123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840 |
- @c man begin SYNOPSIS
- QEMU block driver reference manual
- @c man end
- @c man begin DESCRIPTION
- @node disk_images_formats
- @subsection Disk image file formats
- QEMU supports many image file formats that can be used with VMs as well as with
- any of the tools (like @code{qemu-img}). This includes the preferred formats
- raw and qcow2 as well as formats that are supported for compatibility with
- older QEMU versions or other hypervisors.
- Depending on the image format, different options can be passed to
- @code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
- This section describes each format and the options that are supported for it.
- @table @option
- @item raw
- Raw disk image format. This format has the advantage of
- being simple and easily exportable to all other emulators. If your
- file system supports @emph{holes} (for example in ext2 or ext3 on
- Linux or NTFS on Windows), then only the written sectors will reserve
- space. Use @code{qemu-img info} to know the real size used by the
- image or @code{ls -ls} on Unix/Linux.
- Supported options:
- @table @code
- @item preallocation
- Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
- @code{falloc} mode preallocates space for image by calling posix_fallocate().
- @code{full} mode preallocates space for image by writing zeros to underlying
- storage.
- @end table
- @item qcow2
- QEMU image format, the most versatile format. Use it to have smaller
- images (useful if your filesystem does not supports holes, for example
- on Windows), zlib based compression and support of multiple VM
- snapshots.
- Supported options:
- @table @code
- @item compat
- Determines the qcow2 version to use. @code{compat=0.10} uses the
- traditional image format that can be read by any QEMU since 0.10.
- @code{compat=1.1} enables image format extensions that only QEMU 1.1 and
- newer understand (this is the default). Amongst others, this includes
- zero clusters, which allow efficient copy-on-read for sparse images.
- @item backing_file
- File name of a base image (see @option{create} subcommand)
- @item backing_fmt
- Image format of the base image
- @item encryption
- This option is deprecated and equivalent to @code{encrypt.format=aes}
- @item encrypt.format
- If this is set to @code{luks}, it requests that the qcow2 payload (not
- qcow2 header) be encrypted using the LUKS format. The passphrase to
- use to unlock the LUKS key slot is given by the @code{encrypt.key-secret}
- parameter. LUKS encryption parameters can be tuned with the other
- @code{encrypt.*} parameters.
- If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
- The encryption key is given by the @code{encrypt.key-secret} parameter.
- This encryption format is considered to be flawed by modern cryptography
- standards, suffering from a number of design problems:
- @itemize @minus
- @item The AES-CBC cipher is used with predictable initialization vectors based
- on the sector number. This makes it vulnerable to chosen plaintext attacks
- which can reveal the existence of encrypted data.
- @item The user passphrase is directly used as the encryption key. A poorly
- chosen or short passphrase will compromise the security of the encryption.
- @item In the event of the passphrase being compromised there is no way to
- change the passphrase to protect data in any qcow images. The files must
- be cloned, using a different encryption passphrase in the new file. The
- original file must then be securely erased using a program like shred,
- though even this is ineffective with many modern storage technologies.
- @end itemize
- The use of this is no longer supported in system emulators. Support only
- remains in the command line utilities, for the purposes of data liberation
- and interoperability with old versions of QEMU. The @code{luks} format
- should be used instead.
- @item encrypt.key-secret
- Provides the ID of a @code{secret} object that contains the passphrase
- (@code{encrypt.format=luks}) or encryption key (@code{encrypt.format=aes}).
- @item encrypt.cipher-alg
- Name of the cipher algorithm and key length. Currently defaults
- to @code{aes-256}. Only used when @code{encrypt.format=luks}.
- @item encrypt.cipher-mode
- Name of the encryption mode to use. Currently defaults to @code{xts}.
- Only used when @code{encrypt.format=luks}.
- @item encrypt.ivgen-alg
- Name of the initialization vector generator algorithm. Currently defaults
- to @code{plain64}. Only used when @code{encrypt.format=luks}.
