMState *s,
  875. struct kvm_irq_routing_entry *new_entry)
  876. {
  877. struct kvm_irq_routing_entry *entry;
  878. int n;
  879. for (n = 0; n < s->irq_routes->nr; n++) {
  880. entry = &s->irq_routes->entries[n];
  881. if (entry->gsi != new_entry->gsi) {
  882. continue;
  883. }
  884. if(!memcmp(entry, new_entry, sizeof *entry)) {
  885. return 0;
  886. }
  887. *entry = *new_entry;
  888. kvm_irqchip_commit_routes(s);
  889. return 0;
  890. }
  891. return -ESRCH;
  892. }
  893. void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
  894. {
  895. struct kvm_irq_routing_entry e = {};
  896. assert(pin < s->gsi_count);
  897. e.gsi = irq;
  898. e.type = KVM_IRQ_ROUTING_IRQCHIP;
  899. e.flags = 0;
  900. e.u.irqchip.irqchip = irqchip;
  901. e.u.irqchip.pin = pin;
  902. kvm_add_routing_entry(s, &e);
  903. }
  904. void kvm_irqchip_release_virq(KVMState *s, int virq)
  905. {
  906. struct kvm_irq_routing_entry *e;
  907. int i;
  908. if (kvm_gsi_direct_mapping()) {
  909. return;
  910. }
  911. for (i = 0; i < s->irq_routes->nr; i++) {
  912. e = &s->irq_routes->entries[i];
  913. if (e->gsi == virq) {
  914. s->irq_routes->nr--;
  915. *e = s->irq_routes->entries[s->irq_routes->nr];
  916. }
  917. }
  918. clear_gsi(s, virq);
  919. }
  920. static unsigned int kvm_hash_msi(uint32_t data)
  921. {
  922. /* This is optimized for IA32 MSI layout. However, no other arch shall
  923. * repeat the mistake of not providing a direct MSI injection API. */
  924. return data & 0xff;
  925. }
  926. static void kvm_flush_dynamic_msi_routes(KVMState *s)
  927. {
  928. KVMMSIRoute *route, *next;
  929. unsigned int hash;
  930. for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
  931. QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
  932. kvm_irqchip_release_virq(s, route->kroute.gsi);
  933. QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
  934. g_free(route);
  935. }
  936. }
  937. }
  938. static int kvm_irqchip_get_virq(KVMState *s)
  939. {
  940. uint32_t *word = s->used_gsi_bitmap;
  941. int max_words = ALIGN(s->gsi_count, 32) / 32;
  942. int i, bit;
  943. bool retry = true;
  944. again:
  945. /* Return the lowest unused GSI in the bitmap */
  946. for (i = 0; i < max_words; i++) {
  947. bit = ffs(~word[i]);
  948. if (!bit) {
  949. continue;
  950. }
  951. return bit - 1 + i * 32;
  952. }
  953. if (!s->direct_msi && retry) {
  954. retry = false;
  955. kvm_flush_dynamic_msi_routes(s);
  956. goto again;
  957. }
  958. return -ENOSPC;
  959. }
  960. static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
  961. {
  962. unsigned int hash = kvm_hash_msi(msg.data);
  963. KVMMSIRoute *route;
  964. QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
  965. if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
  966. route->kroute.u.msi.address_hi == (msg.address >> 32) &&
  967. route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
  968. return route;
  969. }
  970. }
  971. return NULL;
  972. }
  973. int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
  974. {
  975. struct kvm_msi msi;
  976. KVMMSIRoute *route;
  977. if (s->direct_msi) {
  978. msi.address_lo = (uint32_t)msg.address;
  979. msi.address_hi = msg.address >> 32;
  980. msi.data = le32_to_cpu(msg.data);
  981. msi.flags = 0;
  982. memset(msi.pad, 0, sizeof(msi.pad));
  983. return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
  984. }
  985. route = kvm_lookup_msi_route(s, msg);
  986. if (!route) {
  987. int virq;
  988. virq = kvm_irqchip_get_virq(s);
  989. if (virq < 0) {
  990. return virq;
  991. }
  992. route = g_malloc0(sizeof(KVMMSIRoute));
  993. route->kroute.gsi = virq;
  994. route->kroute.type = KVM_IRQ_ROUTING_MSI;
  995. route->kroute.flags = 0;
  996. route->kroute.u.msi.address_lo = (uint32_t)msg.address;
  997. route->kroute.u.msi.address_hi = msg.address >> 32;
  998. route->kroute.u.msi.data = le32_to_cpu(msg.data);
  999. kvm_add_routing_entry(s, &route->kroute);
  1000. kvm_irqchip_commit_routes(s);
  1001. QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
  1002. entry);
  1003. }
  1004. assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
  1005. return kvm_set_irq(s, route->kroute.gsi, 1);
  1006. }
  1007. int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
  1008. {
  1009. struct kvm_irq_routing_entry kroute = {};
  1010. int virq;
  1011. if (kvm_gsi_direct_mapping()) {
  1012. return msg.data & 0xffff;
  1013. }
  1014. if (!kvm_gsi_routing_enabled()) {
  1015. return -ENOSYS;
  1016. }
  1017. virq = kvm_irqchip_get_virq(s);
  1018. if (virq < 0) {
  1019. return virq;
  1020. }
  1021. kroute.gsi = virq;
