qemu-doc.texi 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602
  1. \input texinfo @c -*- texinfo -*-
  2. @c %**start of header
  3. @setfilename qemu-doc.info
  4. @include version.texi
  5. @documentlanguage en
  6. @documentencoding UTF-8
  7. @settitle QEMU version @value{VERSION} User Documentation
  8. @exampleindent 0
  9. @paragraphindent 0
  10. @c %**end of header
  11. @ifinfo
  12. @direntry
  13. * QEMU: (qemu-doc). The QEMU Emulator User Documentation.
  14. @end direntry
  15. @end ifinfo
  16. @iftex
  17. @titlepage
  18. @sp 7
  19. @center @titlefont{QEMU version @value{VERSION}}
  20. @sp 1
  21. @center @titlefont{User Documentation}
  22. @sp 3
  23. @end titlepage
  24. @end iftex
  25. @ifnottex
  26. @node Top
  27. @top
  28. @menu
  29. * Introduction::
  30. * QEMU PC System emulator::
  31. * QEMU System emulator for non PC targets::
  32. * QEMU Guest Agent::
  33. * QEMU User space emulator::
  34. * Implementation notes::
  35. * Deprecated features::
  36. * License::
  37. * Index::
  38. @end menu
  39. @end ifnottex
  40. @contents
  41. @node Introduction
  42. @chapter Introduction
  43. @menu
  44. * intro_features:: Features
  45. @end menu
  46. @node intro_features
  47. @section Features
  48. QEMU is a FAST! processor emulator using dynamic translation to
  49. achieve good emulation speed.
  50. @cindex operating modes
  51. QEMU has two operating modes:
  52. @itemize
  53. @cindex system emulation
  54. @item Full system emulation. In this mode, QEMU emulates a full system (for
  55. example a PC), including one or several processors and various
  56. peripherals. It can be used to launch different Operating Systems
  57. without rebooting the PC or to debug system code.
  58. @cindex user mode emulation
  59. @item User mode emulation. In this mode, QEMU can launch
  60. processes compiled for one CPU on another CPU. It can be used to
  61. launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
  62. to ease cross-compilation and cross-debugging.
  63. @end itemize
  64. QEMU has the following features:
  65. @itemize
  66. @item QEMU can run without a host kernel driver and yet gives acceptable
  67. performance. It uses dynamic translation to native code for reasonable speed,
  68. with support for self-modifying code and precise exceptions.
  69. @item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
  70. Windows) and architectures.
  71. @item It performs accurate software emulation of the FPU.
  72. @end itemize
  73. QEMU user mode emulation has the following features:
  74. @itemize
  75. @item Generic Linux system call converter, including most ioctls.
  76. @item clone() emulation using native CPU clone() to use Linux scheduler for threads.
  77. @item Accurate signal handling by remapping host signals to target signals.
  78. @end itemize
  79. QEMU full system emulation has the following features:
  80. @itemize
  81. @item
  82. QEMU uses a full software MMU for maximum portability.
  83. @item
  84. QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
  85. execute most of the guest code natively, while
  86. continuing to emulate the rest of the machine.
  87. @item
  88. Various hardware devices can be emulated and in some cases, host
  89. devices (e.g. serial and parallel ports, USB, drives) can be used
  90. transparently by the guest Operating System. Host device passthrough
  91. can be used for talking to external physical peripherals (e.g. a
  92. webcam, modem or tape drive).
  93. @item
  94. Symmetric multiprocessing (SMP) support. Currently, an in-kernel
  95. accelerator is required to use more than one host CPU for emulation.
  96. @end itemize
  97. @node QEMU PC System emulator
  98. @chapter QEMU PC System emulator
  99. @cindex system emulation (PC)
  100. @menu
  101. * pcsys_introduction:: Introduction
  102. * pcsys_quickstart:: Quick Start
  103. * sec_invocation:: Invocation
  104. * pcsys_keys:: Keys in the graphical frontends
  105. * mux_keys:: Keys in the character backend multiplexer
  106. * pcsys_monitor:: QEMU Monitor
  107. * disk_images:: Disk Images
  108. * pcsys_network:: Network emulation
  109. * pcsys_other_devs:: Other Devices
  110. * direct_linux_boot:: Direct Linux Boot
  111. * pcsys_usb:: USB emulation
  112. * vnc_security:: VNC security
  113. * gdb_usage:: GDB usage
  114. * pcsys_os_specific:: Target OS specific information
  115. @end menu
  116. @node pcsys_introduction
  117. @section Introduction
  118. @c man begin DESCRIPTION
  119. The QEMU PC System emulator simulates the
  120. following peripherals:
  121. @itemize @minus
  122. @item
  123. i440FX host PCI bridge and PIIX3 PCI to ISA bridge
  124. @item
  125. Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
  126. extensions (hardware level, including all non standard modes).
  127. @item
  128. PS/2 mouse and keyboard
  129. @item
  130. 2 PCI IDE interfaces with hard disk and CD-ROM support
  131. @item
  132. Floppy disk
  133. @item
  134. PCI and ISA network adapters
  135. @item
  136. Serial ports
  137. @item
  138. IPMI BMC, either and internal or external one
  139. @item
  140. Creative SoundBlaster 16 sound card
  141. @item
  142. ENSONIQ AudioPCI ES1370 sound card
  143. @item
  144. Intel 82801AA AC97 Audio compatible sound card
  145. @item
  146. Intel HD Audio Controller and HDA codec
  147. @item
  148. Adlib (OPL2) - Yamaha YM3812 compatible chip
  149. @item
  150. Gravis Ultrasound GF1 sound card
  151. @item
  152. CS4231A compatible sound card
  153. @item
  154. PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
  155. @end itemize
  156. SMP is supported with up to 255 CPUs.
  157. QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
  158. VGA BIOS.
  159. QEMU uses YM3812 emulation by Tatsuyuki Satoh.
  160. QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
  161. by Tibor "TS" Schütz.
  162. Note that, by default, GUS shares IRQ(7) with parallel ports and so
  163. QEMU must be told to not have parallel ports to have working GUS.
  164. @example
  165. qemu-system-i386 dos.img -soundhw gus -parallel none
  166. @end example
  167. Alternatively:
  168. @example
  169. qemu-system-i386 dos.img -device gus,irq=5
  170. @end example
  171. Or some other unclaimed IRQ.
  172. CS4231A is the chip used in Windows Sound System and GUSMAX products
  173. @c man end
  174. @node pcsys_quickstart
  175. @section Quick Start
  176. @cindex quick start
  177. Download and uncompress the linux image (@file{linux.img}) and type:
  178. @example
  179. qemu-system-i386 linux.img
  180. @end example
  181. Linux should boot and give you a prompt.
  182. @node sec_invocation
  183. @section Invocation
  184. @example
  185. @c man begin SYNOPSIS
  186. @command{qemu-system-i386} [@var{options}] [@var{disk_image}]
  187. @c man end
  188. @end example
  189. @c man begin OPTIONS
  190. @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
  191. targets do not need a disk image.
  192. @include qemu-options.texi
  193. @c man end
  194. @node pcsys_keys
  195. @section Keys in the graphical frontends
  196. @c man begin OPTIONS
  197. During the graphical emulation, you can use special key combinations to change
  198. modes. The default key mappings are shown below, but if you use @code{-alt-grab}
  199. then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
  200. @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
  201. @table @key
  202. @item Ctrl-Alt-f
  203. @kindex Ctrl-Alt-f
  204. Toggle full screen
  205. @item Ctrl-Alt-+
  206. @kindex Ctrl-Alt-+
  207. Enlarge the screen
  208. @item Ctrl-Alt--
  209. @kindex Ctrl-Alt--
  210. Shrink the screen
  211. @item Ctrl-Alt-u
  212. @kindex Ctrl-Alt-u
  213. Restore the screen's un-scaled dimensions
  214. @item Ctrl-Alt-n
  215. @kindex Ctrl-Alt-n
  216. Switch to virtual console 'n'. Standard console mappings are:
  217. @table @emph
  218. @item 1
  219. Target system display
  220. @item 2
  221. Monitor
  222. @item 3
  223. Serial port
  224. @end table
  225. @item Ctrl-Alt
  226. @kindex Ctrl-Alt
  227. Toggle mouse and keyboard grab.
  228. @end table
  229. @kindex Ctrl-Up
  230. @kindex Ctrl-Down
  231. @kindex Ctrl-PageUp
  232. @kindex Ctrl-PageDown
  233. In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
  234. @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
  235. @c man end
  236. @node mux_keys
  237. @section Keys in the character backend multiplexer
  238. @c man begin OPTIONS
  239. During emulation, if you are using a character backend multiplexer
  240. (which is the default if you are using @option{-nographic}) then
  241. several commands are available via an escape sequence. These
  242. key sequences all start with an escape character, which is @key{Ctrl-a}
  243. by default, but can be changed with @option{-echr}. The list below assumes
  244. you're using the default.
  245. @table @key
  246. @item Ctrl-a h
  247. @kindex Ctrl-a h
  248. Print this help
  249. @item Ctrl-a x
  250. @kindex Ctrl-a x
  251. Exit emulator
  252. @item Ctrl-a s
  253. @kindex Ctrl-a s
  254. Save disk data back to file (if -snapshot)
  255. @item Ctrl-a t
  256. @kindex Ctrl-a t
  257. Toggle console timestamps
  258. @item Ctrl-a b
  259. @kindex Ctrl-a b
  260. Send break (magic sysrq in Linux)
  261. @item Ctrl-a c
  262. @kindex Ctrl-a c
  263. Rotate between the frontends connected to the multiplexer (usually
  264. this switches between the monitor and the console)
  265. @item Ctrl-a Ctrl-a
  266. @kindex Ctrl-a Ctrl-a
  267. Send the escape character to the frontend
  268. @end table
  269. @c man end
  270. @ignore
  271. @c man begin SEEALSO
  272. The HTML documentation of QEMU for more precise information and Linux
  273. user mode emulator invocation.
  274. @c man end
  275. @c man begin AUTHOR
  276. Fabrice Bellard
  277. @c man end
  278. @end ignore
  279. @node pcsys_monitor
  280. @section QEMU Monitor
  281. @cindex QEMU monitor
  282. The QEMU monitor is used to give complex commands to the QEMU
  283. emulator. You can use it to:
  284. @itemize @minus
  285. @item
  286. Remove or insert removable media images
  287. (such as CD-ROM or floppies).