- @item encrypt.ivgen-hash-alg
- Name of the hash algorithm to use with the initialization vector generator
- (if required). Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
- @item encrypt.hash-alg
- Name of the hash algorithm to use for PBKDF algorithm
- Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
- @item encrypt.iter-time
- Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
- Defaults to @code{2000}. Only used when @code{encrypt.format=luks}.
- @item cluster_size
- Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
- sizes can improve the image file size whereas larger cluster sizes generally
- provide better performance.
- @item preallocation
- Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
- @code{full}). An image with preallocated metadata is initially larger but can
- improve performance when the image needs to grow. @code{falloc} and @code{full}
- preallocations are like the same options of @code{raw} format, but sets up
- metadata also.
- @item lazy_refcounts
- If this option is set to @code{on}, reference count updates are postponed with
- the goal of avoiding metadata I/O and improving performance. This is
- particularly interesting with @option{cache=writethrough} which doesn't batch
- metadata updates. The tradeoff is that after a host crash, the reference count
- tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
- check -r all} is required, which may take some time.
- This option can only be enabled if @code{compat=1.1} is specified.
- @item nocow
- If this option is set to @code{on}, it will turn off COW of the file. It's only
- valid on btrfs, no effect on other file systems.
- Btrfs has low performance when hosting a VM image file, even more when the guest
- on the VM also using btrfs as file system. Turning off COW is a way to mitigate
- this bad performance. Generally there are two ways to turn off COW on btrfs:
- a) Disable it by mounting with nodatacow, then all newly created files will be
- NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
- does.
- Note: this option is only valid to new or empty files. If there is an existing
- file which is COW and has data blocks already, it couldn't be changed to NOCOW
- by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
- the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
- @end table
- @item qed
- Old QEMU image format with support for backing files and compact image files
- (when your filesystem or transport medium does not support holes).
- When converting QED images to qcow2, you might want to consider using the
- @code{lazy_refcounts=on} option to get a more QED-like behaviour.
- Supported options:
- @table @code
- @item backing_file
- File name of a base image (see @option{create} subcommand).
- @item backing_fmt
- Image file format of backing file (optional). Useful if the format cannot be
- autodetected because it has no header, like some vhd/vpc files.
- @item cluster_size
- Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
- cluster sizes can improve the image file size whereas larger cluster sizes
- generally provide better performance.
- @item table_size
- Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
- and 16). There is normally no need to change this value but this option can be
- used for performance benchmarking.
- @end table
- @item qcow
- Old QEMU image format with support for backing files, compact image files,
- encryption and compression.
- Supported options:
- @table @code
- @item backing_file
- File name of a base image (see @option{create} subcommand)
- @item encryption
- This option is deprecated and equivalent to @code{encrypt.format=aes}
- @item encrypt.format
- If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
- The encryption key is given by the @code{encrypt.key-secret} parameter.
- This encryption format is considered to be flawed by modern cryptography
- standards, suffering from a number of design problems enumerated previously
- against the @code{qcow2} image format.
- The use of this is no longer supported in system emulators. Support only
- remains in the command line utilities, for the purposes of data liberation
- and interoperability with old versions of QEMU.
- Users requiring native encryption should use the @code{qcow2} format
- instead with @code{encrypt.format=luks}.
- @item encrypt.key-secret
- Provides the ID of a @code{secret} object that contains the encryption
- key (@code{encrypt.format=aes}).
- @end table
- @item luks
- LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup
- Supported options:
- @table @code
- @item key-secret
- Provides the ID of a @code{secret} object that contains the passphrase.
- @item cipher-alg
- Name of the cipher algorithm and key length. Currently defaults
- to @code{aes-256}.
- @item cipher-mode
- Name of the encryption mode to use. Currently defaults to @code{xts}.
- @item ivgen-alg
- Name of the initialization vector generator algorithm. Currently defaults
- to @code{plain64}.
- @item ivgen-hash-alg
- Name of the hash algorithm to use with the initialization vector generator
- (if required). Defaults to @code{sha256}.
- @item hash-alg
- Name of the hash algorithm to use for PBKDF algorithm
- Defaults to @code{sha256}.
- @item iter-time
- Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
- Defaults to @code{2000}.