  1022. kroute.type = KVM_IRQ_ROUTING_MSI;
  1023. kroute.flags = 0;
  1024. kroute.u.msi.address_lo = (uint32_t)msg.address;
  1025. kroute.u.msi.address_hi = msg.address >> 32;
  1026. kroute.u.msi.data = le32_to_cpu(msg.data);
  1027. kvm_add_routing_entry(s, &kroute);
  1028. kvm_irqchip_commit_routes(s);
  1029. return virq;
  1030. }
  1031. int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
  1032. {
  1033. struct kvm_irq_routing_entry kroute = {};
  1034. if (kvm_gsi_direct_mapping()) {
  1035. return 0;
  1036. }
  1037. if (!kvm_irqchip_in_kernel()) {
  1038. return -ENOSYS;
  1039. }
  1040. kroute.gsi = virq;
  1041. kroute.type = KVM_IRQ_ROUTING_MSI;
  1042. kroute.flags = 0;
  1043. kroute.u.msi.address_lo = (uint32_t)msg.address;
  1044. kroute.u.msi.address_hi = msg.address >> 32;
  1045. kroute.u.msi.data = le32_to_cpu(msg.data);
  1046. return kvm_update_routing_entry(s, &kroute);
  1047. }
  1048. static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
  1049. bool assign)
  1050. {
  1051. struct kvm_irqfd irqfd = {
  1052. .fd = fd,
  1053. .gsi = virq,
  1054. .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
  1055. };
  1056. if (rfd != -1) {
  1057. irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
  1058. irqfd.resamplefd = rfd;
  1059. }
  1060. if (!kvm_irqfds_enabled()) {
  1061. return -ENOSYS;
  1062. }
  1063. return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
  1064. }
  1065. int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
  1066. {
  1067. struct kvm_irq_routing_entry kroute;
  1068. int virq;
  1069. if (!kvm_gsi_routing_enabled()) {
  1070. return -ENOSYS;
  1071. }
  1072. virq = kvm_irqchip_get_virq(s);
  1073. if (virq < 0) {
  1074. return virq;
  1075. }
  1076. kroute.gsi = virq;
  1077. kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
  1078. kroute.flags = 0;
  1079. kroute.u.adapter.summary_addr = adapter->summary_addr;
  1080. kroute.u.adapter.ind_addr = adapter->ind_addr;
  1081. kroute.u.adapter.summary_offset = adapter->summary_offset;
  1082. kroute.u.adapter.ind_offset = adapter->ind_offset;
  1083. kroute.u.adapter.adapter_id = adapter->adapter_id;
  1084. kvm_add_routing_entry(s, &kroute);
  1085. kvm_irqchip_commit_routes(s);
  1086. return virq;
  1087. }
  1088. #else /* !KVM_CAP_IRQ_ROUTING */
  1089. void kvm_init_irq_routing(KVMState *s)
  1090. {
  1091. }
  1092. void kvm_irqchip_release_virq(KVMState *s, int virq)
  1093. {
  1094. }
  1095. int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
  1096. {
  1097. abort();
  1098. }
  1099. int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
  1100. {
  1101. return -ENOSYS;
  1102. }
  1103. int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
  1104. {
  1105. return -ENOSYS;
  1106. }
  1107. static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
  1108. {
  1109. abort();
  1110. }
  1111. int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
  1112. {
  1113. return -ENOSYS;
  1114. }
  1115. #endif /* !KVM_CAP_IRQ_ROUTING */
  1116. int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
  1117. EventNotifier *rn, int virq)
  1118. {
  1119. return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
  1120. rn ? event_notifier_get_fd(rn) : -1, virq, true);
  1121. }
  1122. int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
  1123. {
  1124. return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
  1125. false);
  1126. }
  1127. static int kvm_irqchip_create(KVMState *s)
  1128. {
  1129. int ret;
  1130. if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
  1131. (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
  1132. (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
  1133. return 0;
  1134. }
  1135. /* First probe and see if there's a arch-specific hook to create the
  1136. * in-kernel irqchip for us */
  1137. ret = kvm_arch_irqchip_create(s);
  1138. if (ret < 0) {
  1139. return ret;
  1140. } else if (ret == 0) {
  1141. ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
  1142. if (ret < 0) {
  1143. fprintf(stderr, "Create kernel irqchip failed\n");
  1144. return ret;
  1145. }
  1146. }
  1147. kvm_kernel_irqchip = true;
  1148. /* If we have an in-kernel IRQ chip then we must have asynchronous
  1149. * interrupt delivery (though the reverse is not necessarily true)
  1150. */
  1151. kvm_async_interrupts_allowed = true;
  1152. kvm_halt_in_kernel_allowed = true;
  1153. kvm_init_irq_routing(s);
  1154. return 0;
  1155. }
  1156. /* Find number of supported CPUs using the recommended
  1157. * procedure from the kernel API documentation to cope with
  1158. * older kernels that may be missing capabilities.
