2
0

kvm-all.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208
  1. /*
  2. * QEMU KVM support
  3. *
  4. * Copyright IBM, Corp. 2008
  5. * Red Hat, Inc. 2008
  6. *
  7. * Authors:
  8. * Anthony Liguori <aliguori@us.ibm.com>
  9. * Glauber Costa <gcosta@redhat.com>
  10. *
  11. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12. * See the COPYING file in the top-level directory.
  13. *
  14. */
  15. #include <sys/types.h>
  16. #include <sys/ioctl.h>
  17. #include <sys/mman.h>
  18. #include <stdarg.h>
  19. #include <linux/kvm.h>
  20. #include "qemu-common.h"
  21. #include "qemu/atomic.h"
  22. #include "qemu/option.h"
  23. #include "qemu/config-file.h"
  24. #include "sysemu/sysemu.h"
  25. #include "hw/hw.h"
  26. #include "hw/pci/msi.h"
  27. #include "hw/s390x/adapter.h"
  28. #include "exec/gdbstub.h"
  29. #include "sysemu/kvm.h"
  30. #include "qemu/bswap.h"
  31. #include "exec/memory.h"
  32. #include "exec/ram_addr.h"
  33. #include "exec/address-spaces.h"
  34. #include "qemu/event_notifier.h"
  35. #include "trace.h"
  36. #include "hw/boards.h"
  37. /* This check must be after config-host.h is included */
  38. #ifdef CONFIG_EVENTFD
  39. #include <sys/eventfd.h>
  40. #endif
  41. #ifdef CONFIG_VALGRIND_H
  42. #include <valgrind/memcheck.h>
  43. #endif
  44. /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
  45. #define PAGE_SIZE TARGET_PAGE_SIZE
  46. //#define DEBUG_KVM
  47. #ifdef DEBUG_KVM
  48. #define DPRINTF(fmt, ...) \
  49. do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  50. #else
  51. #define DPRINTF(fmt, ...) \
  52. do { } while (0)
  53. #endif
  54. #define KVM_MSI_HASHTAB_SIZE 256
  55. typedef struct KVMSlot
  56. {
  57. hwaddr start_addr;
  58. ram_addr_t memory_size;
  59. void *ram;
  60. int slot;
  61. int flags;
  62. } KVMSlot;
  63. typedef struct kvm_dirty_log KVMDirtyLog;
  64. struct KVMState
  65. {
  66. KVMSlot *slots;
  67. int nr_slots;
  68. int fd;
  69. int vmfd;
  70. int coalesced_mmio;
  71. struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
  72. bool coalesced_flush_in_progress;
  73. int broken_set_mem_region;
  74. int migration_log;
  75. int vcpu_events;
  76. int robust_singlestep;
  77. int debugregs;
  78. #ifdef KVM_CAP_SET_GUEST_DEBUG
  79. struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
  80. #endif
  81. int pit_state2;
  82. int xsave, xcrs;
  83. int many_ioeventfds;
  84. int intx_set_mask;
  85. /* The man page (and posix) say ioctl numbers are signed int, but
  86. * they're not. Linux, glibc and *BSD all treat ioctl numbers as
  87. * unsigned, and treating them as signed here can break things */
  88. unsigned irq_set_ioctl;
  89. unsigned int sigmask_len;
  90. #ifdef KVM_CAP_IRQ_ROUTING
  91. struct kvm_irq_routing *irq_routes;
  92. int nr_allocated_irq_routes;
  93. uint32_t *used_gsi_bitmap;
  94. unsigned int gsi_count;
  95. QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
  96. bool direct_msi;
  97. #endif
  98. };
  99. KVMState *kvm_state;
  100. bool kvm_kernel_irqchip;
  101. bool kvm_async_interrupts_allowed;
  102. bool kvm_halt_in_kernel_allowed;
  103. bool kvm_eventfds_allowed;
  104. bool kvm_irqfds_allowed;
  105. bool kvm_msi_via_irqfd_allowed;
  106. bool kvm_gsi_routing_allowed;
  107. bool kvm_gsi_direct_mapping;
  108. bool kvm_allowed;
  109. bool kvm_readonly_mem_allowed;
  110. static const KVMCapabilityInfo kvm_required_capabilites[] = {
  111. KVM_CAP_INFO(USER_MEMORY),
  112. KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
  113. KVM_CAP_LAST_INFO
  114. };
  115. static KVMSlot *kvm_alloc_slot(KVMState *s)
  116. {
  117. int i;
  118. for (i = 0; i < s->nr_slots; i++) {
  119. if (s->slots[i].memory_size == 0) {
  120. return &s->slots[i];
  121. }
  122. }
  123. fprintf(stderr, "%s: no free slot available\n", __func__);
  124. abort();
  125. }
  126. static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
  127. hwaddr start_addr,
  128. hwaddr end_addr)
  129. {
  130. int i;
  131. for (i = 0; i < s->nr_slots; i++) {
  132. KVMSlot *mem = &s->slots[i];
  133. if (start_addr == mem->start_addr &&
  134. end_addr == mem->start_addr + mem->memory_size) {
  135. return mem;
  136. }
  137. }
  138. return NULL;
  139. }
  140. /*
  141. * Find overlapping slot with lowest start address
  142. */
  143. static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
  144. hwaddr start_addr,
  145. hwaddr end_addr)
  146. {
  147. KVMSlot *found = NULL;
  148. int i;
  149. for (i = 0; i < s->nr_slots; i++) {
  150. KVMSlot *mem = &s->slots[i];
  151. if (mem->memory_size == 0 ||
  152. (found && found->start_addr < mem->start_addr)) {
  153. continue;
  154. }
  155. if (end_addr > mem->start_addr &&
  156. start_addr < mem->start_addr + mem->memory_size) {
  157. found = mem;
  158. }
  159. }
  160. return found;
  161. }
  162. int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
  163. hwaddr *phys_addr)
  164. {
  165. int i;
  166. for (i = 0; i < s->nr_slots; i++) {
  167. KVMSlot *mem = &s->slots[i];
  168. if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
  169. *phys_addr = mem->start_addr + (ram - mem->ram);
  170. return 1;
  171. }
  172. }
  173. return 0;
  174. }
  175. static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
  176. {
  177. struct kvm_userspace_memory_region mem;
  178. mem.slot = slot->slot;
  179. mem.guest_phys_addr = slot->start_addr;
  180. mem.userspace_addr = (unsigned long)slot->ram;
  181. mem.flags = slot->flags;
  182. if (s->migration_log) {
  183. mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
  184. }
  185. if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
  186. /* Set the slot size to 0 before setting the slot to the desired
  187. * value. This is needed based on KVM commit 75d61fbc. */
  188. mem.memory_size = 0;
  189. kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
  190. }
  191. mem.memory_size = slot->memory_size;
  192. return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
  193. }
  194. int kvm_init_vcpu(CPUState *cpu)
  195. {
  196. KVMState *s = kvm_state;
  197. long mmap_size;
  198. int ret;
  199. DPRINTF("kvm_init_vcpu\n");
  200. ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
  201. if (ret < 0) {
  202. DPRINTF("kvm_create_vcpu failed\n");
  203. goto err;
  204. }
  205. cpu->kvm_fd = ret;
  206. cpu->kvm_state = s;
  207. cpu->kvm_vcpu_dirty = true;
  208. mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
  209. if (mmap_size < 0) {
  210. ret = mmap_size;
  211. DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
  212. goto err;
  213. }
  214. cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
  215. cpu->kvm_fd, 0);
  216. if (cpu->kvm_run == MAP_FAILED) {
  217. ret = -errno;
  218. DPRINTF("mmap'ing vcpu state failed\n");
  219. goto err;
  220. }
  221. if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
  222. s->coalesced_mmio_ring =
  223. (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
  224. }
  225. ret = kvm_arch_init_vcpu(cpu);
  226. err:
  227. return ret;
  228. }
  229. /*
  230. * dirty pages logging control
  231. */
  232. static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
  233. {
  234. int flags = 0;
  235. flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
  236. if (readonly && kvm_readonly_mem_allowed) {
  237. flags |= KVM_MEM_READONLY;
  238. }
  239. return flags;
  240. }
  241. static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
  242. {
  243. KVMState *s = kvm_state;