- @end table
- @item vdi
- VirtualBox 1.1 compatible image format.
- Supported options:
- @table @code
- @item static
- If this option is set to @code{on}, the image is created with metadata
- preallocation.
- @end table
- @item vmdk
- VMware 3 and 4 compatible image format.
- Supported options:
- @table @code
- @item backing_file
- File name of a base image (see @option{create} subcommand).
- @item compat6
- Create a VMDK version 6 image (instead of version 4)
- @item hwversion
- Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
- if hwversion is specified.
- @item subformat
- Specifies which VMDK subformat to use. Valid options are
- @code{monolithicSparse} (default),
- @code{monolithicFlat},
- @code{twoGbMaxExtentSparse},
- @code{twoGbMaxExtentFlat} and
- @code{streamOptimized}.
- @end table
- @item vpc
- VirtualPC compatible image format (VHD).
- Supported options:
- @table @code
- @item subformat
- Specifies which VHD subformat to use. Valid options are
- @code{dynamic} (default) and @code{fixed}.
- @end table
- @item VHDX
- Hyper-V compatible image format (VHDX).
- Supported options:
- @table @code
- @item subformat
- Specifies which VHDX subformat to use. Valid options are
- @code{dynamic} (default) and @code{fixed}.
- @item block_state_zero
- Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
- or @code{off}. When set to @code{off}, new blocks will be created as
- @code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
- arbitrary data for those blocks. Do not set to @code{off} when using
- @code{qemu-img convert} with @code{subformat=dynamic}.
- @item block_size
- Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
- @item log_size
- Log size; min 1 MB.
- @end table
- @end table
- @subsubsection Read-only formats
- More disk image file formats are supported in a read-only mode.
- @table @option
- @item bochs
- Bochs images of @code{growing} type.
- @item cloop
- Linux Compressed Loop image, useful only to reuse directly compressed
- CD-ROM images present for example in the Knoppix CD-ROMs.
- @item dmg
- Apple disk image.
- @item parallels
- Parallels disk image format.
- @end table
- @node host_drives
- @subsection Using host drives
- In addition to disk image files, QEMU can directly access host
- devices. We describe here the usage for QEMU version >= 0.8.3.
- @subsubsection Linux
- On Linux, you can directly use the host device filename instead of a
- disk image filename provided you have enough privileges to access
- it. For example, use @file{/dev/cdrom} to access to the CDROM.
- @table @code
- @item CD
- You can specify a CDROM device even if no CDROM is loaded. QEMU has
- specific code to detect CDROM insertion or removal. CDROM ejection by
- the guest OS is supported. Currently only data CDs are supported.
- @item Floppy
- You can specify a floppy device even if no floppy is loaded. Floppy
- removal is currently not detected accurately (if you change floppy
- without doing floppy access while the floppy is not loaded, the guest
- OS will think that the same floppy is loaded).
- Use of the host's floppy device is deprecated, and support for it will
- be removed in a future release.
- @item Hard disks
- Hard disks can be used. Normally you must specify the whole disk
- (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
- see it as a partitioned disk. WARNING: unless you know what you do, it
- is better to only make READ-ONLY accesses to the hard disk otherwise
- you may corrupt your host data (use the @option{-snapshot} command
- line option or modify the device permissions accordingly).
- @end table
- @subsubsection Windows
- @table @code
- @item CD
- The preferred syntax is the drive letter (e.g. @file{d:}). The
- alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
- supported as an alias to the first CDROM drive.
- Currently there is no specific code to handle removable media, so it
- is better to use the @code{change} or @code{eject} monitor commands to
- change or eject media.
- @item Hard disks
- Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
- where @var{N} is the drive number (0 is the first hard disk).
- WARNING: unless you know what you do, it is better to only make
- READ-ONLY accesses to the hard disk otherwise you may corrupt your
- host data (use the @option{-snapshot} command line so that the
- modifications are written in a temporary file).
- @end table
- @subsubsection Mac OS X
- @file{/dev/cdrom} is an alias to the first CDROM.
