hpet.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798
  1. /*
  2. * High Precisition Event Timer emulation
  3. *
  4. * Copyright (c) 2007 Alexander Graf
  5. * Copyright (c) 2008 IBM Corporation
  6. *
  7. * Authors: Beth Kon <bkon@us.ibm.com>
  8. *
  9. * This library is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2 of the License, or (at your option) any later version.
  13. *
  14. * This library is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  21. *
  22. * *****************************************************************
  23. *
  24. * This driver attempts to emulate an HPET device in software.
  25. */
  26. #include "hw/hw.h"
  27. #include "hw/i386/pc.h"
  28. #include "ui/console.h"
  29. #include "qemu/timer.h"
  30. #include "hw/timer/hpet.h"
  31. #include "hw/sysbus.h"
  32. #include "hw/timer/mc146818rtc.h"
  33. #include "hw/timer/i8254.h"
  34. //#define HPET_DEBUG
  35. #ifdef HPET_DEBUG
  36. #define DPRINTF printf
  37. #else
  38. #define DPRINTF(...)
  39. #endif
  40. #define HPET_MSI_SUPPORT 0
  41. #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET)
  42. struct HPETState;
  43. typedef struct HPETTimer { /* timers */
  44. uint8_t tn; /*timer number*/
  45. QEMUTimer *qemu_timer;
  46. struct HPETState *state;
  47. /* Memory-mapped, software visible timer registers */
  48. uint64_t config; /* configuration/cap */
  49. uint64_t cmp; /* comparator */
  50. uint64_t fsb; /* FSB route */
  51. /* Hidden register state */
  52. uint64_t period; /* Last value written to comparator */
  53. uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
  54. * mode. Next pop will be actual timer expiration.
  55. */
  56. } HPETTimer;
  57. typedef struct HPETState {
  58. /*< private >*/
  59. SysBusDevice parent_obj;
  60. /*< public >*/
  61. MemoryRegion iomem;
  62. uint64_t hpet_offset;
  63. qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
  64. uint32_t flags;
  65. uint8_t rtc_irq_level;
  66. qemu_irq pit_enabled;
  67. uint8_t num_timers;
  68. uint32_t intcap;
  69. HPETTimer timer[HPET_MAX_TIMERS];
  70. /* Memory-mapped, software visible registers */
  71. uint64_t capability; /* capabilities */
  72. uint64_t config; /* configuration */
  73. uint64_t isr; /* interrupt status reg */
  74. uint64_t hpet_counter; /* main counter */
  75. uint8_t hpet_id; /* instance id */
  76. } HPETState;
  77. static uint32_t hpet_in_legacy_mode(HPETState *s)
  78. {
  79. return s->config & HPET_CFG_LEGACY;
  80. }
  81. static uint32_t timer_int_route(struct HPETTimer *timer)
  82. {
  83. return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
  84. }
  85. static uint32_t timer_fsb_route(HPETTimer *t)
  86. {
  87. return t->config & HPET_TN_FSB_ENABLE;
  88. }
  89. static uint32_t hpet_enabled(HPETState *s)
  90. {
  91. return s->config & HPET_CFG_ENABLE;
  92. }
  93. static uint32_t timer_is_periodic(HPETTimer *t)
  94. {
  95. return t->config & HPET_TN_PERIODIC;
  96. }
  97. static uint32_t timer_enabled(HPETTimer *t)
  98. {
  99. return t->config & HPET_TN_ENABLE;
  100. }
  101. static uint32_t hpet_time_after(uint64_t a, uint64_t b)
  102. {
  103. return ((int32_t)(b) - (int32_t)(a) < 0);
  104. }
  105. static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
  106. {
  107. return ((int64_t)(b) - (int64_t)(a) < 0);
  108. }
  109. static uint64_t ticks_to_ns(uint64_t value)
  110. {
  111. return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS));
  112. }
  113. static uint64_t ns_to_ticks(uint64_t value)
  114. {
  115. return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD));
  116. }
  117. static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