  244. int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
  245. int old_flags;
  246. old_flags = mem->flags;
  247. flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
  248. mem->flags = flags;
  249. /* If nothing changed effectively, no need to issue ioctl */
  250. if (s->migration_log) {
  251. flags |= KVM_MEM_LOG_DIRTY_PAGES;
  252. }
  253. if (flags == old_flags) {
  254. return 0;
  255. }
  256. return kvm_set_user_memory_region(s, mem);
  257. }
  258. static int kvm_dirty_pages_log_change(hwaddr phys_addr,
  259. ram_addr_t size, bool log_dirty)
  260. {
  261. KVMState *s = kvm_state;
  262. KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
  263. if (mem == NULL) {
  264. fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
  265. TARGET_FMT_plx "\n", __func__, phys_addr,
  266. (hwaddr)(phys_addr + size - 1));
  267. return -EINVAL;
  268. }
  269. return kvm_slot_dirty_pages_log_change(mem, log_dirty);
  270. }
  271. static void kvm_log_start(MemoryListener *listener,
  272. MemoryRegionSection *section)
  273. {
  274. int r;
  275. r = kvm_dirty_pages_log_change(section->offset_within_address_space,
  276. int128_get64(section->size), true);
  277. if (r < 0) {
  278. abort();
  279. }
  280. }
  281. static void kvm_log_stop(MemoryListener *listener,
  282. MemoryRegionSection *section)
  283. {
  284. int r;
  285. r = kvm_dirty_pages_log_change(section->offset_within_address_space,
  286. int128_get64(section->size), false);
  287. if (r < 0) {
  288. abort();
  289. }
  290. }
  291. static int kvm_set_migration_log(int enable)
  292. {
  293. KVMState *s = kvm_state;
  294. KVMSlot *mem;
  295. int i, err;
  296. s->migration_log = enable;
  297. for (i = 0; i < s->nr_slots; i++) {
  298. mem = &s->slots[i];
  299. if (!mem->memory_size) {
  300. continue;
  301. }
  302. if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
  303. continue;
  304. }
  305. err = kvm_set_user_memory_region(s, mem);
  306. if (err) {
  307. return err;
  308. }
  309. }
  310. return 0;
  311. }
  312. /* get kvm's dirty pages bitmap and update qemu's */
  313. static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
  314. unsigned long *bitmap)
  315. {
  316. ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
  317. ram_addr_t pages = int128_get64(section->size) / getpagesize();
  318. cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
  319. return 0;
  320. }
  321. #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
  322. /**
  323. * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
  324. * This function updates qemu's dirty bitmap using
  325. * memory_region_set_dirty(). This means all bits are set
  326. * to dirty.
  327. *
  328. * @start_add: start of logged region.
  329. * @end_addr: end of logged region.
  330. */
  331. static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
  332. {
  333. KVMState *s = kvm_state;
  334. unsigned long size, allocated_size = 0;
  335. KVMDirtyLog d;
  336. KVMSlot *mem;
  337. int ret = 0;
  338. hwaddr start_addr = section->offset_within_address_space;
  339. hwaddr end_addr = start_addr + int128_get64(section->size);
  340. d.dirty_bitmap = NULL;
  341. while (start_addr < end_addr) {
  342. mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
  343. if (mem == NULL) {
  344. break;
  345. }
  346. /* XXX bad kernel interface alert
  347. * For dirty bitmap, kernel allocates array of size aligned to
  348. * bits-per-long. But for case when the kernel is 64bits and
  349. * the userspace is 32bits, userspace can't align to the same
  350. * bits-per-long, since sizeof(long) is different between kernel
  351. * and user space. This way, userspace will provide buffer which
  352. * may be 4 bytes less than the kernel will use, resulting in
  353. * userspace memory corruption (which is not detectable by valgrind
  354. * too, in most cases).
  355. * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
  356. * a hope that sizeof(long) wont become >8 any time soon.
  357. */
  358. size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
  359. /*HOST_LONG_BITS*/ 64) / 8;
  360. if (!d.dirty_bitmap) {
  361. d.dirty_bitmap = g_malloc(size);
  362. } else if (size > allocated_size) {
  363. d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
  364. }
  365. allocated_size = size;
  366. memset(d.dirty_bitmap, 0, allocated_size);
  367. d.slot = mem->slot;
  368. if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
  369. DPRINTF("ioctl failed %d\n", errno);
  370. ret = -1;
  371. break;
  372. }
  373. kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
  374. start_addr = mem->start_addr + mem->memory_size;
  375. }
  376. g_free(d.dirty_bitmap);
  377. return ret;
  378. }
  379. static void kvm_coalesce_mmio_region(MemoryListener *listener,
  380. MemoryRegionSection *secion,
  381. hwaddr start, hwaddr size)
  382. {
  383. KVMState *s = kvm_state;
  384. if (s->coalesced_mmio) {
  385. struct kvm_coalesced_mmio_zone zone;
  386. zone.addr = start;
  387. zone.size = size;
  388. zone.pad = 0;
  389. (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
  390. }
  391. }
  392. static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
  393. MemoryRegionSection *secion,
  394. hwaddr start, hwaddr size)
  395. {
  396. KVMState *s = kvm_state;
  397. if (s->coalesced_mmio) {
  398. struct kvm_coalesced_mmio_zone zone;
  399. zone.addr = start;
  400. zone.size = size;
  401. zone.pad = 0;
  402. (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
  403. }
  404. }
  405. int kvm_check_extension(KVMState *s, unsigned int extension)
  406. {
  407. int ret;
  408. ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
  409. if (ret < 0) {
  410. ret = 0;
  411. }
  412. return ret;
  413. }
  414. static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
  415. bool assign, uint32_t size, bool datamatch)
  416. {
  417. int ret;
  418. struct kvm_ioeventfd iofd;
  419. iofd.datamatch = datamatch ? val : 0;
  420. iofd.addr = addr;
  421. iofd.len = size;
  422. iofd.flags = 0;
  423. iofd.fd = fd;
  424. if (!kvm_enabled()) {
  425. return -ENOSYS;
  426. }
  427. if (datamatch) {
  428. iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
  429. }
  430. if (!assign) {
  431. iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
  432. }
  433. ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
  434. if (ret < 0) {
  435. return -errno;
  436. }
  437. return 0;
  438. }
  439. static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
  440. bool assign, uint32_t size, bool datamatch)
  441. {
  442. struct kvm_ioeventfd kick = {
  443. .datamatch = datamatch ? val : 0,
  444. .addr = addr,
  445. .flags = KVM_IOEVENTFD_FLAG_PIO,
  446. .len = size,
  447. .fd = fd,
  448. };
  449. int r;
  450. if (!kvm_enabled()) {
  451. return -ENOSYS;
  452. }
  453. if (datamatch) {
  454. kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
  455. }
  456. if (!assign) {
  457. kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
  458. }
  459. r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
  460. if (r < 0) {
  461. return r;
  462. }
  463. return 0;
  464. }
  465. static int kvm_check_many_ioeventfds(void)
  466. {
  467. /* Userspace can use ioeventfd for io notification. This requires a host
  468. * that supports eventfd(2) and an I/O thread; since eventfd does not
  469. * support SIGIO it cannot interrupt the vcpu.
  470. *
  471. * Older kernels have a 6 device limit on the KVM io bus. Find out so we
  472. * can avoid creating too many ioeventfds.