- Currently there is no specific code to handle removable media, so it
- is better to use the @code{change} or @code{eject} monitor commands to
- change or eject media.
- @node disk_images_fat_images
- @subsection Virtual FAT disk images
- QEMU can automatically create a virtual FAT disk image from a
- directory tree. In order to use it, just type:
- @example
- qemu-system-i386 linux.img -hdb fat:/my_directory
- @end example
- Then you access access to all the files in the @file{/my_directory}
- directory without having to copy them in a disk image or to export
- them via SAMBA or NFS. The default access is @emph{read-only}.
- Floppies can be emulated with the @code{:floppy:} option:
- @example
- qemu-system-i386 linux.img -fda fat:floppy:/my_directory
- @end example
- A read/write support is available for testing (beta stage) with the
- @code{:rw:} option:
- @example
- qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
- @end example
- What you should @emph{never} do:
- @itemize
- @item use non-ASCII filenames ;
- @item use "-snapshot" together with ":rw:" ;
- @item expect it to work when loadvm'ing ;
- @item write to the FAT directory on the host system while accessing it with the guest system.
- @end itemize
- @node disk_images_nbd
- @subsection NBD access
- QEMU can access directly to block device exported using the Network Block Device
- protocol.
- @example
- qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
- @end example
- If the NBD server is located on the same host, you can use an unix socket instead
- of an inet socket:
- @example
- qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
- @end example
- In this case, the block device must be exported using qemu-nbd:
- @example
- qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
- @end example
- The use of qemu-nbd allows sharing of a disk between several guests:
- @example
- qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
- @end example
- @noindent
- and then you can use it with two guests:
- @example
- qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
- qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
- @end example
- If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
- own embedded NBD server), you must specify an export name in the URI:
- @example
- qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
- qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
- @end example
- The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
- also available. Here are some example of the older syntax:
- @example
- qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
- qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
- qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
- @end example
- @node disk_images_sheepdog
- @subsection Sheepdog disk images
- Sheepdog is a distributed storage system for QEMU. It provides highly
- available block level storage volumes that can be attached to
- QEMU-based virtual machines.
- You can create a Sheepdog disk image with the command:
- @example
- qemu-img create sheepdog:///@var{image} @var{size}
- @end example
- where @var{image} is the Sheepdog image name and @var{size} is its
- size.
- To import the existing @var{filename} to Sheepdog, you can use a
- convert command.
- @example
- qemu-img convert @var{filename} sheepdog:///@var{image}
- @end example
- You can boot from the Sheepdog disk image with the command:
- @example
- qemu-system-i386 sheepdog:///@var{image}
- @end example
- You can also create a snapshot of the Sheepdog image like qcow2.
- @example
- qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
- @end example
- where @var{tag} is a tag name of the newly created snapshot.
- To boot from the Sheepdog snapshot, specify the tag name of the
- snapshot.
- @example
- qemu-system-i386 sheepdog:///@var{image}#@var{tag}
- @end example
- You can create a cloned image from the existing snapshot.
- @example
- qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
- @end example
- where @var{base} is a image name of the source snapshot and @var{tag}
- is its tag name.
- You can use an unix socket instead of an inet socket:
- @example
- qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
- @end example
- If the Sheepdog daemon doesn't run on the local host, you need to
- specify one of the Sheepdog servers to connect to.
- @example
- qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
- qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
- @end example
- @node disk_images_iscsi
- @subsection iSCSI LUNs
- iSCSI is a popular protocol used to access SCSI devices across a computer
- network.
- There are two different ways iSCSI devices can be used by QEMU.
- The first method is to mount the iSCSI LUN on the host, and make it appear as
- any other ordinary SCSI device on the host and then to access this device as a
- /dev/sd device from QEMU. How to do this differs between host OSes.
- The second method involves using the iSCSI initiator that is built into
- QEMU. This provides a mechanism that works the same way regardless of which
- host OS you are running QEMU on. This section will describe this second method
- of using iSCSI together with QEMU.
- In QEMU, iSCSI devices are described using special iSCSI URLs
- @example
- URL syntax:
- iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
- @end example
- Username and password are optional and only used if your target is set up
- using CHAP authentication for access control.