  1159. */
  1160. static int kvm_recommended_vcpus(KVMState *s)
  1161. {
  1162. int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
  1163. return (ret) ? ret : 4;
  1164. }
  1165. static int kvm_max_vcpus(KVMState *s)
  1166. {
  1167. int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
  1168. return (ret) ? ret : kvm_recommended_vcpus(s);
  1169. }
  1170. static int kvm_init(MachineState *ms)
  1171. {
  1172. MachineClass *mc = MACHINE_GET_CLASS(ms);
  1173. static const char upgrade_note[] =
  1174. "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
  1175. "(see http://sourceforge.net/projects/kvm).\n";
  1176. struct {
  1177. const char *name;
  1178. int num;
  1179. } num_cpus[] = {
  1180. { "SMP", smp_cpus },
  1181. { "hotpluggable", max_cpus },
  1182. { NULL, }
  1183. }, *nc = num_cpus;
  1184. int soft_vcpus_limit, hard_vcpus_limit;
  1185. KVMState *s;
  1186. const KVMCapabilityInfo *missing_cap;
  1187. int ret;
  1188. int i, type = 0;
  1189. const char *kvm_type;
  1190. s = KVM_STATE(ms->accelerator);
  1191. /*
  1192. * On systems where the kernel can support different base page
  1193. * sizes, host page size may be different from TARGET_PAGE_SIZE,
  1194. * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
  1195. * page size for the system though.
  1196. */
  1197. assert(TARGET_PAGE_SIZE <= getpagesize());
  1198. page_size_init();
  1199. s->sigmask_len = 8;
  1200. #ifdef KVM_CAP_SET_GUEST_DEBUG
  1201. QTAILQ_INIT(&s->kvm_sw_breakpoints);
  1202. #endif
  1203. s->vmfd = -1;
  1204. s->fd = qemu_open("/dev/kvm", O_RDWR);
  1205. if (s->fd == -1) {
  1206. fprintf(stderr, "Could not access KVM kernel module: %m\n");
  1207. ret = -errno;
  1208. goto err;
  1209. }
  1210. ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
  1211. if (ret < KVM_API_VERSION) {
  1212. if (ret >= 0) {
  1213. ret = -EINVAL;
  1214. }
  1215. fprintf(stderr, "kvm version too old\n");
  1216. goto err;
  1217. }
  1218. if (ret > KVM_API_VERSION) {
  1219. ret = -EINVAL;
  1220. fprintf(stderr, "kvm version not supported\n");
  1221. goto err;
  1222. }
  1223. s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
  1224. /* If unspecified, use the default value */
  1225. if (!s->nr_slots) {
  1226. s->nr_slots = 32;
  1227. }
  1228. s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
  1229. for (i = 0; i < s->nr_slots; i++) {
  1230. s->slots[i].slot = i;
  1231. }
  1232. /* check the vcpu limits */
  1233. soft_vcpus_limit = kvm_recommended_vcpus(s);
  1234. hard_vcpus_limit = kvm_max_vcpus(s);
  1235. while (nc->name) {
  1236. if (nc->num > soft_vcpus_limit) {
  1237. fprintf(stderr,
  1238. "Warning: Number of %s cpus requested (%d) exceeds "
  1239. "the recommended cpus supported by KVM (%d)\n",
  1240. nc->name, nc->num, soft_vcpus_limit);
  1241. if (nc->num > hard_vcpus_limit) {
  1242. fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
  1243. "the maximum cpus supported by KVM (%d)\n",
  1244. nc->name, nc->num, hard_vcpus_limit);
  1245. exit(1);
  1246. }
  1247. }
  1248. nc++;
  1249. }
  1250. kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
  1251. if (mc->kvm_type) {
  1252. type = mc->kvm_type(kvm_type);
  1253. } else if (kvm_type) {
  1254. ret = -EINVAL;
  1255. fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
  1256. goto err;
  1257. }
  1258. do {
  1259. ret = kvm_ioctl(s, KVM_CREATE_VM, type);
  1260. } while (ret == -EINTR);
  1261. if (ret < 0) {
  1262. fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
  1263. strerror(-ret));
  1264. #ifdef TARGET_S390X
  1265. fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
  1266. "your host kernel command line\n");
  1267. #endif
  1268. goto err;
  1269. }
  1270. s->vmfd = ret;