  473. */
  474. #if defined(CONFIG_EVENTFD)
  475. int ioeventfds[7];
  476. int i, ret = 0;
  477. for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
  478. ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
  479. if (ioeventfds[i] < 0) {
  480. break;
  481. }
  482. ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
  483. if (ret < 0) {
  484. close(ioeventfds[i]);
  485. break;
  486. }
  487. }
  488. /* Decide whether many devices are supported or not */
  489. ret = i == ARRAY_SIZE(ioeventfds);
  490. while (i-- > 0) {
  491. kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
  492. close(ioeventfds[i]);
  493. }
  494. return ret;
  495. #else
  496. return 0;
  497. #endif
  498. }
  499. static const KVMCapabilityInfo *
  500. kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
  501. {
  502. while (list->name) {
  503. if (!kvm_check_extension(s, list->value)) {
  504. return list;
  505. }
  506. list++;
  507. }
  508. return NULL;
  509. }
  510. static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
  511. {
  512. KVMState *s = kvm_state;
  513. KVMSlot *mem, old;
  514. int err;
  515. MemoryRegion *mr = section->mr;
  516. bool log_dirty = memory_region_is_logging(mr);
  517. bool writeable = !mr->readonly && !mr->rom_device;
  518. bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
  519. hwaddr start_addr = section->offset_within_address_space;
  520. ram_addr_t size = int128_get64(section->size);
  521. void *ram = NULL;
  522. unsigned delta;
  523. /* kvm works in page size chunks, but the function may be called
  524. with sub-page size and unaligned start address. Pad the start
  525. address to next and truncate size to previous page boundary. */
  526. delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
  527. delta &= ~TARGET_PAGE_MASK;
  528. if (delta > size) {
  529. return;
  530. }
  531. start_addr += delta;
  532. size -= delta;
  533. size &= TARGET_PAGE_MASK;
  534. if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
  535. return;
  536. }
  537. if (!memory_region_is_ram(mr)) {
  538. if (writeable || !kvm_readonly_mem_allowed) {
  539. return;
  540. } else if (!mr->romd_mode) {
  541. /* If the memory device is not in romd_mode, then we actually want
  542. * to remove the kvm memory slot so all accesses will trap. */
  543. add = false;
  544. }
  545. }
  546. ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
  547. while (1) {
  548. mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
  549. if (!mem) {
  550. break;
  551. }
  552. if (add && start_addr >= mem->start_addr &&
  553. (start_addr + size <= mem->start_addr + mem->memory_size) &&
  554. (ram - start_addr == mem->ram - mem->start_addr)) {
  555. /* The new slot fits into the existing one and comes with
  556. * identical parameters - update flags and done. */
  557. kvm_slot_dirty_pages_log_change(mem, log_dirty);
  558. return;
  559. }
  560. old = *mem;
  561. if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
  562. kvm_physical_sync_dirty_bitmap(section);
  563. }
  564. /* unregister the overlapping slot */
  565. mem->memory_size = 0;
  566. err = kvm_set_user_memory_region(s, mem);
  567. if (err) {
  568. fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
  569. __func__, strerror(-err));
  570. abort();
  571. }
  572. /* Workaround for older KVM versions: we can't join slots, even not by
  573. * unregistering the previous ones and then registering the larger
  574. * slot. We have to maintain the existing fragmentation. Sigh.
  575. *
  576. * This workaround assumes that the new slot starts at the same
  577. * address as the first existing one. If not or if some overlapping
  578. * slot comes around later, we will fail (not seen in practice so far)
  579. * - and actually require a recent KVM version. */
  580. if (s->broken_set_mem_region &&
  581. old.start_addr == start_addr && old.memory_size < size && add) {
  582. mem = kvm_alloc_slot(s);
  583. mem->memory_size = old.memory_size;
  584. mem->start_addr = old.start_addr;
  585. mem->ram = old.ram;
  586. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  587. err = kvm_set_user_memory_region(s, mem);
  588. if (err) {
  589. fprintf(stderr, "%s: error updating slot: %s\n", __func__,
  590. strerror(-err));
  591. abort();
  592. }
  593. start_addr += old.memory_size;
  594. ram += old.memory_size;
  595. size -= old.memory_size;
  596. continue;
  597. }
  598. /* register prefix slot */
  599. if (old.start_addr < start_addr) {
  600. mem = kvm_alloc_slot(s);
  601. mem->memory_size = start_addr - old.start_addr;
  602. mem->start_addr = old.start_addr;
  603. mem->ram = old.ram;
  604. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  605. err = kvm_set_user_memory_region(s, mem);
  606. if (err) {
  607. fprintf(stderr, "%s: error registering prefix slot: %s\n",
  608. __func__, strerror(-err));
  609. #ifdef TARGET_PPC
  610. fprintf(stderr, "%s: This is probably because your kernel's " \
  611. "PAGE_SIZE is too big. Please try to use 4k " \
  612. "PAGE_SIZE!\n", __func__);
  613. #endif
  614. abort();
  615. }
  616. }
  617. /* register suffix slot */
  618. if (old.start_addr + old.memory_size > start_addr + size) {
  619. ram_addr_t size_delta;
  620. mem = kvm_alloc_slot(s);
  621. mem->start_addr = start_addr + size;
  622. size_delta = mem->start_addr - old.start_addr;
  623. mem->memory_size = old.memory_size - size_delta;
  624. mem->ram = old.ram + size_delta;
  625. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  626. err = kvm_set_user_memory_region(s, mem);
  627. if (err) {
  628. fprintf(stderr, "%s: error registering suffix slot: %s\n",
  629. __func__, strerror(-err));
  630. abort();
  631. }
  632. }
  633. }
  634. /* in case the KVM bug workaround already "consumed" the new slot */
  635. if (!size) {
  636. return;
  637. }
  638. if (!add) {
  639. return;
  640. }
  641. mem = kvm_alloc_slot(s);
  642. mem->memory_size = size;
  643. mem->start_addr = start_addr;
  644. mem->ram = ram;
  645. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  646. err = kvm_set_user_memory_region(s, mem);
  647. if (err) {
  648. fprintf(stderr, "%s: error registering slot: %s\n", __func__,
  649. strerror(-err));
  650. abort();
  651. }
  652. }
  653. static void kvm_region_add(MemoryListener *listener,
  654. MemoryRegionSection *section)
  655. {
  656. memory_region_ref(section->mr);
  657. kvm_set_phys_mem(section, true);
  658. }
  659. static void kvm_region_del(MemoryListener *listener,
  660. MemoryRegionSection *section)
  661. {
  662. kvm_set_phys_mem(section, false);
  663. memory_region_unref(section->mr);
  664. }
  665. static void kvm_log_sync(MemoryListener *listener,
  666. MemoryRegionSection *section)
  667. {
  668. int r;
  669. r = kvm_physical_sync_dirty_bitmap(section);
  670. if (r < 0) {
  671. abort();
  672. }
  673. }
  674. static void kvm_log_global_start(struct MemoryListener *listener)
  675. {
  676. int r;
  677. r = kvm_set_migration_log(1);
  678. assert(r >= 0);
  679. }
  680. static void kvm_log_global_stop(struct MemoryListener *listener)
  681. {
  682. int r;
  683. r = kvm_set_migration_log(0);
  684. assert(r >= 0);
  685. }
  686. static void kvm_mem_ioeventfd_add(MemoryListener *listener,