- Alternatively the username and password can also be set via environment
- variables to have these not show up in the process list
- @example
- export LIBISCSI_CHAP_USERNAME=<username>
- export LIBISCSI_CHAP_PASSWORD=<password>
- iscsi://<host>/<target-iqn-name>/<lun>
- @end example
- Various session related parameters can be set via special options, either
- in a configuration file provided via '-readconfig' or directly on the
- command line.
- If the initiator-name is not specified qemu will use a default name
- of 'iqn.2008-11.org.linux-kvm[:<uuid>'] where <uuid> is the UUID of the
- virtual machine. If the UUID is not specified qemu will use
- 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
- virtual machine.
- @example
- Setting a specific initiator name to use when logging in to the target
- -iscsi initiator-name=iqn.qemu.test:my-initiator
- @end example
- @example
- Controlling which type of header digest to negotiate with the target
- -iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
- @end example
- These can also be set via a configuration file
- @example
- [iscsi]
- user = "CHAP username"
- password = "CHAP password"
- initiator-name = "iqn.qemu.test:my-initiator"
- # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
- header-digest = "CRC32C"
- @end example
- Setting the target name allows different options for different targets
- @example
- [iscsi "iqn.target.name"]
- user = "CHAP username"
- password = "CHAP password"
- initiator-name = "iqn.qemu.test:my-initiator"
- # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
- header-digest = "CRC32C"
- @end example
- Howto use a configuration file to set iSCSI configuration options:
- @example
- cat >iscsi.conf <<EOF
- [iscsi]
- user = "me"
- password = "my password"
- initiator-name = "iqn.qemu.test:my-initiator"
- header-digest = "CRC32C"
- EOF
- qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
- -readconfig iscsi.conf
- @end example
- Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
- @example
- This example shows how to set up an iSCSI target with one CDROM and one DISK
- using the Linux STGT software target. This target is available on Red Hat based
- systems as the package 'scsi-target-utils'.
- tgtd --iscsi portal=127.0.0.1:3260
- tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
- tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
- -b /IMAGES/disk.img --device-type=disk
- tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
- -b /IMAGES/cd.iso --device-type=cd
- tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
- qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
- -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
- -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
- @end example
- @node disk_images_gluster
- @subsection GlusterFS disk images
- GlusterFS is a user space distributed file system.
- You can boot from the GlusterFS disk image with the command:
- @example
- URI:
- qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path}
- [?socket=...][,file.debug=9][,file.logfile=...]
- JSON:
- qemu-system-x86_64 'json:@{"driver":"qcow2",
- "file":@{"driver":"gluster",
- "volume":"testvol","path":"a.img","debug":9,"logfile":"...",
- "server":[@{"type":"tcp","host":"...","port":"..."@},
- @{"type":"unix","socket":"..."@}]@}@}'
- @end example
- @var{gluster} is the protocol.
- @var{type} specifies the transport type used to connect to gluster
- management daemon (glusterd). Valid transport types are
- tcp and unix. In the URI form, if a transport type isn't specified,
- then tcp type is assumed.
- @var{host} specifies the server where the volume file specification for
- the given volume resides. This can be either a hostname or an ipv4 address.
- If transport type is unix, then @var{host} field should not be specified.
- Instead @var{socket} field needs to be populated with the path to unix domain
- socket.
- @var{port} is the port number on which glusterd is listening. This is optional
- and if not specified, it defaults to port 24007. If the transport type is unix,
- then @var{port} should not be specified.
- @var{volume} is the name of the gluster volume which contains the disk image.
- @var{path} is the path to the actual disk image that resides on gluster volume.
- @var{debug} is the logging level of the gluster protocol driver. Debug levels
- are 0-9, with 9 being the most verbose, and 0 representing no debugging output.
- The default level is 4. The current logging levels defined in the gluster source
- are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning,
- 6 - Notice, 7 - Info, 8 - Debug, 9 - Trace
- @var{logfile} is a commandline option to mention log file path which helps in
- logging to the specified file and also help in persisting the gfapi logs. The
- default is stderr.