  1271. missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
  1272. if (!missing_cap) {
  1273. missing_cap =
  1274. kvm_check_extension_list(s, kvm_arch_required_capabilities);
  1275. }
  1276. if (missing_cap) {
  1277. ret = -EINVAL;
  1278. fprintf(stderr, "kvm does not support %s\n%s",
  1279. missing_cap->name, upgrade_note);
  1280. goto err;
  1281. }
  1282. s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
  1283. s->broken_set_mem_region = 1;
  1284. ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
  1285. if (ret > 0) {
  1286. s->broken_set_mem_region = 0;
  1287. }
  1288. #ifdef KVM_CAP_VCPU_EVENTS
  1289. s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
  1290. #endif
  1291. s->robust_singlestep =
  1292. kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
  1293. #ifdef KVM_CAP_DEBUGREGS
  1294. s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
  1295. #endif
  1296. #ifdef KVM_CAP_XSAVE
  1297. s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
  1298. #endif
  1299. #ifdef KVM_CAP_XCRS
  1300. s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
  1301. #endif
  1302. #ifdef KVM_CAP_PIT_STATE2
  1303. s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
  1304. #endif
  1305. #ifdef KVM_CAP_IRQ_ROUTING
  1306. s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
  1307. #endif
  1308. s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
  1309. s->irq_set_ioctl = KVM_IRQ_LINE;
  1310. if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
  1311. s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
  1312. }
  1313. #ifdef KVM_CAP_READONLY_MEM
  1314. kvm_readonly_mem_allowed =
  1315. (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
  1316. #endif
  1317. kvm_eventfds_allowed =
  1318. (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
  1319. ret = kvm_arch_init(s);
  1320. if (ret < 0) {
  1321. goto err;
  1322. }
  1323. ret = kvm_irqchip_create(s);
  1324. if (ret < 0) {
  1325. goto err;
  1326. }
  1327. kvm_state = s;
  1328. memory_listener_register(&kvm_memory_listener, &address_space_memory);
  1329. memory_listener_register(&kvm_io_listener, &address_space_io);
  1330. s->many_ioeventfds = kvm_check_many_ioeventfds();
  1331. cpu_interrupt_handler = kvm_handle_interrupt;
  1332. return 0;
  1333. err:
  1334. assert(ret < 0);
  1335. if (s->vmfd >= 0) {
  1336. close(s->vmfd);
  1337. }
  1338. if (s->fd != -1) {
  1339. close(s->fd);
  1340. }
  1341. g_free(s->slots);
  1342. return ret;
  1343. }
  1344. void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
  1345. {
  1346. s->sigmask_len = sigmask_len;
  1347. }
  1348. static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
  1349. uint32_t count)
  1350. {
  1351. int i;
  1352. uint8_t *ptr = data;
  1353. for (i = 0; i < count; i++) {
  1354. address_space_rw(&address_space_io, port, ptr, size,
  1355. direction == KVM_EXIT_IO_OUT);
  1356. ptr += size;
  1357. }
  1358. }
  1359. static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
  1360. {
  1361. fprintf(stderr, "KVM internal error. Suberror: %d\n",
  1362. run->internal.suberror);
  1363. if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
  1364. int i;
  1365. for (i = 0; i < run->internal.ndata; ++i) {
  1366. fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
  1367. i, (uint64_t)run->internal.data[i]);
  1368. }
  1369. }
  1370. if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
  1371. fprintf(stderr, "emulation failure\n");
  1372. if (!kvm_arch_stop_on_emulation_error(cpu)) {
  1373. cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
  1374. return EXCP_INTERRUPT;
  1375. }
  1376. }
  1377. /* FIXME: Should trigger a qmp message to let management know
  1378. * something went wrong.