  288. @item
  289. Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
  290. from a disk file.
  291. @item Inspect the VM state without an external debugger.
  292. @end itemize
  293. @subsection Commands
  294. The following commands are available:
  295. @include qemu-monitor.texi
  296. @include qemu-monitor-info.texi
  297. @subsection Integer expressions
  298. The monitor understands integers expressions for every integer
  299. argument. You can use register names to get the value of specifics
  300. CPU registers by prefixing them with @emph{$}.
  301. @node disk_images
  302. @section Disk Images
  303. QEMU supports many disk image formats, including growable disk images
  304. (their size increase as non empty sectors are written), compressed and
  305. encrypted disk images.
  306. @menu
  307. * disk_images_quickstart:: Quick start for disk image creation
  308. * disk_images_snapshot_mode:: Snapshot mode
  309. * vm_snapshots:: VM snapshots
  310. * qemu_img_invocation:: qemu-img Invocation
  311. * qemu_nbd_invocation:: qemu-nbd Invocation
  312. * disk_images_formats:: Disk image file formats
  313. * host_drives:: Using host drives
  314. * disk_images_fat_images:: Virtual FAT disk images
  315. * disk_images_nbd:: NBD access
  316. * disk_images_sheepdog:: Sheepdog disk images
  317. * disk_images_iscsi:: iSCSI LUNs
  318. * disk_images_gluster:: GlusterFS disk images
  319. * disk_images_ssh:: Secure Shell (ssh) disk images
  320. * disk_image_locking:: Disk image file locking
  321. @end menu
  322. @node disk_images_quickstart
  323. @subsection Quick start for disk image creation
  324. You can create a disk image with the command:
  325. @example
  326. qemu-img create myimage.img mysize
  327. @end example
  328. where @var{myimage.img} is the disk image filename and @var{mysize} is its
  329. size in kilobytes. You can add an @code{M} suffix to give the size in
  330. megabytes and a @code{G} suffix for gigabytes.
  331. See @ref{qemu_img_invocation} for more information.
  332. @node disk_images_snapshot_mode
  333. @subsection Snapshot mode
  334. If you use the option @option{-snapshot}, all disk images are
  335. considered as read only. When sectors in written, they are written in
  336. a temporary file created in @file{/tmp}. You can however force the
  337. write back to the raw disk images by using the @code{commit} monitor
  338. command (or @key{C-a s} in the serial console).
  339. @node vm_snapshots
  340. @subsection VM snapshots
  341. VM snapshots are snapshots of the complete virtual machine including
  342. CPU state, RAM, device state and the content of all the writable
  343. disks. In order to use VM snapshots, you must have at least one non
  344. removable and writable block device using the @code{qcow2} disk image
  345. format. Normally this device is the first virtual hard drive.
  346. Use the monitor command @code{savevm} to create a new VM snapshot or
  347. replace an existing one. A human readable name can be assigned to each
  348. snapshot in addition to its numerical ID.
  349. Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
  350. a VM snapshot. @code{info snapshots} lists the available snapshots
  351. with their associated information:
  352. @example
  353. (qemu) info snapshots
  354. Snapshot devices: hda
  355. Snapshot list (from hda):
  356. ID TAG VM SIZE DATE VM CLOCK
  357. 1 start 41M 2006-08-06 12:38:02 00:00:14.954
  358. 2 40M 2006-08-06 12:43:29 00:00:18.633
  359. 3 msys 40M 2006-08-06 12:44:04 00:00:23.514
  360. @end example
  361. A VM snapshot is made of a VM state info (its size is shown in
  362. @code{info snapshots}) and a snapshot of every writable disk image.
  363. The VM state info is stored in the first @code{qcow2} non removable
  364. and writable block device. The disk image snapshots are stored in
  365. every disk image. The size of a snapshot in a disk image is difficult
  366. to evaluate and is not shown by @code{info snapshots} because the
  367. associated disk sectors are shared among all the snapshots to save
  368. disk space (otherwise each snapshot would need a full copy of all the
  369. disk images).
  370. When using the (unrelated) @code{-snapshot} option
  371. (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
  372. but they are deleted as soon as you exit QEMU.
  373. VM snapshots currently have the following known limitations:
  374. @itemize
  375. @item
  376. They cannot cope with removable devices if they are removed or
  377. inserted after a snapshot is done.
  378. @item
  379. A few device drivers still have incomplete snapshot support so their
  380. state is not saved or restored properly (in particular USB).
  381. @end itemize
  382. @node qemu_img_invocation
  383. @subsection @code{qemu-img} Invocation
  384. @include qemu-img.texi
  385. @node qemu_nbd_invocation
  386. @subsection @code{qemu-nbd} Invocation
  387. @include qemu-nbd.texi
  388. @include docs/qemu-block-drivers.texi
  389. @node pcsys_network
  390. @section Network emulation
  391. QEMU can simulate several network cards (PCI or ISA cards on the PC
  392. target) and can connect them to an arbitrary number of Virtual Local
  393. Area Networks (VLANs). Host TAP devices can be connected to any QEMU
  394. VLAN. VLAN can be connected between separate instances of QEMU to
  395. simulate large networks. For simpler usage, a non privileged user mode
  396. network stack can replace the TAP device to have a basic network
  397. connection.
  398. @subsection VLANs
  399. QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
  400. connection between several network devices. These devices can be for
  401. example QEMU virtual Ethernet cards or virtual Host ethernet devices
  402. (TAP devices).
  403. @subsection Using TAP network interfaces
  404. This is the standard way to connect QEMU to a real network. QEMU adds
  405. a virtual network device on your host (called @code{tapN}), and you
  406. can then configure it as if it was a real ethernet card.
  407. @subsubsection Linux host
  408. As an example, you can download the @file{linux-test-xxx.tar.gz}
  409. archive and copy the script @file{qemu-ifup} in @file{/etc} and
  410. configure properly @code{sudo} so that the command @code{ifconfig}
  411. contained in @file{qemu-ifup} can be executed as root. You must verify
  412. that your host kernel supports the TAP network interfaces: the
  413. device @file{/dev/net/tun} must be present.
  414. See @ref{sec_invocation} to have examples of command lines using the
  415. TAP network interfaces.
  416. @subsubsection Windows host
  417. There is a virtual ethernet driver for Windows 2000/XP systems, called
  418. TAP-Win32. But it is not included in standard QEMU for Windows,
  419. so you will need to get it separately. It is part of OpenVPN package,
  420. so download OpenVPN from : @url{https://openvpn.net/}.
  421. @subsection Using the user mode network stack
  422. By using the option @option{-net user} (default configuration if no
  423. @option{-net} option is specified), QEMU uses a completely user mode
  424. network stack (you don't need root privilege to use the virtual
  425. network). The virtual network configuration is the following:
  426. @example
  427. QEMU VLAN <------> Firewall/DHCP server <-----> Internet
  428. | (10.0.2.2)
  429. |
  430. ----> DNS server (10.0.2.3)
  431. |
  432. ----> SMB server (10.0.2.4)
  433. @end example
  434. The QEMU VM behaves as if it was behind a firewall which blocks all
  435. incoming connections. You can use a DHCP client to automatically
  436. configure the network in the QEMU VM. The DHCP server assign addresses
  437. to the hosts starting from 10.0.2.15.
  438. In order to check that the user mode network is working, you can ping
  439. the address 10.0.2.2 and verify that you got an address in the range
  440. 10.0.2.x from the QEMU virtual DHCP server.
  441. Note that ICMP traffic in general does not work with user mode networking.
  442. @code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
  443. however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
  444. ping sockets to allow @code{ping} to the Internet. The host admin has to set
  445. the ping_group_range in order to grant access to those sockets. To allow ping
  446. for GID 100 (usually users group):
  447. @example
  448. echo 100 100 > /proc/sys/net/ipv4/ping_group_range
  449. @end example
  450. When using the built-in TFTP server, the router is also the TFTP
  451. server.
  452. When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
  453. connections can be redirected from the host to the guest. It allows for
  454. example to redirect X11, telnet or SSH connections.
  455. @subsection Connecting VLANs between QEMU instances
  456. Using the @option{-net socket} option, it is possible to make VLANs
  457. that span several QEMU instances. See @ref{sec_invocation} to have a
  458. basic example.
  459. @node pcsys_other_devs
  460. @section Other Devices
  461. @subsection Inter-VM Shared Memory device
  462. On Linux hosts, a shared memory device is available. The basic syntax
  463. is:
  464. @example
  465. qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
  466. @end example
  467. where @var{hostmem} names a host memory backend. For a POSIX shared
  468. memory backend, use something like
  469. @example
  470. -object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
  471. @end example
  472. If desired, interrupts can be sent between guest VMs accessing the same shared
  473. memory region. Interrupt support requires using a shared memory server and
  474. using a chardev socket to connect to it. The code for the shared memory server
  475. is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
  476. memory server is:
  477. @example
  478. # First start the ivshmem server once and for all
  479. ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
  480. # Then start your qemu instances with matching arguments
  481. qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
  482. -chardev socket,path=@var{path},id=@var{id}
  483. @end example
  484. When using the server, the guest will be assigned a VM ID (>=0) that allows guests
  485. using the same server to communicate via interrupts. Guests can read their
  486. VM ID from a device register (see ivshmem-spec.txt).
  487. @subsubsection Migration with ivshmem
  488. With device property @option{master=on}, the guest will copy the shared
  489. memory on migration to the destination host. With @option{master=off},
  490. the guest will not be able to migrate with the device attached. In the
  491. latter case, the device should be detached and then reattached after
  492. migration using the PCI hotplug support.
  493. At most one of the devices sharing the same memory can be master. The
  494. master must complete migration before you plug back the other devices.
  495. @subsubsection ivshmem and hugepages
  496. Instead of specifying the <shm size> using POSIX shm, you may specify
  497. a memory backend that has hugepage support:
  498. @example
  499. qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
  500. -device ivshmem-plain,memdev=mb1
  501. @end example
  502. ivshmem-server also supports hugepages mount points with the
  503. @option{-m} memory path argument.