  118. {
  119. new &= mask;
  120. new |= old & ~mask;
  121. return new;
  122. }
  123. static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
  124. {
  125. return (!(old & mask) && (new & mask));
  126. }
  127. static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
  128. {
  129. return ((old & mask) && !(new & mask));
  130. }
  131. static uint64_t hpet_get_ticks(HPETState *s)
  132. {
  133. return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
  134. }
  135. /*
  136. * calculate diff between comparator value and current ticks
  137. */
  138. static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
  139. {
  140. if (t->config & HPET_TN_32BIT) {
  141. uint32_t diff, cmp;
  142. cmp = (uint32_t)t->cmp;
  143. diff = cmp - (uint32_t)current;
  144. diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
  145. return (uint64_t)diff;
  146. } else {
  147. uint64_t diff, cmp;
  148. cmp = t->cmp;
  149. diff = cmp - current;
  150. diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
  151. return diff;
  152. }
  153. }
  154. static void update_irq(struct HPETTimer *timer, int set)
  155. {
  156. uint64_t mask;
  157. HPETState *s;
  158. int route;
  159. if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
  160. /* if LegacyReplacementRoute bit is set, HPET specification requires
  161. * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
  162. * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
  163. */
  164. route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
  165. } else {
  166. route = timer_int_route(timer);
  167. }
  168. s = timer->state;
  169. mask = 1 << timer->tn;
  170. if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
  171. s->isr &= ~mask;
  172. if (!timer_fsb_route(timer)) {
  173. /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
  174. if (route >= ISA_NUM_IRQS) {
  175. qemu_irq_raise(s->irqs[route]);
  176. } else {
  177. qemu_irq_lower(s->irqs[route]);
  178. }
  179. }
  180. } else if (timer_fsb_route(timer)) {
  181. stl_le_phys(&address_space_memory,
  182. timer->fsb >> 32, timer->fsb & 0xffffffff);
  183. } else if (timer->config & HPET_TN_TYPE_LEVEL) {
  184. s->isr |= mask;
  185. /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
  186. if (route >= ISA_NUM_IRQS) {
  187. qemu_irq_lower(s->irqs[route]);
  188. } else {
  189. qemu_irq_raise(s->irqs[route]);
  190. }
  191. } else {
  192. s->isr &= ~mask;
  193. qemu_irq_pulse(s->irqs[route]);
  194. }
  195. }
  196. static void hpet_pre_save(void *opaque)
  197. {
  198. HPETState *s = opaque;
  199. /* save current counter value */
  200. s->hpet_counter = hpet_get_ticks(s);
  201. }
  202. static int hpet_pre_load(void *opaque)
  203. {
  204. HPETState *s = opaque;
  205. /* version 1 only supports 3, later versions will load the actual value */
  206. s->num_timers = HPET_MIN_TIMERS;
  207. return 0;
  208. }
  209. static bool hpet_validate_num_timers(void *opaque, int version_id)
  210. {
  211. HPETState *s = opaque;
  212. if (s->num_timers < HPET_MIN_TIMERS) {
  213. return false;
  214. } else if (s->num_timers > HPET_MAX_TIMERS) {
  215. return false;
  216. }
  217. return true;
  218. }
  219. static int hpet_post_load(void *opaque, int version_id)
  220. {
  221. HPETState *s = opaque;
  222. /* Recalculate the offset between the main counter and guest time */
  223. s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  224. /* Push number of timers into capability returned via HPET_ID */
  225. s->capability &= ~HPET_ID_NUM_TIM_MASK;
  226. s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