  1379. */
  1380. return -1;
  1381. }
  1382. void kvm_flush_coalesced_mmio_buffer(void)
  1383. {
  1384. KVMState *s = kvm_state;
  1385. if (s->coalesced_flush_in_progress) {
  1386. return;
  1387. }
  1388. s->coalesced_flush_in_progress = true;
  1389. if (s->coalesced_mmio_ring) {
  1390. struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
  1391. while (ring->first != ring->last) {
  1392. struct kvm_coalesced_mmio *ent;
  1393. ent = &ring->coalesced_mmio[ring->first];
  1394. cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
  1395. smp_wmb();
  1396. ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
  1397. }
  1398. }
  1399. s->coalesced_flush_in_progress = false;
  1400. }
  1401. static void do_kvm_cpu_synchronize_state(void *arg)
  1402. {
  1403. CPUState *cpu = arg;
  1404. if (!cpu->kvm_vcpu_dirty) {
  1405. kvm_arch_get_registers(cpu);
  1406. cpu->kvm_vcpu_dirty = true;
  1407. }
  1408. }
  1409. void kvm_cpu_synchronize_state(CPUState *cpu)
  1410. {
  1411. if (!cpu->kvm_vcpu_dirty) {
  1412. run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
  1413. }
  1414. }
  1415. static void do_kvm_cpu_synchronize_post_reset(void *arg)
  1416. {
  1417. CPUState *cpu = arg;
  1418. kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
  1419. cpu->kvm_vcpu_dirty = false;
  1420. }
  1421. void kvm_cpu_synchronize_post_reset(CPUState *cpu)
  1422. {
  1423. run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
  1424. }
  1425. static void do_kvm_cpu_synchronize_post_init(void *arg)
  1426. {
  1427. CPUState *cpu = arg;
  1428. kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
  1429. cpu->kvm_vcpu_dirty = false;
  1430. }
  1431. void kvm_cpu_synchronize_post_init(CPUState *cpu)
  1432. {
  1433. run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
  1434. }
  1435. void kvm_cpu_clean_state(CPUState *cpu)
  1436. {
  1437. cpu->kvm_vcpu_dirty = false;
  1438. }
  1439. int kvm_cpu_exec(CPUState *cpu)
  1440. {
  1441. struct kvm_run *run = cpu->kvm_run;
  1442. int ret, run_ret;
  1443. DPRINTF("kvm_cpu_exec()\n");
  1444. if (kvm_arch_process_async_events(cpu)) {
  1445. cpu->exit_request = 0;
  1446. return EXCP_HLT;
  1447. }
  1448. do {
  1449. if (cpu->kvm_vcpu_dirty) {
  1450. kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
  1451. cpu->kvm_vcpu_dirty = false;
  1452. }
  1453. kvm_arch_pre_run(cpu, run);
  1454. if (cpu->exit_request) {
  1455. DPRINTF("interrupt exit requested\n");
  1456. /*
  1457. * KVM requires us to reenter the kernel after IO exits to complete
  1458. * instruction emulation. This self-signal will ensure that we
  1459. * leave ASAP again.