  504. @node direct_linux_boot
  505. @section Direct Linux Boot
  506. This section explains how to launch a Linux kernel inside QEMU without
  507. having to make a full bootable image. It is very useful for fast Linux
  508. kernel testing.
  509. The syntax is:
  510. @example
  511. qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
  512. @end example
  513. Use @option{-kernel} to provide the Linux kernel image and
  514. @option{-append} to give the kernel command line arguments. The
  515. @option{-initrd} option can be used to provide an INITRD image.
  516. When using the direct Linux boot, a disk image for the first hard disk
  517. @file{hda} is required because its boot sector is used to launch the
  518. Linux kernel.
  519. If you do not need graphical output, you can disable it and redirect
  520. the virtual serial port and the QEMU monitor to the console with the
  521. @option{-nographic} option. The typical command line is:
  522. @example
  523. qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
  524. -append "root=/dev/hda console=ttyS0" -nographic
  525. @end example
  526. Use @key{Ctrl-a c} to switch between the serial console and the
  527. monitor (@pxref{pcsys_keys}).
  528. @node pcsys_usb
  529. @section USB emulation
  530. QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
  531. plug virtual USB devices or real host USB devices (only works with certain
  532. host operating systems). QEMU will automatically create and connect virtual
  533. USB hubs as necessary to connect multiple USB devices.
  534. @menu
  535. * usb_devices::
  536. * host_usb_devices::
  537. @end menu
  538. @node usb_devices
  539. @subsection Connecting USB devices
  540. USB devices can be connected with the @option{-device usb-...} command line
  541. option or the @code{device_add} monitor command. Available devices are:
  542. @table @code
  543. @item usb-mouse
  544. Virtual Mouse. This will override the PS/2 mouse emulation when activated.
  545. @item usb-tablet
  546. Pointer device that uses absolute coordinates (like a touchscreen).
  547. This means QEMU is able to report the mouse position without having
  548. to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
  549. @item usb-storage,drive=@var{drive_id}
  550. Mass storage device backed by @var{drive_id} (@pxref{disk_images})
  551. @item usb-uas
  552. USB attached SCSI device, see
  553. @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
  554. for details
  555. @item usb-bot
  556. Bulk-only transport storage device, see
  557. @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
  558. for details here, too
  559. @item usb-mtp,x-root=@var{dir}
  560. Media transfer protocol device, using @var{dir} as root of the file tree
  561. that is presented to the guest.
  562. @item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
  563. Pass through the host device identified by @var{bus} and @var{addr}
  564. @item usb-host,vendorid=@var{vendor},productid=@var{product}
  565. Pass through the host device identified by @var{vendor} and @var{product} ID
  566. @item usb-wacom-tablet
  567. Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
  568. above but it can be used with the tslib library because in addition to touch
  569. coordinates it reports touch pressure.
  570. @item usb-kbd
  571. Standard USB keyboard. Will override the PS/2 keyboard (if present).
  572. @item usb-serial,chardev=@var{id}
  573. Serial converter. This emulates an FTDI FT232BM chip connected to host character
  574. device @var{id}.
  575. @item usb-braille,chardev=@var{id}
  576. Braille device. This will use BrlAPI to display the braille output on a real
  577. or fake device referenced by @var{id}.
  578. @item usb-net[,netdev=@var{id}]
  579. Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
  580. specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
  581. For instance, user-mode networking can be used with
  582. @example
  583. qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
  584. @end example
  585. @item usb-ccid
  586. Smartcard reader device
  587. @item usb-audio
  588. USB audio device
  589. @item usb-bt-dongle
  590. Bluetooth dongle for the transport layer of HCI. It is connected to HCI
  591. scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
  592. Note that the syntax for the @code{-device usb-bt-dongle} option is not as
  593. useful yet as it was with the legacy @code{-usbdevice} option. So to
  594. configure an USB bluetooth device, you might need to use
  595. "@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
  596. bluetooth dongle whose type is specified in the same format as with
  597. the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
  598. no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
  599. This USB device implements the USB Transport Layer of HCI. Example
  600. usage:
  601. @example
  602. @command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
  603. @end example
  604. @end table
  605. @node host_usb_devices
  606. @subsection Using host USB devices on a Linux host
  607. WARNING: this is an experimental feature. QEMU will slow down when
  608. using it. USB devices requiring real time streaming (i.e. USB Video
  609. Cameras) are not supported yet.
  610. @enumerate
  611. @item If you use an early Linux 2.4 kernel, verify that no Linux driver
  612. is actually using the USB device. A simple way to do that is simply to
  613. disable the corresponding kernel module by renaming it from @file{mydriver.o}
  614. to @file{mydriver.o.disabled}.
  615. @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
  616. @example
  617. ls /proc/bus/usb
  618. 001 devices drivers
  619. @end example
  620. @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
  621. @example
  622. chown -R myuid /proc/bus/usb
  623. @end example
  624. @item Launch QEMU and do in the monitor:
  625. @example
  626. info usbhost
  627. Device 1.2, speed 480 Mb/s
  628. Class 00: USB device 1234:5678, USB DISK
  629. @end example
  630. You should see the list of the devices you can use (Never try to use
  631. hubs, it won't work).
  632. @item Add the device in QEMU by using:
  633. @example
  634. device_add usb-host,vendorid=0x1234,productid=0x5678
  635. @end example
  636. Normally the guest OS should report that a new USB device is plugged.
  637. You can use the option @option{-device usb-host,...} to do the same.
  638. @item Now you can try to use the host USB device in QEMU.
  639. @end enumerate
  640. When relaunching QEMU, you may have to unplug and plug again the USB
  641. device to make it work again (this is a bug).
  642. @node vnc_security
  643. @section VNC security
  644. The VNC server capability provides access to the graphical console
  645. of the guest VM across the network. This has a number of security
  646. considerations depending on the deployment scenarios.
  647. @menu
  648. * vnc_sec_none::
  649. * vnc_sec_password::
  650. * vnc_sec_certificate::
  651. * vnc_sec_certificate_verify::
  652. * vnc_sec_certificate_pw::
  653. * vnc_sec_sasl::
  654. * vnc_sec_certificate_sasl::
  655. * vnc_generate_cert::
  656. * vnc_setup_sasl::
  657. @end menu
  658. @node vnc_sec_none
  659. @subsection Without passwords
  660. The simplest VNC server setup does not include any form of authentication.
  661. For this setup it is recommended to restrict it to listen on a UNIX domain
  662. socket only. For example
  663. @example
  664. qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
  665. @end example
  666. This ensures that only users on local box with read/write access to that
  667. path can access the VNC server. To securely access the VNC server from a
  668. remote machine, a combination of netcat+ssh can be used to provide a secure
  669. tunnel.
  670. @node vnc_sec_password
  671. @subsection With passwords
  672. The VNC protocol has limited support for password based authentication. Since
  673. the protocol limits passwords to 8 characters it should not be considered
  674. to provide high security. The password can be fairly easily brute-forced by
  675. a client making repeat connections. For this reason, a VNC server using password
  676. authentication should be restricted to only listen on the loopback interface
  677. or UNIX domain sockets. Password authentication is not supported when operating
  678. in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
  679. authentication is requested with the @code{password} option, and then once QEMU
  680. is running the password is set with the monitor. Until the monitor is used to
  681. set the password all clients will be rejected.
  682. @example
  683. qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
  684. (qemu) change vnc password
  685. Password: ********
  686. (qemu)
  687. @end example
  688. @node vnc_sec_certificate
  689. @subsection With x509 certificates
  690. The QEMU VNC server also implements the VeNCrypt extension allowing use of
  691. TLS for encryption of the session, and x509 certificates for authentication.
  692. The use of x509 certificates is strongly recommended, because TLS on its
  693. own is susceptible to man-in-the-middle attacks. Basic x509 certificate
  694. support provides a secure session, but no authentication. This allows any
  695. client to connect, and provides an encrypted session.
  696. @example
  697. qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
  698. @end example
  699. In the above example @code{/etc/pki/qemu} should contain at least three files,
  700. @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
  701. users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
  702. NB the @code{server-key.pem} file should be protected with file mode 0600 to
  703. only be readable by the user owning it.
  704. @node vnc_sec_certificate_verify
  705. @subsection With x509 certificates and client verification
  706. Certificates can also provide a means to authenticate the client connecting.
  707. The server will request that the client provide a certificate, which it will
  708. then validate against the CA certificate. This is a good choice if deploying
  709. in an environment with a private internal certificate authority.
  710. @example
  711. qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
  712. @end example
  713. @node vnc_sec_certificate_pw
  714. @subsection With x509 certificates, client verification and passwords
  715. Finally, the previous method can be combined with VNC password authentication
  716. to provide two layers of authentication for clients.
  717. @example
  718. qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
  719. (qemu) change vnc password
  720. Password: ********
  721. (qemu)
  722. @end example
  723. @node vnc_sec_sasl
  724. @subsection With SASL authentication
  725. The SASL authentication method is a VNC extension, that provides an
  726. easily extendable, pluggable authentication method. This allows for
  727. integration with a wide range of authentication mechanisms, such as
  728. PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
  729. The strength of the authentication depends on the exact mechanism
  730. configured. If the chosen mechanism also provides a SSF layer, then
  731. it will encrypt the datastream as well.
  732. Refer to the later docs on how to choose the exact SASL mechanism
  733. used for authentication, but assuming use of one supporting SSF,
  734. then QEMU can be launched with:
  735. @example
  736. qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
  737. @end example
  738. @node vnc_sec_certificate_sasl
  739. @subsection With x509 certificates and SASL authentication
  740. If the desired SASL authentication mechanism does not supported
  741. SSF layers, then it is strongly advised to run it in combination
  742. with TLS and x509 certificates. This provides securely encrypted
  743. data stream, avoiding risk of compromising of the security
  744. credentials. This can be enabled, by combining the 'sasl' option
  745. with the aforementioned TLS + x509 options:
  746. @example
  747. qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
  748. @end example
  749. @node vnc_generate_cert
  750. @subsection Generating certificates for VNC
  751. The GNU TLS packages provides a command called @code{certtool} which can
  752. be used to generate certificates and keys in PEM format. At a minimum it
  753. is necessary to setup a certificate authority, and issue certificates to
  754. each server. If using certificates for authentication, then each client
  755. will also need to be issued a certificate. The recommendation is for the
  756. server to keep its certificates in either @code{/etc/pki/qemu} or for
  757. unprivileged users in @code{$HOME/.pki/qemu}.