  687. MemoryRegionSection *section,
  688. bool match_data, uint64_t data,
  689. EventNotifier *e)
  690. {
  691. int fd = event_notifier_get_fd(e);
  692. int r;
  693. r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
  694. data, true, int128_get64(section->size),
  695. match_data);
  696. if (r < 0) {
  697. fprintf(stderr, "%s: error adding ioeventfd: %s\n",
  698. __func__, strerror(-r));
  699. abort();
  700. }
  701. }
  702. static void kvm_mem_ioeventfd_del(MemoryListener *listener,
  703. MemoryRegionSection *section,
  704. bool match_data, uint64_t data,
  705. EventNotifier *e)
  706. {
  707. int fd = event_notifier_get_fd(e);
  708. int r;
  709. r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
  710. data, false, int128_get64(section->size),
  711. match_data);
  712. if (r < 0) {
  713. abort();
  714. }
  715. }
  716. static void kvm_io_ioeventfd_add(MemoryListener *listener,
  717. MemoryRegionSection *section,
  718. bool match_data, uint64_t data,
  719. EventNotifier *e)
  720. {
  721. int fd = event_notifier_get_fd(e);
  722. int r;
  723. r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
  724. data, true, int128_get64(section->size),
  725. match_data);
  726. if (r < 0) {
  727. fprintf(stderr, "%s: error adding ioeventfd: %s\n",
  728. __func__, strerror(-r));
  729. abort();
  730. }
  731. }
  732. static void kvm_io_ioeventfd_del(MemoryListener *listener,
  733. MemoryRegionSection *section,
  734. bool match_data, uint64_t data,
  735. EventNotifier *e)
  736. {
  737. int fd = event_notifier_get_fd(e);
  738. int r;
  739. r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
  740. data, false, int128_get64(section->size),
  741. match_data);
  742. if (r < 0) {
  743. abort();
  744. }
  745. }
  746. static MemoryListener kvm_memory_listener = {
  747. .region_add = kvm_region_add,
  748. .region_del = kvm_region_del,
  749. .log_start = kvm_log_start,
  750. .log_stop = kvm_log_stop,
  751. .log_sync = kvm_log_sync,
  752. .log_global_start = kvm_log_global_start,
  753. .log_global_stop = kvm_log_global_stop,
  754. .eventfd_add = kvm_mem_ioeventfd_add,
  755. .eventfd_del = kvm_mem_ioeventfd_del,
  756. .coalesced_mmio_add = kvm_coalesce_mmio_region,
  757. .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
  758. .priority = 10,
  759. };
  760. static MemoryListener kvm_io_listener = {
  761. .eventfd_add = kvm_io_ioeventfd_add,
  762. .eventfd_del = kvm_io_ioeventfd_del,
  763. .priority = 10,
  764. };
  765. static void kvm_handle_interrupt(CPUState *cpu, int mask)
  766. {
  767. cpu->interrupt_request |= mask;
  768. if (!qemu_cpu_is_self(cpu)) {
  769. qemu_cpu_kick(cpu);
  770. }
  771. }
  772. int kvm_set_irq(KVMState *s, int irq, int level)
  773. {
  774. struct kvm_irq_level event;
  775. int ret;
  776. assert(kvm_async_interrupts_enabled());
  777. event.level = level;
  778. event.irq = irq;
  779. ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
  780. if (ret < 0) {
  781. perror("kvm_set_irq");
  782. abort();
  783. }
  784. return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
  785. }
  786. #ifdef KVM_CAP_IRQ_ROUTING
  787. typedef struct KVMMSIRoute {
  788. struct kvm_irq_routing_entry kroute;
  789. QTAILQ_ENTRY(KVMMSIRoute) entry;
  790. } KVMMSIRoute;
  791. static void set_gsi(KVMState *s, unsigned int gsi)
  792. {
  793. s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
  794. }
  795. static void clear_gsi(KVMState *s, unsigned int gsi)
  796. {
  797. s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
  798. }
  799. void kvm_init_irq_routing(KVMState *s)
  800. {
  801. int gsi_count, i;
  802. gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
  803. if (gsi_count > 0) {
  804. unsigned int gsi_bits, i;
  805. /* Round up so we can search ints using ffs */
  806. gsi_bits = ALIGN(gsi_count, 32);
  807. s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
  808. s->gsi_count = gsi_count;
  809. /* Mark any over-allocated bits as already in use */
  810. for (i = gsi_count; i < gsi_bits; i++) {
  811. set_gsi(s, i);
  812. }
  813. }
  814. s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
  815. s->nr_allocated_irq_routes = 0;
  816. if (!s->direct_msi) {
  817. for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
  818. QTAILQ_INIT(&s->msi_hashtab[i]);
  819. }
  820. }
  821. kvm_arch_init_irq_routing(s);
  822. }
  823. void kvm_irqchip_commit_routes(KVMState *s)
  824. {
  825. int ret;
  826. s->irq_routes->flags = 0;
  827. ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
  828. assert(ret == 0);
  829. }
  830. static void kvm_add_routing_entry(KVMState *s,
  831. struct kvm_irq_routing_entry *entry)
  832. {
  833. struct kvm_irq_routing_entry *new;
  834. int n, size;
  835. if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
  836. n = s->nr_allocated_irq_routes * 2;
  837. if (n < 64) {
  838. n = 64;
  839. }
  840. size = sizeof(struct kvm_irq_routing);
  841. size += n * sizeof(*new);
  842. s->irq_routes = g_realloc(s->irq_routes, size);
  843. s->nr_allocated_irq_routes = n;
  844. }
  845. n = s->irq_routes->nr++;
  846. new = &s->irq_routes->entries[n];
  847. *new = *entry;
  848. set_gsi(s, entry->gsi);
  849. }
  850. static int kvm_update_routing_entry(KVMState *s,
  851. struct kvm_irq_routing_entry *new_entry)
  852. {
  853. struct kvm_irq_routing_entry *entry;
  854. int n;
  855. for (n = 0; n < s->irq_routes->nr; n++) {
  856. entry = &s->irq_routes->entries[n];
  857. if (entry->gsi != new_entry->gsi) {
  858. continue;
  859. }
  860. if(!memcmp(entry, new_entry, sizeof *entry)) {
  861. return 0;
  862. }
  863. *entry = *new_entry;
  864. kvm_irqchip_commit_routes(s);
  865. return 0;
  866. }
  867. return -ESRCH;
  868. }
  869. void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
  870. {
  871. struct kvm_irq_routing_entry e = {};
  872. assert(pin < s->gsi_count);
  873. e.gsi = irq;
  874. e.type = KVM_IRQ_ROUTING_IRQCHIP;
  875. e.flags = 0;
  876. e.u.irqchip.irqchip = irqchip;
  877. e.u.irqchip.pin = pin;
  878. kvm_add_routing_entry(s, &e);
  879. }
  880. void kvm_irqchip_release_virq(KVMState *s, int virq)
  881. {
  882. struct kvm_irq_routing_entry *e;
  883. int i;
  884. if (kvm_gsi_direct_mapping()) {
  885. return;
  886. }
  887. for (i = 0; i < s->irq_routes->nr; i++) {
  888. e = &s->irq_routes->entries[i];
  889. if (e->gsi == virq) {
  890. s->irq_routes->nr--;
  891. *e = s->irq_routes->entries[s->irq_routes->nr];
  892. }
  893. }
  894. clear_gsi(s, virq);
  895. }
  896. static unsigned int kvm_hash_msi(uint32_t data)
  897. {
  898. /* This is optimized for IA32 MSI layout. However, no other arch shall
  899. * repeat the mistake of not providing a direct MSI injection API. */
  900. return data & 0xff;
  901. }
  902. static void kvm_flush_dynamic_msi_routes(KVMState *s)
  903. {
  904. KVMMSIRoute *route, *next;
  905. unsigned int hash;
  906. for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
  907. QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
  908. kvm_irqchip_release_virq(s, route->kroute.gsi);
  909. QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
  910. g_free(route);
  911. }
  912. }
  913. }
  914. static int kvm_irqchip_get_virq(KVMState *s)
  915. {
  916. uint32_t *word = s->used_gsi_bitmap;