  1460. */
  1461. qemu_cpu_kick_self();
  1462. }
  1463. qemu_mutex_unlock_iothread();
  1464. run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
  1465. qemu_mutex_lock_iothread();
  1466. kvm_arch_post_run(cpu, run);
  1467. if (run_ret < 0) {
  1468. if (run_ret == -EINTR || run_ret == -EAGAIN) {
  1469. DPRINTF("io window exit\n");
  1470. ret = EXCP_INTERRUPT;
  1471. break;
  1472. }
  1473. fprintf(stderr, "error: kvm run failed %s\n",
  1474. strerror(-run_ret));
  1475. ret = -1;
  1476. break;
  1477. }
  1478. trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
  1479. switch (run->exit_reason) {
  1480. case KVM_EXIT_IO:
  1481. DPRINTF("handle_io\n");
  1482. kvm_handle_io(run->io.port,
  1483. (uint8_t *)run + run->io.data_offset,
  1484. run->io.direction,
  1485. run->io.size,
  1486. run->io.count);
  1487. ret = 0;
  1488. break;
  1489. case KVM_EXIT_MMIO:
  1490. DPRINTF("handle_mmio\n");
  1491. cpu_physical_memory_rw(run->mmio.phys_addr,
  1492. run->mmio.data,
  1493. run->mmio.len,
  1494. run->mmio.is_write);
  1495. ret = 0;
  1496. break;
  1497. case KVM_EXIT_IRQ_WINDOW_OPEN:
  1498. DPRINTF("irq_window_open\n");
  1499. ret = EXCP_INTERRUPT;
  1500. break;
  1501. case KVM_EXIT_SHUTDOWN:
  1502. DPRINTF("shutdown\n");
  1503. qemu_system_reset_request();
  1504. ret = EXCP_INTERRUPT;
  1505. break;
  1506. case KVM_EXIT_UNKNOWN:
  1507. fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
  1508. (uint64_t)run->hw.hardware_exit_reason);
  1509. ret = -1;
  1510. break;
  1511. case KVM_EXIT_INTERNAL_ERROR:
  1512. ret = kvm_handle_internal_error(cpu, run);
  1513. break;
  1514. case KVM_EXIT_SYSTEM_EVENT:
  1515. switch (run->system_event.type) {
  1516. case KVM_SYSTEM_EVENT_SHUTDOWN:
  1517. qemu_system_shutdown_request();
  1518. ret = EXCP_INTERRUPT;
  1519. break;
  1520. case KVM_SYSTEM_EVENT_RESET:
  1521. qemu_system_reset_request();
  1522. ret = EXCP_INTERRUPT;
  1523. break;
  1524. default:
  1525. DPRINTF("kvm_arch_handle_exit\n");
  1526. ret = kvm_arch_handle_exit(cpu, run);
  1527. break;
  1528. }
  1529. break;
  1530. default:
  1531. DPRINTF("kvm_arch_handle_exit\n");
  1532. ret = kvm_arch_handle_exit(cpu, run);
  1533. break;
  1534. }
  1535. } while (ret == 0);
  1536. if (ret < 0) {
  1537. cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
  1538. vm_stop(RUN_STATE_INTERNAL_ERROR);
  1539. }
  1540. cpu->exit_request = 0;
  1541. return ret;
  1542. }
  1543. int kvm_ioctl(KVMState *s, int type, ...)
  1544. {
  1545. int ret;
  1546. void *arg;
  1547. va_list ap;
  1548. va_start(ap, type);
  1549. arg = va_arg(ap, void *);
  1550. va_end(ap);
  1551. trace_kvm_ioctl(type, arg);
  1552. ret = ioctl(s->fd, type, arg);
  1553. if (ret == -1) {
  1554. ret = -errno;
  1555. }
  1556. return ret;
  1557. }
  1558. int kvm_vm_ioctl(KVMState *s, int type, ...)
  1559. {
  1560. int ret;
  1561. void *arg;
  1562. va_list ap;
  1563. va_start(ap, type);
  1564. arg = va_arg(ap, void *);
  1565. va_end(ap);
  1566. trace_kvm_vm_ioctl(type, arg);
  1567. ret = ioctl(s->vmfd, type, arg);
  1568. if (ret == -1) {
  1569. ret = -errno;
  1570. }
  1571. return ret;
  1572. }
  1573. int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
  1574. {
  1575. int ret;
  1576. void *arg;
  1577. va_list ap;
  1578. va_start(ap, type);
  1579. arg = va_arg(ap, void *);
  1580. va_end(ap);
  1581. trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
  1582. ret = ioctl(cpu->kvm_fd, type, arg);
  1583. if (ret == -1) {
  1584. ret = -errno;
  1585. }
  1586. return ret;
  1587. }
  1588. int kvm_device_ioctl(int fd, int type, ...)