  758. @menu
  759. * vnc_generate_ca::
  760. * vnc_generate_server::
  761. * vnc_generate_client::
  762. @end menu
  763. @node vnc_generate_ca
  764. @subsubsection Setup the Certificate Authority
  765. This step only needs to be performed once per organization / organizational
  766. unit. First the CA needs a private key. This key must be kept VERY secret
  767. and secure. If this key is compromised the entire trust chain of the certificates
  768. issued with it is lost.
  769. @example
  770. # certtool --generate-privkey > ca-key.pem
  771. @end example
  772. A CA needs to have a public certificate. For simplicity it can be a self-signed
  773. certificate, or one issue by a commercial certificate issuing authority. To
  774. generate a self-signed certificate requires one core piece of information, the
  775. name of the organization.
  776. @example
  777. # cat > ca.info <<EOF
  778. cn = Name of your organization
  779. ca
  780. cert_signing_key
  781. EOF
  782. # certtool --generate-self-signed \
  783. --load-privkey ca-key.pem
  784. --template ca.info \
  785. --outfile ca-cert.pem
  786. @end example
  787. The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
  788. TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
  789. @node vnc_generate_server
  790. @subsubsection Issuing server certificates
  791. Each server (or host) needs to be issued with a key and certificate. When connecting
  792. the certificate is sent to the client which validates it against the CA certificate.
  793. The core piece of information for a server certificate is the hostname. This should
  794. be the fully qualified hostname that the client will connect with, since the client
  795. will typically also verify the hostname in the certificate. On the host holding the
  796. secure CA private key:
  797. @example
  798. # cat > server.info <<EOF
  799. organization = Name of your organization
  800. cn = server.foo.example.com
  801. tls_www_server
  802. encryption_key
  803. signing_key
  804. EOF
  805. # certtool --generate-privkey > server-key.pem
  806. # certtool --generate-certificate \
  807. --load-ca-certificate ca-cert.pem \
  808. --load-ca-privkey ca-key.pem \
  809. --load-privkey server-key.pem \
  810. --template server.info \
  811. --outfile server-cert.pem
  812. @end example
  813. The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
  814. to the server for which they were generated. The @code{server-key.pem} is security
  815. sensitive and should be kept protected with file mode 0600 to prevent disclosure.
  816. @node vnc_generate_client
  817. @subsubsection Issuing client certificates
  818. If the QEMU VNC server is to use the @code{x509verify} option to validate client
  819. certificates as its authentication mechanism, each client also needs to be issued
  820. a certificate. The client certificate contains enough metadata to uniquely identify
  821. the client, typically organization, state, city, building, etc. On the host holding
  822. the secure CA private key:
  823. @example
  824. # cat > client.info <<EOF
  825. country = GB
  826. state = London
  827. locality = London
  828. organization = Name of your organization
  829. cn = client.foo.example.com
  830. tls_www_client
  831. encryption_key
  832. signing_key
  833. EOF
  834. # certtool --generate-privkey > client-key.pem
  835. # certtool --generate-certificate \
  836. --load-ca-certificate ca-cert.pem \
  837. --load-ca-privkey ca-key.pem \
  838. --load-privkey client-key.pem \
  839. --template client.info \
  840. --outfile client-cert.pem
  841. @end example
  842. The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
  843. copied to the client for which they were generated.
  844. @node vnc_setup_sasl
  845. @subsection Configuring SASL mechanisms
  846. The following documentation assumes use of the Cyrus SASL implementation on a
  847. Linux host, but the principals should apply to any other SASL impl. When SASL
  848. is enabled, the mechanism configuration will be loaded from system default
  849. SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
  850. unprivileged user, an environment variable SASL_CONF_PATH can be used
  851. to make it search alternate locations for the service config.
  852. If the TLS option is enabled for VNC, then it will provide session encryption,
  853. otherwise the SASL mechanism will have to provide encryption. In the latter
  854. case the list of possible plugins that can be used is drastically reduced. In
  855. fact only the GSSAPI SASL mechanism provides an acceptable level of security
  856. by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
  857. mechanism, however, it has multiple serious flaws described in detail in
  858. RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
  859. provides a simple username/password auth facility similar to DIGEST-MD5, but
  860. does not support session encryption, so can only be used in combination with
  861. TLS.
  862. When not using TLS the recommended configuration is
  863. @example
  864. mech_list: gssapi
  865. keytab: /etc/qemu/krb5.tab
  866. @end example
  867. This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
  868. the server principal stored in /etc/qemu/krb5.tab. For this to work the
  869. administrator of your KDC must generate a Kerberos principal for the server,
  870. with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
  871. 'somehost.example.com' with the fully qualified host name of the machine
  872. running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
  873. When using TLS, if username+password authentication is desired, then a
  874. reasonable configuration is
  875. @example
  876. mech_list: scram-sha-1
  877. sasldb_path: /etc/qemu/passwd.db
  878. @end example
  879. The saslpasswd2 program can be used to populate the passwd.db file with
  880. accounts.
  881. Other SASL configurations will be left as an exercise for the reader. Note that
  882. all mechanisms except GSSAPI, should be combined with use of TLS to ensure a
  883. secure data channel.
  884. @node gdb_usage
  885. @section GDB usage
  886. QEMU has a primitive support to work with gdb, so that you can do
  887. 'Ctrl-C' while the virtual machine is running and inspect its state.
  888. In order to use gdb, launch QEMU with the '-s' option. It will wait for a
  889. gdb connection:
  890. @example
  891. qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
  892. -append "root=/dev/hda"
  893. Connected to host network interface: tun0
  894. Waiting gdb connection on port 1234
  895. @end example
  896. Then launch gdb on the 'vmlinux' executable:
  897. @example
  898. > gdb vmlinux
  899. @end example
  900. In gdb, connect to QEMU:
  901. @example
  902. (gdb) target remote localhost:1234
  903. @end example
  904. Then you can use gdb normally. For example, type 'c' to launch the kernel:
  905. @example
  906. (gdb) c
  907. @end example
  908. Here are some useful tips in order to use gdb on system code:
  909. @enumerate
  910. @item
  911. Use @code{info reg} to display all the CPU registers.
  912. @item
  913. Use @code{x/10i $eip} to display the code at the PC position.
  914. @item
  915. Use @code{set architecture i8086} to dump 16 bit code. Then use
  916. @code{x/10i $cs*16+$eip} to dump the code at the PC position.
  917. @end enumerate
  918. Advanced debugging options:
  919. The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
  920. @table @code
  921. @item maintenance packet qqemu.sstepbits
  922. This will display the MASK bits used to control the single stepping IE:
  923. @example
  924. (gdb) maintenance packet qqemu.sstepbits
  925. sending: "qqemu.sstepbits"
  926. received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
  927. @end example
  928. @item maintenance packet qqemu.sstep
  929. This will display the current value of the mask used when single stepping IE:
  930. @example
  931. (gdb) maintenance packet qqemu.sstep
  932. sending: "qqemu.sstep"
  933. received: "0x7"
  934. @end example
  935. @item maintenance packet Qqemu.sstep=HEX_VALUE
  936. This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
  937. @example
  938. (gdb) maintenance packet Qqemu.sstep=0x5
  939. sending: "qemu.sstep=0x5"
  940. received: "OK"
  941. @end example
  942. @end table
  943. @node pcsys_os_specific
  944. @section Target OS specific information
  945. @subsection Linux
  946. To have access to SVGA graphic modes under X11, use the @code{vesa} or
  947. the @code{cirrus} X11 driver. For optimal performances, use 16 bit
  948. color depth in the guest and the host OS.
  949. When using a 2.6 guest Linux kernel, you should add the option
  950. @code{clock=pit} on the kernel command line because the 2.6 Linux
  951. kernels make very strict real time clock checks by default that QEMU
  952. cannot simulate exactly.
  953. When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
  954. not activated because QEMU is slower with this patch. The QEMU
  955. Accelerator Module is also much slower in this case. Earlier Fedora
  956. Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
  957. patch by default. Newer kernels don't have it.
  958. @subsection Windows
  959. If you have a slow host, using Windows 95 is better as it gives the
  960. best speed. Windows 2000 is also a good choice.
  961. @subsubsection SVGA graphic modes support
  962. QEMU emulates a Cirrus Logic GD5446 Video
  963. card. All Windows versions starting from Windows 95 should recognize
  964. and use this graphic card. For optimal performances, use 16 bit color
  965. depth in the guest and the host OS.
  966. If you are using Windows XP as guest OS and if you want to use high
  967. resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
  968. 1280x1024x16), then you should use the VESA VBE virtual graphic card
  969. (option @option{-std-vga}).
  970. @subsubsection CPU usage reduction
  971. Windows 9x does not correctly use the CPU HLT
  972. instruction. The result is that it takes host CPU cycles even when
  973. idle. You can install the utility from
  974. @url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
  975. to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
  976. @subsubsection Windows 2000 disk full problem
  977. Windows 2000 has a bug which gives a disk full problem during its
  978. installation. When installing it, use the @option{-win2k-hack} QEMU
  979. option to enable a specific workaround. After Windows 2000 is
  980. installed, you no longer need this option (this option slows down the
  981. IDE transfers).
  982. @subsubsection Windows 2000 shutdown
  983. Windows 2000 cannot automatically shutdown in QEMU although Windows 98
  984. can. It comes from the fact that Windows 2000 does not automatically
  985. use the APM driver provided by the BIOS.
  986. In order to correct that, do the following (thanks to Struan
  987. Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
  988. Add/Troubleshoot a device => Add a new device & Next => No, select the
  989. hardware from a list & Next => NT Apm/Legacy Support & Next => Next
  990. (again) a few times. Now the driver is installed and Windows 2000 now
  991. correctly instructs QEMU to shutdown at the appropriate moment.
  992. @subsubsection Share a directory between Unix and Windows
  993. See @ref{sec_invocation} about the help of the option
  994. @option{'-netdev user,smb=...'}.