  917. int max_words = ALIGN(s->gsi_count, 32) / 32;
  918. int i, bit;
  919. bool retry = true;
  920. again:
  921. /* Return the lowest unused GSI in the bitmap */
  922. for (i = 0; i < max_words; i++) {
  923. bit = ffs(~word[i]);
  924. if (!bit) {
  925. continue;
  926. }
  927. return bit - 1 + i * 32;
  928. }
  929. if (!s->direct_msi && retry) {
  930. retry = false;
  931. kvm_flush_dynamic_msi_routes(s);
  932. goto again;
  933. }
  934. return -ENOSPC;
  935. }
  936. static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
  937. {
  938. unsigned int hash = kvm_hash_msi(msg.data);
  939. KVMMSIRoute *route;
  940. QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
  941. if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
  942. route->kroute.u.msi.address_hi == (msg.address >> 32) &&
  943. route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
  944. return route;
  945. }
  946. }
  947. return NULL;
  948. }
  949. int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
  950. {
  951. struct kvm_msi msi;
  952. KVMMSIRoute *route;
  953. if (s->direct_msi) {
  954. msi.address_lo = (uint32_t)msg.address;
  955. msi.address_hi = msg.address >> 32;
  956. msi.data = le32_to_cpu(msg.data);
  957. msi.flags = 0;
  958. memset(msi.pad, 0, sizeof(msi.pad));
  959. return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
  960. }
  961. route = kvm_lookup_msi_route(s, msg);
  962. if (!route) {
  963. int virq;
  964. virq = kvm_irqchip_get_virq(s);
  965. if (virq < 0) {
  966. return virq;
  967. }
  968. route = g_malloc0(sizeof(KVMMSIRoute));
  969. route->kroute.gsi = virq;
  970. route->kroute.type = KVM_IRQ_ROUTING_MSI;
  971. route->kroute.flags = 0;
  972. route->kroute.u.msi.address_lo = (uint32_t)msg.address;
  973. route->kroute.u.msi.address_hi = msg.address >> 32;
  974. route->kroute.u.msi.data = le32_to_cpu(msg.data);
  975. kvm_add_routing_entry(s, &route->kroute);
  976. kvm_irqchip_commit_routes(s);
  977. QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
  978. entry);
  979. }
  980. assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
  981. return kvm_set_irq(s, route->kroute.gsi, 1);
  982. }
  983. int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
  984. {
  985. struct kvm_irq_routing_entry kroute = {};
  986. int virq;
  987. if (kvm_gsi_direct_mapping()) {
  988. return msg.data & 0xffff;
  989. }
  990. if (!kvm_gsi_routing_enabled()) {
  991. return -ENOSYS;
  992. }
  993. virq = kvm_irqchip_get_virq(s);
  994. if (virq < 0) {
  995. return virq;
  996. }
  997. kroute.gsi = virq;
  998. kroute.type = KVM_IRQ_ROUTING_MSI;
  999. kroute.flags = 0;
  1000. kroute.u.msi.address_lo = (uint32_t)msg.address;
  1001. kroute.u.msi.address_hi = msg.address >> 32;
  1002. kroute.u.msi.data = le32_to_cpu(msg.data);
  1003. kvm_add_routing_entry(s, &kroute);
  1004. kvm_irqchip_commit_routes(s);
  1005. return virq;
  1006. }
  1007. int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
  1008. {
  1009. struct kvm_irq_routing_entry kroute = {};
  1010. if (kvm_gsi_direct_mapping()) {
  1011. return 0;
  1012. }
  1013. if (!kvm_irqchip_in_kernel()) {
  1014. return -ENOSYS;
  1015. }
  1016. kroute.gsi = virq;
  1017. kroute.type = KVM_IRQ_ROUTING_MSI;
  1018. kroute.flags = 0;
  1019. kroute.u.msi.address_lo = (uint32_t)msg.address;
  1020. kroute.u.msi.address_hi = msg.address >> 32;
  1021. kroute.u.msi.data = le32_to_cpu(msg.data);
  1022. return kvm_update_routing_entry(s, &kroute);
  1023. }
  1024. static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
  1025. bool assign)
  1026. {
  1027. struct kvm_irqfd irqfd = {
  1028. .fd = fd,
  1029. .gsi = virq,
  1030. .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
  1031. };
  1032. if (rfd != -1) {
  1033. irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
  1034. irqfd.resamplefd = rfd;
  1035. }
  1036. if (!kvm_irqfds_enabled()) {
  1037. return -ENOSYS;
  1038. }
  1039. return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
  1040. }
  1041. int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
  1042. {
  1043. struct kvm_irq_routing_entry kroute;
  1044. int virq;
  1045. if (!kvm_gsi_routing_enabled()) {
  1046. return -ENOSYS;
  1047. }
  1048. virq = kvm_irqchip_get_virq(s);
  1049. if (virq < 0) {
  1050. return virq;
  1051. }
  1052. kroute.gsi = virq;
  1053. kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
  1054. kroute.flags = 0;
  1055. kroute.u.adapter.summary_addr = adapter->summary_addr;
  1056. kroute.u.adapter.ind_addr = adapter->ind_addr;
  1057. kroute.u.adapter.summary_offset = adapter->summary_offset;
  1058. kroute.u.adapter.ind_offset = adapter->ind_offset;
  1059. kroute.u.adapter.adapter_id = adapter->adapter_id;
  1060. kvm_add_routing_entry(s, &kroute);
  1061. kvm_irqchip_commit_routes(s);
  1062. return virq;
  1063. }
  1064. #else /* !KVM_CAP_IRQ_ROUTING */
  1065. void kvm_init_irq_routing(KVMState *s)
  1066. {
  1067. }
  1068. void kvm_irqchip_release_virq(KVMState *s, int virq)
  1069. {
  1070. }
  1071. int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
  1072. {
  1073. abort();
  1074. }
  1075. int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
  1076. {
  1077. return -ENOSYS;
  1078. }
  1079. int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
  1080. {
  1081. return -ENOSYS;
  1082. }
  1083. static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
  1084. {
  1085. abort();
  1086. }
  1087. int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
  1088. {
  1089. return -ENOSYS;
  1090. }
  1091. #endif /* !KVM_CAP_IRQ_ROUTING */
  1092. int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
  1093. EventNotifier *rn, int virq)
  1094. {
  1095. return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
  1096. rn ? event_notifier_get_fd(rn) : -1, virq, true);
  1097. }
  1098. int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
  1099. {
  1100. return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
  1101. false);
  1102. }
  1103. static int kvm_irqchip_create(KVMState *s)
  1104. {
  1105. int ret;
  1106. if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
  1107. (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
  1108. (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
  1109. return 0;
  1110. }
  1111. /* First probe and see if there's a arch-specific hook to create the
  1112. * in-kernel irqchip for us */
  1113. ret = kvm_arch_irqchip_create(s);
  1114. if (ret < 0) {
  1115. return ret;
  1116. } else if (ret == 0) {
  1117. ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
  1118. if (ret < 0) {
  1119. fprintf(stderr, "Create kernel irqchip failed\n");
  1120. return ret;
  1121. }
  1122. }
  1123. kvm_kernel_irqchip = true;
  1124. /* If we have an in-kernel IRQ chip then we must have asynchronous
  1125. * interrupt delivery (though the reverse is not necessarily true)
  1126. */
  1127. kvm_async_interrupts_allowed = true;
  1128. kvm_halt_in_kernel_allowed = true;
  1129. kvm_init_irq_routing(s);
  1130. return 0;
  1131. }
  1132. /* Find number of supported CPUs using the recommended
  1133. * procedure from the kernel API documentation to cope with
  1134. * older kernels that may be missing capabilities.