  1589. {
  1590. int ret;
  1591. void *arg;
  1592. va_list ap;
  1593. va_start(ap, type);
  1594. arg = va_arg(ap, void *);
  1595. va_end(ap);
  1596. trace_kvm_device_ioctl(fd, type, arg);
  1597. ret = ioctl(fd, type, arg);
  1598. if (ret == -1) {
  1599. ret = -errno;
  1600. }
  1601. return ret;
  1602. }
  1603. int kvm_has_sync_mmu(void)
  1604. {
  1605. return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
  1606. }
  1607. int kvm_has_vcpu_events(void)
  1608. {
  1609. return kvm_state->vcpu_events;
  1610. }
  1611. int kvm_has_robust_singlestep(void)
  1612. {
  1613. return kvm_state->robust_singlestep;
  1614. }
  1615. int kvm_has_debugregs(void)
  1616. {
  1617. return kvm_state->debugregs;
  1618. }
  1619. int kvm_has_xsave(void)
  1620. {
  1621. return kvm_state->xsave;
  1622. }
  1623. int kvm_has_xcrs(void)
  1624. {
  1625. return kvm_state->xcrs;
  1626. }
  1627. int kvm_has_pit_state2(void)
  1628. {
  1629. return kvm_state->pit_state2;
  1630. }
  1631. int kvm_has_many_ioeventfds(void)
  1632. {
  1633. if (!kvm_enabled()) {
  1634. return 0;
  1635. }
  1636. return kvm_state->many_ioeventfds;
  1637. }
  1638. int kvm_has_gsi_routing(void)
  1639. {
  1640. #ifdef KVM_CAP_IRQ_ROUTING
  1641. return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
  1642. #else
  1643. return false;
  1644. #endif
  1645. }
  1646. int kvm_has_intx_set_mask(void)
  1647. {
  1648. return kvm_state->intx_set_mask;
  1649. }
  1650. void kvm_setup_guest_memory(void *start, size_t size)
  1651. {
  1652. if (!kvm_has_sync_mmu()) {
  1653. int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
  1654. if (ret) {
  1655. perror("qemu_madvise");
  1656. fprintf(stderr,
  1657. "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
  1658. exit(1);
  1659. }
  1660. }
  1661. }
  1662. #ifdef KVM_CAP_SET_GUEST_DEBUG
  1663. struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
  1664. target_ulong pc)
  1665. {
  1666. struct kvm_sw_breakpoint *bp;
  1667. QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
  1668. if (bp->pc == pc) {
  1669. return bp;
  1670. }
  1671. }
  1672. return NULL;
  1673. }
  1674. int kvm_sw_breakpoints_active(CPUState *cpu)
  1675. {
  1676. return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
  1677. }
  1678. struct kvm_set_guest_debug_data {
  1679. struct kvm_guest_debug dbg;
  1680. CPUState *cpu;
  1681. int err;
  1682. };
  1683. static void kvm_invoke_set_guest_debug(void *data)
  1684. {
  1685. struct kvm_set_guest_debug_data *dbg_data = data;
  1686. dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
  1687. &dbg_data->dbg);
  1688. }
  1689. int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
  1690. {
  1691. struct kvm_set_guest_debug_data data;
  1692. data.dbg.control = reinject_trap;
  1693. if (cpu->singlestep_enabled) {
  1694. data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
  1695. }
  1696. kvm_arch_update_guest_debug(cpu, &data.dbg);
  1697. data.cpu = cpu;
  1698. run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
  1699. return data.err;
  1700. }
  1701. int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
  1702. target_ulong len, int type)
  1703. {
  1704. struct kvm_sw_breakpoint *bp;
  1705. int err;
  1706. if (type == GDB_BREAKPOINT_SW) {
  1707. bp = kvm_find_sw_breakpoint(cpu, addr);
  1708. if (bp) {
  1709. bp->use_count++;
  1710. return 0;
  1711. }
  1712. bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
  1713. if (!bp) {
  1714. return -ENOMEM;
  1715. }
  1716. bp->pc = addr;
  1717. bp->use_count = 1;
  1718. err = kvm_arch_insert_sw_breakpoint(cpu, bp);
  1719. if (err) {
  1720. g_free(bp);
  1721. return err;
  1722. }
  1723. QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
  1724. } else {
  1725. err = kvm_arch_insert_hw_breakpoint(addr, len, type);
  1726. if (err) {
  1727. return err;
  1728. }
  1729. }
  1730. CPU_FOREACH(cpu) {
  1731. err = kvm_update_guest_debug(cpu, 0);
  1732. if (err) {
  1733. return err;
  1734. }
  1735. }
  1736. return 0;
  1737. }
  1738. int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
  1739. target_ulong len, int type)
  1740. {
  1741. struct kvm_sw_breakpoint *bp;
  1742. int err;
  1743. if (type == GDB_BREAKPOINT_SW) {
  1744. bp = kvm_find_sw_breakpoint(cpu, addr);
  1745. if (!bp) {
  1746. return -ENOENT;
  1747. }
  1748. if (bp->use_count > 1) {