  995. @subsubsection Windows XP security problem
  996. Some releases of Windows XP install correctly but give a security
  997. error when booting:
  998. @example
  999. A problem is preventing Windows from accurately checking the
  1000. license for this computer. Error code: 0x800703e6.
  1001. @end example
  1002. The workaround is to install a service pack for XP after a boot in safe
  1003. mode. Then reboot, and the problem should go away. Since there is no
  1004. network while in safe mode, its recommended to download the full
  1005. installation of SP1 or SP2 and transfer that via an ISO or using the
  1006. vvfat block device ("-hdb fat:directory_which_holds_the_SP").
  1007. @subsection MS-DOS and FreeDOS
  1008. @subsubsection CPU usage reduction
  1009. DOS does not correctly use the CPU HLT instruction. The result is that
  1010. it takes host CPU cycles even when idle. You can install the utility from
  1011. @url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
  1012. to solve this problem.
  1013. @node QEMU System emulator for non PC targets
  1014. @chapter QEMU System emulator for non PC targets
  1015. QEMU is a generic emulator and it emulates many non PC
  1016. machines. Most of the options are similar to the PC emulator. The
  1017. differences are mentioned in the following sections.
  1018. @menu
  1019. * PowerPC System emulator::
  1020. * Sparc32 System emulator::
  1021. * Sparc64 System emulator::
  1022. * MIPS System emulator::
  1023. * ARM System emulator::
  1024. * ColdFire System emulator::
  1025. * Cris System emulator::
  1026. * Microblaze System emulator::
  1027. * SH4 System emulator::
  1028. * Xtensa System emulator::
  1029. @end menu
  1030. @node PowerPC System emulator
  1031. @section PowerPC System emulator
  1032. @cindex system emulation (PowerPC)
  1033. Use the executable @file{qemu-system-ppc} to simulate a complete PREP
  1034. or PowerMac PowerPC system.
  1035. QEMU emulates the following PowerMac peripherals:
  1036. @itemize @minus
  1037. @item
  1038. UniNorth or Grackle PCI Bridge
  1039. @item
  1040. PCI VGA compatible card with VESA Bochs Extensions
  1041. @item
  1042. 2 PMAC IDE interfaces with hard disk and CD-ROM support
  1043. @item
  1044. NE2000 PCI adapters
  1045. @item
  1046. Non Volatile RAM
  1047. @item
  1048. VIA-CUDA with ADB keyboard and mouse.
  1049. @end itemize
  1050. QEMU emulates the following PREP peripherals:
  1051. @itemize @minus
  1052. @item
  1053. PCI Bridge
  1054. @item
  1055. PCI VGA compatible card with VESA Bochs Extensions
  1056. @item
  1057. 2 IDE interfaces with hard disk and CD-ROM support
  1058. @item
  1059. Floppy disk
  1060. @item
  1061. NE2000 network adapters
  1062. @item
  1063. Serial port
  1064. @item
  1065. PREP Non Volatile RAM
  1066. @item
  1067. PC compatible keyboard and mouse.
  1068. @end itemize
  1069. QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
  1070. @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
  1071. Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
  1072. for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
  1073. v2) portable firmware implementation. The goal is to implement a 100%
  1074. IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
  1075. @c man begin OPTIONS
  1076. The following options are specific to the PowerPC emulation:
  1077. @table @option
  1078. @item -g @var{W}x@var{H}[x@var{DEPTH}]
  1079. Set the initial VGA graphic mode. The default is 800x600x32.
  1080. @item -prom-env @var{string}
  1081. Set OpenBIOS variables in NVRAM, for example:
  1082. @example
  1083. qemu-system-ppc -prom-env 'auto-boot?=false' \
  1084. -prom-env 'boot-device=hd:2,\yaboot' \
  1085. -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
  1086. @end example
  1087. These variables are not used by Open Hack'Ware.
  1088. @end table
  1089. @c man end
  1090. More information is available at
  1091. @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
  1092. @node Sparc32 System emulator
  1093. @section Sparc32 System emulator
  1094. @cindex system emulation (Sparc32)
  1095. Use the executable @file{qemu-system-sparc} to simulate the following
  1096. Sun4m architecture machines:
  1097. @itemize @minus
  1098. @item
  1099. SPARCstation 4
  1100. @item
  1101. SPARCstation 5
  1102. @item
  1103. SPARCstation 10
  1104. @item
  1105. SPARCstation 20
  1106. @item
  1107. SPARCserver 600MP
  1108. @item
  1109. SPARCstation LX
  1110. @item
  1111. SPARCstation Voyager
  1112. @item
  1113. SPARCclassic
  1114. @item
  1115. SPARCbook
  1116. @end itemize
  1117. The emulation is somewhat complete. SMP up to 16 CPUs is supported,
  1118. but Linux limits the number of usable CPUs to 4.
  1119. QEMU emulates the following sun4m peripherals:
  1120. @itemize @minus
  1121. @item
  1122. IOMMU
  1123. @item
  1124. TCX or cgthree Frame buffer
  1125. @item
  1126. Lance (Am7990) Ethernet
  1127. @item
  1128. Non Volatile RAM M48T02/M48T08
  1129. @item
  1130. Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
  1131. and power/reset logic
  1132. @item
  1133. ESP SCSI controller with hard disk and CD-ROM support
  1134. @item
  1135. Floppy drive (not on SS-600MP)
  1136. @item
  1137. CS4231 sound device (only on SS-5, not working yet)
  1138. @end itemize
  1139. The number of peripherals is fixed in the architecture. Maximum
  1140. memory size depends on the machine type, for SS-5 it is 256MB and for
  1141. others 2047MB.
  1142. Since version 0.8.2, QEMU uses OpenBIOS
  1143. @url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
  1144. firmware implementation. The goal is to implement a 100% IEEE
  1145. 1275-1994 (referred to as Open Firmware) compliant firmware.
  1146. A sample Linux 2.6 series kernel and ram disk image are available on
  1147. the QEMU web site. There are still issues with NetBSD and OpenBSD, but
  1148. most kernel versions work. Please note that currently older Solaris kernels
  1149. don't work probably due to interface issues between OpenBIOS and
  1150. Solaris.
  1151. @c man begin OPTIONS
  1152. The following options are specific to the Sparc32 emulation:
  1153. @table @option
  1154. @item -g @var{W}x@var{H}x[x@var{DEPTH}]
  1155. Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
  1156. option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
  1157. of 1152x900x8 for people who wish to use OBP.
  1158. @item -prom-env @var{string}
  1159. Set OpenBIOS variables in NVRAM, for example:
  1160. @example
  1161. qemu-system-sparc -prom-env 'auto-boot?=false' \
  1162. -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
  1163. @end example
  1164. @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
  1165. Set the emulated machine type. Default is SS-5.
  1166. @end table
  1167. @c man end
  1168. @node Sparc64 System emulator
  1169. @section Sparc64 System emulator
  1170. @cindex system emulation (Sparc64)
  1171. Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
  1172. (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
  1173. Niagara (T1) machine. The Sun4u emulator is mostly complete, being
  1174. able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
  1175. Sun4v emulator is still a work in progress.
  1176. The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
  1177. of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
  1178. and is able to boot the disk.s10hw2 Solaris image.
  1179. @example
  1180. qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
  1181. -nographic -m 256 \
  1182. -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
  1183. @end example
  1184. QEMU emulates the following peripherals:
  1185. @itemize @minus
  1186. @item
  1187. UltraSparc IIi APB PCI Bridge
  1188. @item
  1189. PCI VGA compatible card with VESA Bochs Extensions
  1190. @item
  1191. PS/2 mouse and keyboard
  1192. @item
  1193. Non Volatile RAM M48T59
  1194. @item
  1195. PC-compatible serial ports
  1196. @item
  1197. 2 PCI IDE interfaces with hard disk and CD-ROM support
  1198. @item
  1199. Floppy disk
  1200. @end itemize
  1201. @c man begin OPTIONS
  1202. The following options are specific to the Sparc64 emulation:
  1203. @table @option
  1204. @item -prom-env @var{string}
  1205. Set OpenBIOS variables in NVRAM, for example:
  1206. @example
  1207. qemu-system-sparc64 -prom-env 'auto-boot?=false'
  1208. @end example
  1209. @item -M [sun4u|sun4v|niagara]
  1210. Set the emulated machine type. The default is sun4u.
  1211. @end table
  1212. @c man end
  1213. @node MIPS System emulator
  1214. @section MIPS System emulator
  1215. @cindex system emulation (MIPS)
  1216. Four executables cover simulation of 32 and 64-bit MIPS systems in
  1217. both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
  1218. @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
  1219. Five different machine types are emulated:
  1220. @itemize @minus
  1221. @item
  1222. A generic ISA PC-like machine "mips"
  1223. @item
  1224. The MIPS Malta prototype board "malta"
  1225. @item
  1226. An ACER Pica "pica61". This machine needs the 64-bit emulator.
  1227. @item
  1228. MIPS emulator pseudo board "mipssim"
  1229. @item
  1230. A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
  1231. @end itemize
  1232. The generic emulation is supported by Debian 'Etch' and is able to
  1233. install Debian into a virtual disk image. The following devices are
  1234. emulated:
  1235. @itemize @minus
  1236. @item
  1237. A range of MIPS CPUs, default is the 24Kf
  1238. @item
  1239. PC style serial port
  1240. @item
  1241. PC style IDE disk
  1242. @item
  1243. NE2000 network card
  1244. @end itemize
  1245. The Malta emulation supports the following devices:
  1246. @itemize @minus
  1247. @item
  1248. Core board with MIPS 24Kf CPU and Galileo system controller
  1249. @item
  1250. PIIX4 PCI/USB/SMbus controller
  1251. @item
  1252. The Multi-I/O chip's serial device
  1253. @item
  1254. PCI network cards (PCnet32 and others)
  1255. @item
  1256. Malta FPGA serial device
  1257. @item
  1258. Cirrus (default) or any other PCI VGA graphics card
  1259. @end itemize
  1260. The ACER Pica emulation supports:
  1261. @itemize @minus
  1262. @item
  1263. MIPS R4000 CPU
  1264. @item
  1265. PC-style IRQ and DMA controllers
  1266. @item
  1267. PC Keyboard
  1268. @item
  1269. IDE controller
  1270. @end itemize
  1271. The mipssim pseudo board emulation provides an environment similar
  1272. to what the proprietary MIPS emulator uses for running Linux.