- You can create a GlusterFS disk image with the command:
- @example
- qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size}
- @end example
- Examples
- @example
- qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
- qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
- qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
- qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
- qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
- qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
- qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
- qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
- qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
- qemu-system-x86_64 'json:@{"driver":"qcow2",
- "file":@{"driver":"gluster",
- "volume":"testvol","path":"a.img",
- "debug":9,"logfile":"/var/log/qemu-gluster.log",
- "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
- @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
- qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
- file.debug=9,file.logfile=/var/log/qemu-gluster.log,
- file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
- file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
- @end example
- @node disk_images_ssh
- @subsection Secure Shell (ssh) disk images
- You can access disk images located on a remote ssh server
- by using the ssh protocol:
- @example
- qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
- @end example
- Alternative syntax using properties:
- @example
- qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
- @end example
- @var{ssh} is the protocol.
- @var{user} is the remote user. If not specified, then the local
- username is tried.
- @var{server} specifies the remote ssh server. Any ssh server can be
- used, but it must implement the sftp-server protocol. Most Unix/Linux
- systems should work without requiring any extra configuration.
- @var{port} is the port number on which sshd is listening. By default
- the standard ssh port (22) is used.
- @var{path} is the path to the disk image.
- The optional @var{host_key_check} parameter controls how the remote
- host's key is checked. The default is @code{yes} which means to use
- the local @file{.ssh/known_hosts} file. Setting this to @code{no}
- turns off known-hosts checking. Or you can check that the host key
- matches a specific fingerprint:
- @code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
- (@code{sha1:} can also be used as a prefix, but note that OpenSSH
- tools only use MD5 to print fingerprints).
- Currently authentication must be done using ssh-agent. Other
- authentication methods may be supported in future.
- Note: Many ssh servers do not support an @code{fsync}-style operation.
- The ssh driver cannot guarantee that disk flush requests are
- obeyed, and this causes a risk of disk corruption if the remote
- server or network goes down during writes. The driver will
- print a warning when @code{fsync} is not supported:
- warning: ssh server @code{ssh.example.com:22} does not support fsync
- With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
- supported.
- @node disk_image_locking
- @subsection Disk image file locking
- By default, QEMU tries to protect image files from unexpected concurrent
- access, as long as it's supported by the block protocol driver and host
- operating system. If multiple QEMU processes (including QEMU emulators and
- utilities) try to open the same image with conflicting accessing modes, all but
- the first one will get an error.
- This feature is currently supported by the file protocol on Linux with the Open
- File Descriptor (OFD) locking API, and can be configured to fall back to POSIX
- locking if the POSIX host doesn't support Linux OFD locking.
- To explicitly enable image locking, specify "locking=on" in the file protocol
- driver options. If OFD locking is not possible, a warning will be printed and
- the POSIX locking API will be used. In this case there is a risk that the lock
- will get silently lost when doing hot plugging and block jobs, due to the
- shortcomings of the POSIX locking API.
- QEMU transparently handles lock handover during shared storage migration. For
- shared virtual disk images between multiple VMs, the "share-rw" device option
- should be used.
- Alternatively, locking can be fully disabled by "locking=off" block device
- option. In the command line, the option is usually in the form of
- "file.locking=off" as the protocol driver is normally placed as a "file" child
- under a format driver. For example:
- @code{-blockdev driver=qcow2,file.filename=/path/to/image,file.locking=off,file.driver=file}
- To check if image locking is active, check the output of the "lslocks" command
- on host and see if there are locks held by the QEMU process on the image file.
- More than one byte could be locked by the QEMU instance, each byte of which
- reflects a particular permission that is acquired or protected by the running
- block driver.
- @c man end
- @ignore
- @setfilename qemu-block-drivers
- @settitle QEMU block drivers reference
- @c man begin SEEALSO
- The HTML documentation of QEMU for more precise information and Linux
- user mode emulator invocation.
- @c man end
- @c man begin AUTHOR
- Fabrice Bellard and the QEMU Project developers
- @c man end
- @end ignore
|