  1135. */
  1136. static int kvm_recommended_vcpus(KVMState *s)
  1137. {
  1138. int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
  1139. return (ret) ? ret : 4;
  1140. }
  1141. static int kvm_max_vcpus(KVMState *s)
  1142. {
  1143. int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
  1144. return (ret) ? ret : kvm_recommended_vcpus(s);
  1145. }
  1146. int kvm_init(MachineClass *mc)
  1147. {
  1148. static const char upgrade_note[] =
  1149. "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
  1150. "(see http://sourceforge.net/projects/kvm).\n";
  1151. struct {
  1152. const char *name;
  1153. int num;
  1154. } num_cpus[] = {
  1155. { "SMP", smp_cpus },
  1156. { "hotpluggable", max_cpus },
  1157. { NULL, }
  1158. }, *nc = num_cpus;
  1159. int soft_vcpus_limit, hard_vcpus_limit;
  1160. KVMState *s;
  1161. const KVMCapabilityInfo *missing_cap;
  1162. int ret;
  1163. int i, type = 0;
  1164. const char *kvm_type;
  1165. s = g_malloc0(sizeof(KVMState));
  1166. /*
  1167. * On systems where the kernel can support different base page
  1168. * sizes, host page size may be different from TARGET_PAGE_SIZE,
  1169. * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
  1170. * page size for the system though.
  1171. */
  1172. assert(TARGET_PAGE_SIZE <= getpagesize());
  1173. page_size_init();
  1174. s->sigmask_len = 8;
  1175. #ifdef KVM_CAP_SET_GUEST_DEBUG
  1176. QTAILQ_INIT(&s->kvm_sw_breakpoints);
  1177. #endif
  1178. s->vmfd = -1;
  1179. s->fd = qemu_open("/dev/kvm", O_RDWR);
  1180. if (s->fd == -1) {
  1181. fprintf(stderr, "Could not access KVM kernel module: %m\n");
  1182. ret = -errno;
  1183. goto err;
  1184. }
  1185. ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
  1186. if (ret < KVM_API_VERSION) {
  1187. if (ret >= 0) {
  1188. ret = -EINVAL;
  1189. }
  1190. fprintf(stderr, "kvm version too old\n");
  1191. goto err;
  1192. }
  1193. if (ret > KVM_API_VERSION) {
  1194. ret = -EINVAL;
  1195. fprintf(stderr, "kvm version not supported\n");
  1196. goto err;
  1197. }
  1198. s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
  1199. /* If unspecified, use the default value */
  1200. if (!s->nr_slots) {
  1201. s->nr_slots = 32;
  1202. }
  1203. s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
  1204. for (i = 0; i < s->nr_slots; i++) {
  1205. s->slots[i].slot = i;
  1206. }
  1207. /* check the vcpu limits */
  1208. soft_vcpus_limit = kvm_recommended_vcpus(s);
  1209. hard_vcpus_limit = kvm_max_vcpus(s);
  1210. while (nc->name) {
  1211. if (nc->num > soft_vcpus_limit) {
  1212. fprintf(stderr,
  1213. "Warning: Number of %s cpus requested (%d) exceeds "
  1214. "the recommended cpus supported by KVM (%d)\n",
  1215. nc->name, nc->num, soft_vcpus_limit);
  1216. if (nc->num > hard_vcpus_limit) {
  1217. fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
  1218. "the maximum cpus supported by KVM (%d)\n",
  1219. nc->name, nc->num, hard_vcpus_limit);
  1220. exit(1);
  1221. }
  1222. }
  1223. nc++;
  1224. }
  1225. kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
  1226. if (mc->kvm_type) {
  1227. type = mc->kvm_type(kvm_type);
  1228. } else if (kvm_type) {
  1229. ret = -EINVAL;
  1230. fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
  1231. goto err;
  1232. }
  1233. do {
  1234. ret = kvm_ioctl(s, KVM_CREATE_VM, type);
  1235. } while (ret == -EINTR);
  1236. if (ret < 0) {
  1237. fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
  1238. strerror(-ret));
  1239. #ifdef TARGET_S390X
  1240. fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
  1241. "your host kernel command line\n");
  1242. #endif
  1243. goto err;
  1244. }
  1245. s->vmfd = ret;
  1246. missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
  1247. if (!missing_cap) {
  1248. missing_cap =
  1249. kvm_check_extension_list(s, kvm_arch_required_capabilities);
  1250. }
  1251. if (missing_cap) {
  1252. ret = -EINVAL;
  1253. fprintf(stderr, "kvm does not support %s\n%s",
  1254. missing_cap->name, upgrade_note);
  1255. goto err;
  1256. }
  1257. s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
  1258. s->broken_set_mem_region = 1;
  1259. ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
  1260. if (ret > 0) {
  1261. s->broken_set_mem_region = 0;
  1262. }
  1263. #ifdef KVM_CAP_VCPU_EVENTS
  1264. s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
  1265. #endif
  1266. s->robust_singlestep =
  1267. kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
  1268. #ifdef KVM_CAP_DEBUGREGS
  1269. s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
  1270. #endif
  1271. #ifdef KVM_CAP_XSAVE
  1272. s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
  1273. #endif
  1274. #ifdef KVM_CAP_XCRS
  1275. s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
  1276. #endif
  1277. #ifdef KVM_CAP_PIT_STATE2
  1278. s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
  1279. #endif
  1280. #ifdef KVM_CAP_IRQ_ROUTING
  1281. s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
  1282. #endif
  1283. s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
  1284. s->irq_set_ioctl = KVM_IRQ_LINE;
  1285. if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
  1286. s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
  1287. }
  1288. #ifdef KVM_CAP_READONLY_MEM
  1289. kvm_readonly_mem_allowed =
  1290. (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
  1291. #endif
  1292. kvm_eventfds_allowed =
  1293. (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
  1294. ret = kvm_arch_init(s);
  1295. if (ret < 0) {
  1296. goto err;
  1297. }
  1298. ret = kvm_irqchip_create(s);
  1299. if (ret < 0) {
  1300. goto err;
  1301. }
  1302. kvm_state = s;
  1303. memory_listener_register(&kvm_memory_listener, &address_space_memory);
  1304. memory_listener_register(&kvm_io_listener, &address_space_io);
  1305. s->many_ioeventfds = kvm_check_many_ioeventfds();
  1306. cpu_interrupt_handler = kvm_handle_interrupt;
  1307. return 0;
  1308. err:
  1309. assert(ret < 0);
  1310. if (s->vmfd >= 0) {
  1311. close(s->vmfd);
  1312. }
  1313. if (s->fd != -1) {
  1314. close(s->fd);
  1315. }
  1316. g_free(s->slots);
  1317. g_free(s);
  1318. return ret;
  1319. }
  1320. void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
  1321. {
  1322. s->sigmask_len = sigmask_len;
  1323. }
  1324. static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
  1325. uint32_t count)
  1326. {
  1327. int i;
  1328. uint8_t *ptr = data;
  1329. for (i = 0; i < count; i++) {
  1330. address_space_rw(&address_space_io, port, ptr, size,
  1331. direction == KVM_EXIT_IO_OUT);
  1332. ptr += size;
  1333. }
  1334. }
  1335. static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
  1336. {
  1337. fprintf(stderr, "KVM internal error. Suberror: %d\n",
  1338. run->internal.suberror);
  1339. if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
  1340. int i;
  1341. for (i = 0; i < run->internal.ndata; ++i) {
  1342. fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
  1343. i, (uint64_t)run->internal.data[i]);
  1344. }
  1345. }
  1346. if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
  1347. fprintf(stderr, "emulation failure\n");
  1348. if (!kvm_arch_stop_on_emulation_error(cpu)) {
  1349. cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
  1350. return EXCP_INTERRUPT;
  1351. }
  1352. }
  1353. /* FIXME: Should trigger a qmp message to let management know
  1354. * something went wrong.