  1273. It supports:
  1274. @itemize @minus
  1275. @item
  1276. A range of MIPS CPUs, default is the 24Kf
  1277. @item
  1278. PC style serial port
  1279. @item
  1280. MIPSnet network emulation
  1281. @end itemize
  1282. The MIPS Magnum R4000 emulation supports:
  1283. @itemize @minus
  1284. @item
  1285. MIPS R4000 CPU
  1286. @item
  1287. PC-style IRQ controller
  1288. @item
  1289. PC Keyboard
  1290. @item
  1291. SCSI controller
  1292. @item
  1293. G364 framebuffer
  1294. @end itemize
  1295. @node ARM System emulator
  1296. @section ARM System emulator
  1297. @cindex system emulation (ARM)
  1298. Use the executable @file{qemu-system-arm} to simulate a ARM
  1299. machine. The ARM Integrator/CP board is emulated with the following
  1300. devices:
  1301. @itemize @minus
  1302. @item
  1303. ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
  1304. @item
  1305. Two PL011 UARTs
  1306. @item
  1307. SMC 91c111 Ethernet adapter
  1308. @item
  1309. PL110 LCD controller
  1310. @item
  1311. PL050 KMI with PS/2 keyboard and mouse.
  1312. @item
  1313. PL181 MultiMedia Card Interface with SD card.
  1314. @end itemize
  1315. The ARM Versatile baseboard is emulated with the following devices:
  1316. @itemize @minus
  1317. @item
  1318. ARM926E, ARM1136 or Cortex-A8 CPU
  1319. @item
  1320. PL190 Vectored Interrupt Controller
  1321. @item
  1322. Four PL011 UARTs
  1323. @item
  1324. SMC 91c111 Ethernet adapter
  1325. @item
  1326. PL110 LCD controller
  1327. @item
  1328. PL050 KMI with PS/2 keyboard and mouse.
  1329. @item
  1330. PCI host bridge. Note the emulated PCI bridge only provides access to
  1331. PCI memory space. It does not provide access to PCI IO space.
  1332. This means some devices (eg. ne2k_pci NIC) are not usable, and others
  1333. (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
  1334. mapped control registers.
  1335. @item
  1336. PCI OHCI USB controller.
  1337. @item
  1338. LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
  1339. @item
  1340. PL181 MultiMedia Card Interface with SD card.
  1341. @end itemize
  1342. Several variants of the ARM RealView baseboard are emulated,
  1343. including the EB, PB-A8 and PBX-A9. Due to interactions with the
  1344. bootloader, only certain Linux kernel configurations work out
  1345. of the box on these boards.
  1346. Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
  1347. enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
  1348. should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
  1349. disabled and expect 1024M RAM.
  1350. The following devices are emulated:
  1351. @itemize @minus
  1352. @item
  1353. ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
  1354. @item
  1355. ARM AMBA Generic/Distributed Interrupt Controller
  1356. @item
  1357. Four PL011 UARTs
  1358. @item
  1359. SMC 91c111 or SMSC LAN9118 Ethernet adapter
  1360. @item
  1361. PL110 LCD controller
  1362. @item
  1363. PL050 KMI with PS/2 keyboard and mouse
  1364. @item
  1365. PCI host bridge
  1366. @item
  1367. PCI OHCI USB controller
  1368. @item
  1369. LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
  1370. @item
  1371. PL181 MultiMedia Card Interface with SD card.
  1372. @end itemize
  1373. The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
  1374. and "Terrier") emulation includes the following peripherals:
  1375. @itemize @minus
  1376. @item
  1377. Intel PXA270 System-on-chip (ARM V5TE core)
  1378. @item
  1379. NAND Flash memory
  1380. @item
  1381. IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
  1382. @item
  1383. On-chip OHCI USB controller
  1384. @item
  1385. On-chip LCD controller
  1386. @item
  1387. On-chip Real Time Clock
  1388. @item
  1389. TI ADS7846 touchscreen controller on SSP bus
  1390. @item
  1391. Maxim MAX1111 analog-digital converter on I@math{^2}C bus
  1392. @item
  1393. GPIO-connected keyboard controller and LEDs
  1394. @item
  1395. Secure Digital card connected to PXA MMC/SD host
  1396. @item
  1397. Three on-chip UARTs
  1398. @item
  1399. WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
  1400. @end itemize
  1401. The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
  1402. following elements:
  1403. @itemize @minus
  1404. @item
  1405. Texas Instruments OMAP310 System-on-chip (ARM 925T core)
  1406. @item
  1407. ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
  1408. @item
  1409. On-chip LCD controller
  1410. @item
  1411. On-chip Real Time Clock
  1412. @item
  1413. TI TSC2102i touchscreen controller / analog-digital converter / Audio
  1414. CODEC, connected through MicroWire and I@math{^2}S busses
  1415. @item
  1416. GPIO-connected matrix keypad
  1417. @item
  1418. Secure Digital card connected to OMAP MMC/SD host
  1419. @item
  1420. Three on-chip UARTs
  1421. @end itemize
  1422. Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
  1423. emulation supports the following elements:
  1424. @itemize @minus
  1425. @item
  1426. Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
  1427. @item
  1428. RAM and non-volatile OneNAND Flash memories
  1429. @item
  1430. Display connected to EPSON remote framebuffer chip and OMAP on-chip
  1431. display controller and a LS041y3 MIPI DBI-C controller
  1432. @item
  1433. TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
  1434. driven through SPI bus
  1435. @item
  1436. National Semiconductor LM8323-controlled qwerty keyboard driven
  1437. through I@math{^2}C bus
  1438. @item
  1439. Secure Digital card connected to OMAP MMC/SD host
  1440. @item
  1441. Three OMAP on-chip UARTs and on-chip STI debugging console
  1442. @item
  1443. A Bluetooth(R) transceiver and HCI connected to an UART
  1444. @item
  1445. Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
  1446. TUSB6010 chip - only USB host mode is supported
  1447. @item
  1448. TI TMP105 temperature sensor driven through I@math{^2}C bus
  1449. @item
  1450. TI TWL92230C power management companion with an RTC on I@math{^2}C bus
  1451. @item
  1452. Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
  1453. through CBUS
  1454. @end itemize
  1455. The Luminary Micro Stellaris LM3S811EVB emulation includes the following
  1456. devices:
  1457. @itemize @minus
  1458. @item
  1459. Cortex-M3 CPU core.
  1460. @item
  1461. 64k Flash and 8k SRAM.
  1462. @item
  1463. Timers, UARTs, ADC and I@math{^2}C interface.
  1464. @item
  1465. OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
  1466. @end itemize
  1467. The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
  1468. devices:
  1469. @itemize @minus
  1470. @item
  1471. Cortex-M3 CPU core.
  1472. @item
  1473. 256k Flash and 64k SRAM.
  1474. @item
  1475. Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
  1476. @item
  1477. OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
  1478. @end itemize
  1479. The Freecom MusicPal internet radio emulation includes the following
  1480. elements:
  1481. @itemize @minus
  1482. @item
  1483. Marvell MV88W8618 ARM core.
  1484. @item
  1485. 32 MB RAM, 256 KB SRAM, 8 MB flash.
  1486. @item
  1487. Up to 2 16550 UARTs
  1488. @item
  1489. MV88W8xx8 Ethernet controller
  1490. @item
  1491. MV88W8618 audio controller, WM8750 CODEC and mixer
  1492. @item
  1493. 128×64 display with brightness control
  1494. @item
  1495. 2 buttons, 2 navigation wheels with button function
  1496. @end itemize
  1497. The Siemens SX1 models v1 and v2 (default) basic emulation.
  1498. The emulation includes the following elements:
  1499. @itemize @minus
  1500. @item
  1501. Texas Instruments OMAP310 System-on-chip (ARM 925T core)
  1502. @item
  1503. ROM and RAM memories (ROM firmware image can be loaded with -pflash)
  1504. V1
  1505. 1 Flash of 16MB and 1 Flash of 8MB
  1506. V2
  1507. 1 Flash of 32MB
  1508. @item
  1509. On-chip LCD controller
  1510. @item
  1511. On-chip Real Time Clock
  1512. @item
  1513. Secure Digital card connected to OMAP MMC/SD host
  1514. @item
  1515. Three on-chip UARTs
  1516. @end itemize
  1517. A Linux 2.6 test image is available on the QEMU web site. More
  1518. information is available in the QEMU mailing-list archive.
  1519. @c man begin OPTIONS
  1520. The following options are specific to the ARM emulation:
  1521. @table @option
  1522. @item -semihosting
  1523. Enable semihosting syscall emulation.
  1524. On ARM this implements the "Angel" interface.
  1525. Note that this allows guest direct access to the host filesystem,
  1526. so should only be used with trusted guest OS.
  1527. @end table
  1528. @c man end
  1529. @node ColdFire System emulator
  1530. @section ColdFire System emulator
  1531. @cindex system emulation (ColdFire)
  1532. @cindex system emulation (M68K)
  1533. Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
  1534. The emulator is able to boot a uClinux kernel.
  1535. The M5208EVB emulation includes the following devices:
  1536. @itemize @minus
  1537. @item
  1538. MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
  1539. @item
  1540. Three Two on-chip UARTs.
  1541. @item
  1542. Fast Ethernet Controller (FEC)
  1543. @end itemize
  1544. The AN5206 emulation includes the following devices:
  1545. @itemize @minus
  1546. @item
  1547. MCF5206 ColdFire V2 Microprocessor.
  1548. @item
  1549. Two on-chip UARTs.
  1550. @end itemize
  1551. @c man begin OPTIONS
  1552. The following options are specific to the ColdFire emulation:
  1553. @table @option
  1554. @item -semihosting
  1555. Enable semihosting syscall emulation.
  1556. On M68K this implements the "ColdFire GDB" interface used by libgloss.
  1557. Note that this allows guest direct access to the host filesystem,
  1558. so should only be used with trusted guest OS.