  1749. bp->use_count--;
  1750. return 0;
  1751. }
  1752. err = kvm_arch_remove_sw_breakpoint(cpu, bp);
  1753. if (err) {
  1754. return err;
  1755. }
  1756. QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
  1757. g_free(bp);
  1758. } else {
  1759. err = kvm_arch_remove_hw_breakpoint(addr, len, type);
  1760. if (err) {
  1761. return err;
  1762. }
  1763. }
  1764. CPU_FOREACH(cpu) {
  1765. err = kvm_update_guest_debug(cpu, 0);
  1766. if (err) {
  1767. return err;
  1768. }
  1769. }
  1770. return 0;
  1771. }
  1772. void kvm_remove_all_breakpoints(CPUState *cpu)
  1773. {
  1774. struct kvm_sw_breakpoint *bp, *next;
  1775. KVMState *s = cpu->kvm_state;
  1776. CPUState *tmpcpu;
  1777. QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
  1778. if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
  1779. /* Try harder to find a CPU that currently sees the breakpoint. */
  1780. CPU_FOREACH(tmpcpu) {
  1781. if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
  1782. break;
  1783. }
  1784. }
  1785. }
  1786. QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
  1787. g_free(bp);
  1788. }
  1789. kvm_arch_remove_all_hw_breakpoints();
  1790. CPU_FOREACH(cpu) {
  1791. kvm_update_guest_debug(cpu, 0);
  1792. }
  1793. }
  1794. #else /* !KVM_CAP_SET_GUEST_DEBUG */
  1795. int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
  1796. {
  1797. return -EINVAL;
  1798. }
  1799. int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
  1800. target_ulong len, int type)
  1801. {
  1802. return -EINVAL;
  1803. }
  1804. int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
  1805. target_ulong len, int type)
  1806. {
  1807. return -EINVAL;
  1808. }
  1809. void kvm_remove_all_breakpoints(CPUState *cpu)
  1810. {
  1811. }
  1812. #endif /* !KVM_CAP_SET_GUEST_DEBUG */
  1813. int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
  1814. {
  1815. KVMState *s = kvm_state;
  1816. struct kvm_signal_mask *sigmask;
  1817. int r;
  1818. if (!sigset) {
  1819. return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
  1820. }
  1821. sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
  1822. sigmask->len = s->sigmask_len;
  1823. memcpy(sigmask->sigset, sigset, sizeof(*sigset));
  1824. r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
  1825. g_free(sigmask);
  1826. return r;
  1827. }
  1828. int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
  1829. {
  1830. return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
  1831. }
  1832. int kvm_on_sigbus(int code, void *addr)
  1833. {
  1834. return kvm_arch_on_sigbus(code, addr);
  1835. }
  1836. int kvm_create_device(KVMState *s, uint64_t type, bool test)
  1837. {
  1838. int ret;
  1839. struct kvm_create_device create_dev;
  1840. create_dev.type = type;
  1841. create_dev.fd = -1;
  1842. create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
  1843. if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
  1844. return -ENOTSUP;
  1845. }
  1846. ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
  1847. if (ret) {
  1848. return ret;
  1849. }
  1850. return test ? 0 : create_dev.fd;
  1851. }
  1852. int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
  1853. {
  1854. struct kvm_one_reg reg;
  1855. int r;
  1856. reg.id = id;
  1857. reg.addr = (uintptr_t) source;
  1858. r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
  1859. if (r) {
  1860. trace_kvm_failed_reg_set(id, strerror(r));
  1861. }
  1862. return r;
  1863. }
  1864. int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
  1865. {
  1866. struct kvm_one_reg reg;
  1867. int r;
  1868. reg.id = id;
  1869. reg.addr = (uintptr_t) target;
  1870. r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
  1871. if (r) {
  1872. trace_kvm_failed_reg_get(id, strerror(r));
  1873. }
  1874. return r;
  1875. }
  1876. static void kvm_accel_class_init(ObjectClass *oc, void *data)
  1877. {
  1878. AccelClass *ac = ACCEL_CLASS(oc);
  1879. ac->name = "KVM";
  1880. ac->init_machine = kvm_init;
  1881. ac->allowed = &kvm_allowed;
  1882. }
  1883. static const TypeInfo kvm_accel_type = {
  1884. .name = TYPE_KVM_ACCEL,
  1885. .parent = TYPE_ACCEL,
  1886. .class_init = kvm_accel_class_init,
  1887. .instance_size = sizeof(KVMState),
  1888. };
  1889. static void kvm_type_init(void)
  1890. {
  1891. type_register_static(&kvm_accel_type);
  1892. }
  1893. type_init(kvm_type_init);