  1355. */
  1356. return -1;
  1357. }
  1358. void kvm_flush_coalesced_mmio_buffer(void)
  1359. {
  1360. KVMState *s = kvm_state;
  1361. if (s->coalesced_flush_in_progress) {
  1362. return;
  1363. }
  1364. s->coalesced_flush_in_progress = true;
  1365. if (s->coalesced_mmio_ring) {
  1366. struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
  1367. while (ring->first != ring->last) {
  1368. struct kvm_coalesced_mmio *ent;
  1369. ent = &ring->coalesced_mmio[ring->first];
  1370. cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
  1371. smp_wmb();
  1372. ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
  1373. }
  1374. }
  1375. s->coalesced_flush_in_progress = false;
  1376. }
  1377. static void do_kvm_cpu_synchronize_state(void *arg)
  1378. {
  1379. CPUState *cpu = arg;
  1380. if (!cpu->kvm_vcpu_dirty) {
  1381. kvm_arch_get_registers(cpu);
  1382. cpu->kvm_vcpu_dirty = true;
  1383. }
  1384. }
  1385. void kvm_cpu_synchronize_state(CPUState *cpu)
  1386. {
  1387. if (!cpu->kvm_vcpu_dirty) {
  1388. run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
  1389. }
  1390. }
  1391. void kvm_cpu_synchronize_post_reset(CPUState *cpu)
  1392. {
  1393. kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
  1394. cpu->kvm_vcpu_dirty = false;
  1395. }
  1396. void kvm_cpu_synchronize_post_init(CPUState *cpu)
  1397. {
  1398. kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
  1399. cpu->kvm_vcpu_dirty = false;
  1400. }
  1401. void kvm_cpu_clean_state(CPUState *cpu)
  1402. {
  1403. cpu->kvm_vcpu_dirty = false;
  1404. }
  1405. int kvm_cpu_exec(CPUState *cpu)
  1406. {
  1407. struct kvm_run *run = cpu->kvm_run;
  1408. int ret, run_ret;
  1409. DPRINTF("kvm_cpu_exec()\n");
  1410. if (kvm_arch_process_async_events(cpu)) {
  1411. cpu->exit_request = 0;
  1412. return EXCP_HLT;
  1413. }
  1414. do {
  1415. if (cpu->kvm_vcpu_dirty) {
  1416. kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
  1417. cpu->kvm_vcpu_dirty = false;
  1418. }
  1419. kvm_arch_pre_run(cpu, run);
  1420. if (cpu->exit_request) {
  1421. DPRINTF("interrupt exit requested\n");
  1422. /*
  1423. * KVM requires us to reenter the kernel after IO exits to complete
  1424. * instruction emulation. This self-signal will ensure that we
  1425. * leave ASAP again.
  1426. */
  1427. qemu_cpu_kick_self();
  1428. }
  1429. qemu_mutex_unlock_iothread();
  1430. run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
  1431. qemu_mutex_lock_iothread();
  1432. kvm_arch_post_run(cpu, run);
  1433. if (run_ret < 0) {
  1434. if (run_ret == -EINTR || run_ret == -EAGAIN) {
  1435. DPRINTF("io window exit\n");
  1436. ret = EXCP_INTERRUPT;
  1437. break;
  1438. }
  1439. fprintf(stderr, "error: kvm run failed %s\n",
  1440. strerror(-run_ret));
  1441. abort();
  1442. }
  1443. trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
  1444. switch (run->exit_reason) {
  1445. case KVM_EXIT_IO:
  1446. DPRINTF("handle_io\n");
  1447. kvm_handle_io(run->io.port,
  1448. (uint8_t *)run + run->io.data_offset,
  1449. run->io.direction,
  1450. run->io.size,
  1451. run->io.count);
  1452. ret = 0;
  1453. break;
  1454. case KVM_EXIT_MMIO:
  1455. DPRINTF("handle_mmio\n");
  1456. cpu_physical_memory_rw(run->mmio.phys_addr,
  1457. run->mmio.data,
  1458. run->mmio.len,
  1459. run->mmio.is_write);
  1460. ret = 0;
  1461. break;
  1462. case KVM_EXIT_IRQ_WINDOW_OPEN:
  1463. DPRINTF("irq_window_open\n");
  1464. ret = EXCP_INTERRUPT;
  1465. break;
  1466. case KVM_EXIT_SHUTDOWN:
  1467. DPRINTF("shutdown\n");
  1468. qemu_system_reset_request();
  1469. ret = EXCP_INTERRUPT;
  1470. break;
  1471. case KVM_EXIT_UNKNOWN:
  1472. fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
  1473. (uint64_t)run->hw.hardware_exit_reason);
  1474. ret = -1;
  1475. break;
  1476. case KVM_EXIT_INTERNAL_ERROR:
  1477. ret = kvm_handle_internal_error(cpu, run);
  1478. break;
  1479. case KVM_EXIT_SYSTEM_EVENT:
  1480. switch (run->system_event.type) {
  1481. case KVM_SYSTEM_EVENT_SHUTDOWN:
  1482. qemu_system_shutdown_request();
  1483. ret = EXCP_INTERRUPT;
  1484. break;
  1485. case KVM_SYSTEM_EVENT_RESET:
  1486. qemu_system_reset_request();
  1487. ret = EXCP_INTERRUPT;
  1488. break;
  1489. default:
  1490. DPRINTF("kvm_arch_handle_exit\n");
  1491. ret = kvm_arch_handle_exit(cpu, run);
  1492. break;
  1493. }
  1494. break;
  1495. default:
  1496. DPRINTF("kvm_arch_handle_exit\n");
  1497. ret = kvm_arch_handle_exit(cpu, run);
  1498. break;
  1499. }
  1500. } while (ret == 0);
  1501. if (ret < 0) {
  1502. cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
  1503. vm_stop(RUN_STATE_INTERNAL_ERROR);
  1504. }
  1505. cpu->exit_request = 0;
  1506. return ret;
  1507. }
  1508. int kvm_ioctl(KVMState *s, int type, ...)
  1509. {
  1510. int ret;
  1511. void *arg;
  1512. va_list ap;
  1513. va_start(ap, type);
  1514. arg = va_arg(ap, void *);
  1515. va_end(ap);
  1516. trace_kvm_ioctl(type, arg);
  1517. ret = ioctl(s->fd, type, arg);
  1518. if (ret == -1) {
  1519. ret = -errno;
  1520. }
  1521. return ret;
  1522. }
  1523. int kvm_vm_ioctl(KVMState *s, int type, ...)
  1524. {
  1525. int ret;
  1526. void *arg;
  1527. va_list ap;
  1528. va_start(ap, type);
  1529. arg = va_arg(ap, void *);
  1530. va_end(ap);
  1531. trace_kvm_vm_ioctl(type, arg);
  1532. ret = ioctl(s->vmfd, type, arg);
  1533. if (ret == -1) {
  1534. ret = -errno;
  1535. }
  1536. return ret;
  1537. }
  1538. int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
  1539. {
  1540. int ret;
  1541. void *arg;
  1542. va_list ap;
  1543. va_start(ap, type);
  1544. arg = va_arg(ap, void *);
  1545. va_end(ap);
  1546. trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
  1547. ret = ioctl(cpu->kvm_fd, type, arg);
  1548. if (ret == -1) {
  1549. ret = -errno;
  1550. }
  1551. return ret;
  1552. }
  1553. int kvm_device_ioctl(int fd, int type, ...)