  1559. @end table
  1560. @c man end
  1561. @node Cris System emulator
  1562. @section Cris System emulator
  1563. @cindex system emulation (Cris)
  1564. TODO
  1565. @node Microblaze System emulator
  1566. @section Microblaze System emulator
  1567. @cindex system emulation (Microblaze)
  1568. TODO
  1569. @node SH4 System emulator
  1570. @section SH4 System emulator
  1571. @cindex system emulation (SH4)
  1572. TODO
  1573. @node Xtensa System emulator
  1574. @section Xtensa System emulator
  1575. @cindex system emulation (Xtensa)
  1576. Two executables cover simulation of both Xtensa endian options,
  1577. @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
  1578. Two different machine types are emulated:
  1579. @itemize @minus
  1580. @item
  1581. Xtensa emulator pseudo board "sim"
  1582. @item
  1583. Avnet LX60/LX110/LX200 board
  1584. @end itemize
  1585. The sim pseudo board emulation provides an environment similar
  1586. to one provided by the proprietary Tensilica ISS.
  1587. It supports:
  1588. @itemize @minus
  1589. @item
  1590. A range of Xtensa CPUs, default is the DC232B
  1591. @item
  1592. Console and filesystem access via semihosting calls
  1593. @end itemize
  1594. The Avnet LX60/LX110/LX200 emulation supports:
  1595. @itemize @minus
  1596. @item
  1597. A range of Xtensa CPUs, default is the DC232B
  1598. @item
  1599. 16550 UART
  1600. @item
  1601. OpenCores 10/100 Mbps Ethernet MAC
  1602. @end itemize
  1603. @c man begin OPTIONS
  1604. The following options are specific to the Xtensa emulation:
  1605. @table @option
  1606. @item -semihosting
  1607. Enable semihosting syscall emulation.
  1608. Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
  1609. Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
  1610. Note that this allows guest direct access to the host filesystem,
  1611. so should only be used with trusted guest OS.
  1612. @end table
  1613. @c man end
  1614. @node QEMU Guest Agent
  1615. @chapter QEMU Guest Agent invocation
  1616. @include qemu-ga.texi
  1617. @node QEMU User space emulator
  1618. @chapter QEMU User space emulator
  1619. @menu
  1620. * Supported Operating Systems ::
  1621. * Features::
  1622. * Linux User space emulator::
  1623. * BSD User space emulator ::
  1624. @end menu
  1625. @node Supported Operating Systems
  1626. @section Supported Operating Systems
  1627. The following OS are supported in user space emulation:
  1628. @itemize @minus
  1629. @item
  1630. Linux (referred as qemu-linux-user)
  1631. @item
  1632. BSD (referred as qemu-bsd-user)
  1633. @end itemize
  1634. @node Features
  1635. @section Features
  1636. QEMU user space emulation has the following notable features:
  1637. @table @strong
  1638. @item System call translation:
  1639. QEMU includes a generic system call translator. This means that
  1640. the parameters of the system calls can be converted to fix
  1641. endianness and 32/64-bit mismatches between hosts and targets.
  1642. IOCTLs can be converted too.
  1643. @item POSIX signal handling:
  1644. QEMU can redirect to the running program all signals coming from
  1645. the host (such as @code{SIGALRM}), as well as synthesize signals from
  1646. virtual CPU exceptions (for example @code{SIGFPE} when the program
  1647. executes a division by zero).
  1648. QEMU relies on the host kernel to emulate most signal system
  1649. calls, for example to emulate the signal mask. On Linux, QEMU
  1650. supports both normal and real-time signals.
  1651. @item Threading:
  1652. On Linux, QEMU can emulate the @code{clone} syscall and create a real
  1653. host thread (with a separate virtual CPU) for each emulated thread.
  1654. Note that not all targets currently emulate atomic operations correctly.
  1655. x86 and ARM use a global lock in order to preserve their semantics.
  1656. @end table
  1657. QEMU was conceived so that ultimately it can emulate itself. Although
  1658. it is not very useful, it is an important test to show the power of the
  1659. emulator.
  1660. @node Linux User space emulator
  1661. @section Linux User space emulator
  1662. @menu
  1663. * Quick Start::
  1664. * Wine launch::
  1665. * Command line options::
  1666. * Other binaries::
  1667. @end menu
  1668. @node Quick Start
  1669. @subsection Quick Start
  1670. In order to launch a Linux process, QEMU needs the process executable
  1671. itself and all the target (x86) dynamic libraries used by it.
  1672. @itemize
  1673. @item On x86, you can just try to launch any process by using the native
  1674. libraries:
  1675. @example
  1676. qemu-i386 -L / /bin/ls
  1677. @end example
  1678. @code{-L /} tells that the x86 dynamic linker must be searched with a
  1679. @file{/} prefix.
  1680. @item Since QEMU is also a linux process, you can launch QEMU with
  1681. QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
  1682. @example
  1683. qemu-i386 -L / qemu-i386 -L / /bin/ls
  1684. @end example
  1685. @item On non x86 CPUs, you need first to download at least an x86 glibc
  1686. (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
  1687. @code{LD_LIBRARY_PATH} is not set:
  1688. @example
  1689. unset LD_LIBRARY_PATH
  1690. @end example
  1691. Then you can launch the precompiled @file{ls} x86 executable:
  1692. @example
  1693. qemu-i386 tests/i386/ls
  1694. @end example
  1695. You can look at @file{scripts/qemu-binfmt-conf.sh} so that
  1696. QEMU is automatically launched by the Linux kernel when you try to
  1697. launch x86 executables. It requires the @code{binfmt_misc} module in the
  1698. Linux kernel.
  1699. @item The x86 version of QEMU is also included. You can try weird things such as:
  1700. @example
  1701. qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
  1702. /usr/local/qemu-i386/bin/ls-i386
  1703. @end example
  1704. @end itemize
  1705. @node Wine launch
  1706. @subsection Wine launch
  1707. @itemize
  1708. @item Ensure that you have a working QEMU with the x86 glibc
  1709. distribution (see previous section). In order to verify it, you must be
  1710. able to do:
  1711. @example
  1712. qemu-i386 /usr/local/qemu-i386/bin/ls-i386
  1713. @end example
  1714. @item Download the binary x86 Wine install
  1715. (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
  1716. @item Configure Wine on your account. Look at the provided script
  1717. @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
  1718. @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
  1719. @item Then you can try the example @file{putty.exe}:
  1720. @example
  1721. qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
  1722. /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
  1723. @end example
  1724. @end itemize
  1725. @node Command line options
  1726. @subsection Command line options
  1727. @example
  1728. @command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
  1729. @end example
  1730. @table @option
  1731. @item -h
  1732. Print the help
  1733. @item -L path
  1734. Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
  1735. @item -s size
  1736. Set the x86 stack size in bytes (default=524288)
  1737. @item -cpu model
  1738. Select CPU model (-cpu help for list and additional feature selection)
  1739. @item -E @var{var}=@var{value}
  1740. Set environment @var{var} to @var{value}.
  1741. @item -U @var{var}
  1742. Remove @var{var} from the environment.
  1743. @item -B offset
  1744. Offset guest address by the specified number of bytes. This is useful when
  1745. the address region required by guest applications is reserved on the host.
  1746. This option is currently only supported on some hosts.
  1747. @item -R size
  1748. Pre-allocate a guest virtual address space of the given size (in bytes).
  1749. "G", "M", and "k" suffixes may be used when specifying the size.
  1750. @end table
  1751. Debug options:
  1752. @table @option
  1753. @item -d item1,...
  1754. Activate logging of the specified items (use '-d help' for a list of log items)
  1755. @item -p pagesize
  1756. Act as if the host page size was 'pagesize' bytes
  1757. @item -g port
  1758. Wait gdb connection to port
  1759. @item -singlestep
  1760. Run the emulation in single step mode.
  1761. @end table
  1762. Environment variables:
  1763. @table @env
  1764. @item QEMU_STRACE
  1765. Print system calls and arguments similar to the 'strace' program
  1766. (NOTE: the actual 'strace' program will not work because the user
  1767. space emulator hasn't implemented ptrace). At the moment this is
  1768. incomplete. All system calls that don't have a specific argument
  1769. format are printed with information for six arguments. Many
  1770. flag-style arguments don't have decoders and will show up as numbers.
  1771. @end table
  1772. @node Other binaries
  1773. @subsection Other binaries
  1774. @cindex user mode (Alpha)
  1775. @command{qemu-alpha} TODO.
  1776. @cindex user mode (ARM)
  1777. @command{qemu-armeb} TODO.
  1778. @cindex user mode (ARM)
  1779. @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
  1780. binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
  1781. configurations), and arm-uclinux bFLT format binaries.
  1782. @cindex user mode (ColdFire)
  1783. @cindex user mode (M68K)
  1784. @command{qemu-m68k} is capable of running semihosted binaries using the BDM
  1785. (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
  1786. coldfire uClinux bFLT format binaries.
  1787. The binary format is detected automatically.
  1788. @cindex user mode (Cris)
  1789. @command{qemu-cris} TODO.
  1790. @cindex user mode (i386)
  1791. @command{qemu-i386} TODO.
  1792. @command{qemu-x86_64} TODO.
  1793. @cindex user mode (Microblaze)
  1794. @command{qemu-microblaze} TODO.
  1795. @cindex user mode (MIPS)
  1796. @command{qemu-mips} TODO.
  1797. @command{qemu-mipsel} TODO.
  1798. @cindex user mode (NiosII)
  1799. @command{qemu-nios2} TODO.
  1800. @cindex user mode (PowerPC)
  1801. @command{qemu-ppc64abi32} TODO.
  1802. @command{qemu-ppc64} TODO.
  1803. @command{qemu-ppc} TODO.
  1804. @cindex user mode (SH4)
  1805. @command{qemu-sh4eb} TODO.
  1806. @command{qemu-sh4} TODO.
  1807. @cindex user mode (SPARC)
  1808. @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
  1809. @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
  1810. (Sparc64 CPU, 32 bit ABI).
  1811. @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
  1812. SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
  1813. @node BSD User space emulator
  1814. @section BSD User space emulator
  1815. @menu
  1816. * BSD Status::
  1817. * BSD Quick Start::
  1818. * BSD Command line options::
  1819. @end menu
  1820. @node BSD Status
  1821. @subsection BSD Status
  1822. @itemize @minus
  1823. @item
  1824. target Sparc64 on Sparc64: Some trivial programs work.
  1825. @end itemize
  1826. @node BSD Quick Start
  1827. @subsection Quick Start
  1828. In order to launch a BSD process, QEMU needs the process executable
  1829. itself and all the target dynamic libraries used by it.