  1554. {
  1555. int ret;
  1556. void *arg;
  1557. va_list ap;
  1558. va_start(ap, type);
  1559. arg = va_arg(ap, void *);
  1560. va_end(ap);
  1561. trace_kvm_device_ioctl(fd, type, arg);
  1562. ret = ioctl(fd, type, arg);
  1563. if (ret == -1) {
  1564. ret = -errno;
  1565. }
  1566. return ret;
  1567. }
  1568. int kvm_has_sync_mmu(void)
  1569. {
  1570. return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
  1571. }
  1572. int kvm_has_vcpu_events(void)
  1573. {
  1574. return kvm_state->vcpu_events;
  1575. }
  1576. int kvm_has_robust_singlestep(void)
  1577. {
  1578. return kvm_state->robust_singlestep;
  1579. }
  1580. int kvm_has_debugregs(void)
  1581. {
  1582. return kvm_state->debugregs;
  1583. }
  1584. int kvm_has_xsave(void)
  1585. {
  1586. return kvm_state->xsave;
  1587. }
  1588. int kvm_has_xcrs(void)
  1589. {
  1590. return kvm_state->xcrs;
  1591. }
  1592. int kvm_has_pit_state2(void)
  1593. {
  1594. return kvm_state->pit_state2;
  1595. }
  1596. int kvm_has_many_ioeventfds(void)
  1597. {
  1598. if (!kvm_enabled()) {
  1599. return 0;
  1600. }
  1601. return kvm_state->many_ioeventfds;
  1602. }
  1603. int kvm_has_gsi_routing(void)
  1604. {
  1605. #ifdef KVM_CAP_IRQ_ROUTING
  1606. return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
  1607. #else
  1608. return false;
  1609. #endif
  1610. }
  1611. int kvm_has_intx_set_mask(void)
  1612. {
  1613. return kvm_state->intx_set_mask;
  1614. }
  1615. void kvm_setup_guest_memory(void *start, size_t size)
  1616. {
  1617. #ifdef CONFIG_VALGRIND_H
  1618. VALGRIND_MAKE_MEM_DEFINED(start, size);
  1619. #endif
  1620. if (!kvm_has_sync_mmu()) {
  1621. int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
  1622. if (ret) {
  1623. perror("qemu_madvise");
  1624. fprintf(stderr,
  1625. "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
  1626. exit(1);
  1627. }
  1628. }
  1629. }
  1630. #ifdef KVM_CAP_SET_GUEST_DEBUG
  1631. struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
  1632. target_ulong pc)
  1633. {
  1634. struct kvm_sw_breakpoint *bp;
  1635. QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
  1636. if (bp->pc == pc) {
  1637. return bp;
  1638. }
  1639. }
  1640. return NULL;
  1641. }
  1642. int kvm_sw_breakpoints_active(CPUState *cpu)
  1643. {
  1644. return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
  1645. }
  1646. struct kvm_set_guest_debug_data {
  1647. struct kvm_guest_debug dbg;
  1648. CPUState *cpu;
  1649. int err;
  1650. };
  1651. static void kvm_invoke_set_guest_debug(void *data)
  1652. {
  1653. struct kvm_set_guest_debug_data *dbg_data = data;
  1654. dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
  1655. &dbg_data->dbg);
  1656. }
  1657. int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
  1658. {
  1659. struct kvm_set_guest_debug_data data;
  1660. data.dbg.control = reinject_trap;
  1661. if (cpu->singlestep_enabled) {
  1662. data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
  1663. }
  1664. kvm_arch_update_guest_debug(cpu, &data.dbg);
  1665. data.cpu = cpu;
  1666. run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
  1667. return data.err;
  1668. }
  1669. int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
  1670. target_ulong len, int type)
  1671. {
  1672. struct kvm_sw_breakpoint *bp;
  1673. int err;
  1674. if (type == GDB_BREAKPOINT_SW) {
  1675. bp = kvm_find_sw_breakpoint(cpu, addr);
  1676. if (bp) {
  1677. bp->use_count++;
  1678. return 0;
  1679. }
  1680. bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
  1681. if (!bp) {
  1682. return -ENOMEM;
  1683. }
  1684. bp->pc = addr;
  1685. bp->use_count = 1;
  1686. err = kvm_arch_insert_sw_breakpoint(cpu, bp);
  1687. if (err) {
  1688. g_free(bp);
  1689. return err;
  1690. }
  1691. QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
  1692. } else {
  1693. err = kvm_arch_insert_hw_breakpoint(addr, len, type);
  1694. if (err) {
  1695. return err;
  1696. }
  1697. }
  1698. CPU_FOREACH(cpu) {
  1699. err = kvm_update_guest_debug(cpu, 0);
  1700. if (err) {
  1701. return err;
  1702. }
  1703. }
  1704. return 0;
  1705. }
  1706. int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
  1707. target_ulong len, int type)
  1708. {
  1709. struct kvm_sw_breakpoint *bp;
  1710. int err;
  1711. if (type == GDB_BREAKPOINT_SW) {
  1712. bp = kvm_find_sw_breakpoint(cpu, addr);
  1713. if (!bp) {
  1714. return -ENOENT;
  1715. }
  1716. if (bp->use_count > 1) {
  1717. bp->use_count--;
  1718. return 0;
  1719. }
  1720. err = kvm_arch_remove_sw_breakpoint(cpu, bp);
  1721. if (err) {
  1722. return err;
  1723. }
  1724. QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
  1725. g_free(bp);
  1726. } else {
  1727. err = kvm_arch_remove_hw_breakpoint(addr, len, type);
  1728. if (err) {
  1729. return err;
  1730. }
  1731. }
  1732. CPU_FOREACH(cpu) {
  1733. err = kvm_update_guest_debug(cpu, 0);
  1734. if (err) {
  1735. return err;
  1736. }
  1737. }
  1738. return 0;
  1739. }
  1740. void kvm_remove_all_breakpoints(CPUState *cpu)
  1741. {
  1742. struct kvm_sw_breakpoint *bp, *next;
  1743. KVMState *s = cpu->kvm_state;
  1744. CPUState *tmpcpu;
  1745. QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
  1746. if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
  1747. /* Try harder to find a CPU that currently sees the breakpoint. */
  1748. CPU_FOREACH(tmpcpu) {
  1749. if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
  1750. break;
  1751. }
  1752. }
  1753. }
  1754. QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
  1755. g_free(bp);
  1756. }
  1757. kvm_arch_remove_all_hw_breakpoints();
  1758. CPU_FOREACH(cpu) {
  1759. kvm_update_guest_debug(cpu, 0);
  1760. }
  1761. }
  1762. #else /* !KVM_CAP_SET_GUEST_DEBUG */
  1763. int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
  1764. {
  1765. return -EINVAL;
  1766. }
  1767. int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
  1768. target_ulong len, int type)
  1769. {
  1770. return -EINVAL;
  1771. }
  1772. int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
  1773. target_ulong len, int type)
  1774. {
  1775. return -EINVAL;
  1776. }
  1777. void kvm_remove_all_breakpoints(CPUState *cpu)
  1778. {
  1779. }
  1780. #endif /* !KVM_CAP_SET_GUEST_DEBUG */
  1781. int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
  1782. {
  1783. KVMState *s = kvm_state;
  1784. struct kvm_signal_mask *sigmask;
  1785. int r;
  1786. if (!sigset) {
  1787. return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
  1788. }
  1789. sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
  1790. sigmask->len = s->sigmask_len;
  1791. memcpy(sigmask->sigset, sigset, sizeof(*sigset));
  1792. r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
  1793. g_free(sigmask);
  1794. return r;
  1795. }
  1796. int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
  1797. {
  1798. return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
  1799. }
  1800. int kvm_on_sigbus(int code, void *addr)
  1801. {
  1802. return kvm_arch_on_sigbus(code, addr);
  1803. }
  1804. int kvm_create_device(KVMState *s, uint64_t type, bool test)
  1805. {
  1806. int ret;
  1807. struct kvm_create_device create_dev;
  1808. create_dev.type = type;
  1809. create_dev.fd = -1;
  1810. create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
  1811. if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
  1812. return -ENOTSUP;
  1813. }
  1814. ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
  1815. if (ret) {
  1816. return ret;
  1817. }
  1818. return test ? 0 : create_dev.fd;
  1819. }
  1820. int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
  1821. {
  1822. struct kvm_one_reg reg;
  1823. int r;
  1824. reg.id = id;
  1825. reg.addr = (uintptr_t) source;
  1826. r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
  1827. if (r) {
  1828. trace_kvm_failed_reg_set(id, strerror(r));
  1829. }
  1830. return r;
  1831. }
  1832. int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
  1833. {
  1834. struct kvm_one_reg reg;
  1835. int r;
  1836. reg.id = id;
  1837. reg.addr = (uintptr_t) target;
  1838. r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
  1839. if (r) {
  1840. trace_kvm_failed_reg_get(id, strerror(r));
  1841. }
  1842. return r;
  1843. }