  1830. @itemize
  1831. @item On Sparc64, you can just try to launch any process by using the native
  1832. libraries:
  1833. @example
  1834. qemu-sparc64 /bin/ls
  1835. @end example
  1836. @end itemize
  1837. @node BSD Command line options
  1838. @subsection Command line options
  1839. @example
  1840. @command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
  1841. @end example
  1842. @table @option
  1843. @item -h
  1844. Print the help
  1845. @item -L path
  1846. Set the library root path (default=/)
  1847. @item -s size
  1848. Set the stack size in bytes (default=524288)
  1849. @item -ignore-environment
  1850. Start with an empty environment. Without this option,
  1851. the initial environment is a copy of the caller's environment.
  1852. @item -E @var{var}=@var{value}
  1853. Set environment @var{var} to @var{value}.
  1854. @item -U @var{var}
  1855. Remove @var{var} from the environment.
  1856. @item -bsd type
  1857. Set the type of the emulated BSD Operating system. Valid values are
  1858. FreeBSD, NetBSD and OpenBSD (default).
  1859. @end table
  1860. Debug options:
  1861. @table @option
  1862. @item -d item1,...
  1863. Activate logging of the specified items (use '-d help' for a list of log items)
  1864. @item -p pagesize
  1865. Act as if the host page size was 'pagesize' bytes
  1866. @item -singlestep
  1867. Run the emulation in single step mode.
  1868. @end table
  1869. @include qemu-tech.texi
  1870. @node Deprecated features
  1871. @appendix Deprecated features
  1872. In general features are intended to be supported indefinitely once
  1873. introduced into QEMU. In the event that a feature needs to be removed,
  1874. it will be listed in this appendix. The feature will remain functional
  1875. for 2 releases prior to actual removal. Deprecated features may also
  1876. generate warnings on the console when QEMU starts up, or if activated
  1877. via a monitor command, however, this is not a mandatory requirement.
  1878. Prior to the 2.10.0 release there was no official policy on how
  1879. long features would be deprecated prior to their removal, nor
  1880. any documented list of which features were deprecated. Thus
  1881. any features deprecated prior to 2.10.0 will be treated as if
  1882. they were first deprecated in the 2.10.0 release.
  1883. What follows is a list of all features currently marked as
  1884. deprecated.
  1885. @section System emulator command line arguments
  1886. @subsection -drive boot=on|off (since 1.3.0)
  1887. The ``boot=on|off'' option to the ``-drive'' argument is
  1888. ignored. Applications should use the ``bootindex=N'' parameter
  1889. to set an absolute ordering between devices instead.
  1890. @subsection -tdf (since 1.3.0)
  1891. The ``-tdf'' argument is ignored. The behaviour implemented
  1892. by this argument is now the default when using the KVM PIT,
  1893. but can be requested explicitly using
  1894. ``-global kvm-pit.lost_tick_policy=slew''.
  1895. @subsection -no-kvm-pit-reinjection (since 1.3.0)
  1896. The ``-no-kvm-pit-reinjection'' argument is now a
  1897. synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
  1898. @subsection -no-kvm-irqchip (since 1.3.0)
  1899. The ``-no-kvm-irqchip'' argument is now a synonym for
  1900. setting ``-machine kernel_irqchip=off''.
  1901. @subsection -no-kvm-pit (since 1.3.0)
  1902. The ``-no-kvm-pit'' argument is ignored. It is no longer
  1903. possible to disable the KVM PIT directly.
  1904. @subsection -no-kvm (since 1.3.0)
  1905. The ``-no-kvm'' argument is now a synonym for setting
  1906. ``-machine accel=tcg''.
  1907. @subsection -mon default=on (since 2.4.0)
  1908. The ``default'' option to the ``-mon'' argument is
  1909. now ignored. When multiple monitors were enabled, it
  1910. indicated which monitor would receive log messages
  1911. from the various subsystems. This feature is no longer
  1912. required as messages are now only sent to the monitor
  1913. in response to explicitly monitor commands.
  1914. @subsection -vnc tls (since 2.5.0)
  1915. The ``-vnc tls'' argument is now a synonym for setting
  1916. ``-object tls-creds-anon,id=tls0'' combined with
  1917. ``-vnc tls-creds=tls0'
  1918. @subsection -vnc x509 (since 2.5.0)
  1919. The ``-vnc x509=/path/to/certs'' argument is now a
  1920. synonym for setting
  1921. ``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
  1922. combined with ``-vnc tls-creds=tls0'
  1923. @subsection -vnc x509verify (since 2.5.0)
  1924. The ``-vnc x509verify=/path/to/certs'' argument is now a
  1925. synonym for setting
  1926. ``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
  1927. combined with ``-vnc tls-creds=tls0'
  1928. @subsection -tftp (since 2.6.0)
  1929. The ``-tftp /some/dir'' argument is now a synonym for setting
  1930. the ``-netdev user,tftp=/some/dir' argument. The new syntax
  1931. allows different settings to be provided per NIC.
  1932. @subsection -bootp (since 2.6.0)
  1933. The ``-bootp /some/file'' argument is now a synonym for setting
  1934. the ``-netdev user,bootp=/some/file' argument. The new syntax
  1935. allows different settings to be provided per NIC.
  1936. @subsection -redir (since 2.6.0)
  1937. The ``-redir ARGS'' argument is now a synonym for setting
  1938. the ``-netdev user,hostfwd=ARGS'' argument instead. The new
  1939. syntax allows different settings to be provided per NIC.
  1940. @subsection -smb (since 2.6.0)
  1941. The ``-smb /some/dir'' argument is now a synonym for setting
  1942. the ``-netdev user,smb=/some/dir'' argument instead. The new
  1943. syntax allows different settings to be provided per NIC.
  1944. @subsection -net channel (since 2.6.0)
  1945. The ``--net channel,ARGS'' argument is now a synonym for setting
  1946. the ``-netdev user,guestfwd=ARGS'' argument instead.
  1947. @subsection -net vlan (since 2.9.0)
  1948. The ``-net vlan=NN'' argument is partially replaced with the
  1949. new ``-netdev'' argument. The remaining use cases will no
  1950. longer be directly supported in QEMU.
  1951. @subsection -drive if=scsi (since 2.9.0)
  1952. The ``-drive if=scsi'' argument is replaced by the the
  1953. ``-device BUS-TYPE'' argument combined with ``-drive if=none''.
  1954. @subsection -net dump (since 2.10.0)
  1955. The ``--net dump'' argument is now replaced with the
  1956. ``-object filter-dump'' argument which works in combination
  1957. with the modern ``-netdev`` backends instead.
  1958. @subsection -hdachs (since 2.10.0)
  1959. The ``-hdachs'' argument is now a synonym for setting
  1960. the ``cyls'', ``heads'', ``secs'', and ``trans'' properties
  1961. on the ``ide-hd'' device using the ``-device'' argument.
  1962. The new syntax allows different settings to be provided
  1963. per disk.
  1964. @subsection -usbdevice (since 2.10.0)
  1965. The ``-usbdevice DEV'' argument is now a synonym for setting
  1966. the ``-device usb-DEV'' argument instead. The deprecated syntax
  1967. would automatically enable USB support on the machine type.
  1968. If using the new syntax, USB support must be explicitly
  1969. enabled via the ``-machine usb=on'' argument.
  1970. @subsection -nodefconfig (since 2.11.0)
  1971. The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
  1972. @section qemu-img command line arguments
  1973. @subsection convert -s (since 2.0.0)
  1974. The ``convert -s snapshot_id_or_name'' argument is obsoleted
  1975. by the ``convert -l snapshot_param'' argument instead.
  1976. @section System emulator human monitor commands
  1977. @subsection host_net_add (since 2.10.0)
  1978. The ``host_net_add'' command is replaced by the ``netdev_add'' command.
  1979. @subsection host_net_remove (since 2.10.0)
  1980. The ``host_net_remove'' command is replaced by the ``netdev_del'' command.
  1981. @subsection usb_add (since 2.10.0)
  1982. The ``usb_add'' command is replaced by the ``device_add'' command.
  1983. @subsection usb_del (since 2.10.0)
  1984. The ``usb_del'' command is replaced by the ``device_del'' command.
  1985. @section System emulator devices
  1986. @subsection ivshmem (since 2.6.0)
  1987. The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
  1988. or ``ivshmem-doorbell`` device types.
  1989. @subsection spapr-pci-vfio-host-bridge (since 2.6.0)
  1990. The ``spapr-pci-vfio-host-bridge'' device type is replaced by
  1991. the ``spapr-pci-host-bridge'' device type.
  1992. @section System emulator machines
  1993. @subsection Xilinx EP108 (since 2.11.0)
  1994. The ``xlnx-ep108'' machine has been replaced by the ``xlnx-zcu102'' machine.
  1995. The ``xlnx-zcu102'' machine has the same features and capabilites in QEMU.
  1996. @node License
  1997. @appendix License
  1998. QEMU is a trademark of Fabrice Bellard.
  1999. QEMU is released under the
  2000. @url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
  2001. version 2. Parts of QEMU have specific licenses, see file
  2002. @url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
  2003. @node Index
  2004. @appendix Index
  2005. @menu
  2006. * Concept Index::
  2007. * Function Index::
  2008. * Keystroke Index::
  2009. * Program Index::
  2010. * Data Type Index::
  2011. * Variable Index::
  2012. @end menu
  2013. @node Concept Index
  2014. @section Concept Index
  2015. This is the main index. Should we combine all keywords in one index? TODO
  2016. @printindex cp
  2017. @node Function Index
  2018. @section Function Index
  2019. This index could be used for command line options and monitor functions.
  2020. @printindex fn
  2021. @node Keystroke Index
  2022. @section Keystroke Index
  2023. This is a list of all keystrokes which have a special function
  2024. in system emulation.
  2025. @printindex ky
  2026. @node Program Index
  2027. @section Program Index
  2028. @printindex pg
  2029. @node Data Type Index
  2030. @section Data Type Index
  2031. This index could be used for qdev device names and options.
  2032. @printindex tp
  2033. @node Variable Index
  2034. @section Variable Index
  2035. @printindex vr
  2036. @bye