  227. hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
  228. /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
  229. s->flags &= ~(1 << HPET_MSI_SUPPORT);
  230. if (s->timer[0].config & HPET_TN_FSB_CAP) {
  231. s->flags |= 1 << HPET_MSI_SUPPORT;
  232. }
  233. return 0;
  234. }
  235. static bool hpet_rtc_irq_level_needed(void *opaque)
  236. {
  237. HPETState *s = opaque;
  238. return s->rtc_irq_level != 0;
  239. }
  240. static const VMStateDescription vmstate_hpet_rtc_irq_level = {
  241. .name = "hpet/rtc_irq_level",
  242. .version_id = 1,
  243. .minimum_version_id = 1,
  244. .fields = (VMStateField[]) {
  245. VMSTATE_UINT8(rtc_irq_level, HPETState),
  246. VMSTATE_END_OF_LIST()
  247. }
  248. };
  249. static const VMStateDescription vmstate_hpet_timer = {
  250. .name = "hpet_timer",
  251. .version_id = 1,
  252. .minimum_version_id = 1,
  253. .fields = (VMStateField[]) {
  254. VMSTATE_UINT8(tn, HPETTimer),
  255. VMSTATE_UINT64(config, HPETTimer),
  256. VMSTATE_UINT64(cmp, HPETTimer),
  257. VMSTATE_UINT64(fsb, HPETTimer),
  258. VMSTATE_UINT64(period, HPETTimer),
  259. VMSTATE_UINT8(wrap_flag, HPETTimer),
  260. VMSTATE_TIMER(qemu_timer, HPETTimer),
  261. VMSTATE_END_OF_LIST()
  262. }
  263. };
  264. static const VMStateDescription vmstate_hpet = {
  265. .name = "hpet",
  266. .version_id = 2,
  267. .minimum_version_id = 1,
  268. .pre_save = hpet_pre_save,
  269. .pre_load = hpet_pre_load,
  270. .post_load = hpet_post_load,
  271. .fields = (VMStateField[]) {
  272. VMSTATE_UINT64(config, HPETState),
  273. VMSTATE_UINT64(isr, HPETState),
  274. VMSTATE_UINT64(hpet_counter, HPETState),
  275. VMSTATE_UINT8_V(num_timers, HPETState, 2),
  276. VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
  277. VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
  278. vmstate_hpet_timer, HPETTimer),
  279. VMSTATE_END_OF_LIST()
  280. },
  281. .subsections = (VMStateSubsection[]) {
  282. {
  283. .vmsd = &vmstate_hpet_rtc_irq_level,
  284. .needed = hpet_rtc_irq_level_needed,
  285. }, {
  286. /* empty */
  287. }
  288. }
  289. };
  290. /*
  291. * timer expiration callback
  292. */
  293. static void hpet_timer(void *opaque)
  294. {
  295. HPETTimer *t = opaque;
  296. uint64_t diff;
  297. uint64_t period = t->period;
  298. uint64_t cur_tick = hpet_get_ticks(t->state);
  299. if (timer_is_periodic(t) && period != 0) {
  300. if (t->config & HPET_TN_32BIT) {
  301. while (hpet_time_after(cur_tick, t->cmp)) {
  302. t->cmp = (uint32_t)(t->cmp + t->period);
  303. }
  304. } else {
  305. while (hpet_time_after64(cur_tick, t->cmp)) {
  306. t->cmp += period;
  307. }
  308. }
  309. diff = hpet_calculate_diff(t, cur_tick);
  310. timer_mod(t->qemu_timer,
  311. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
  312. } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
  313. if (t->wrap_flag) {
  314. diff = hpet_calculate_diff(t, cur_tick);
  315. timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
  316. (int64_t)ticks_to_ns(diff));
  317. t->wrap_flag = 0;
  318. }
  319. }
  320. update_irq(t, 1);
  321. }
  322. static void hpet_set_timer(HPETTimer *t)
  323. {
  324. uint64_t diff;
  325. uint32_t wrap_diff; /* how many ticks until we wrap? */
  326. uint64_t cur_tick = hpet_get_ticks(t->state);
  327. /* whenever new timer is being set up, make sure wrap_flag is 0 */
  328. t->wrap_flag = 0;
  329. diff = hpet_calculate_diff(t, cur_tick);
  330. /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
  331. * counter wraps in addition to an interrupt with comparator match.
  332. */
  333. if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
  334. wrap_diff = 0xffffffff - (uint32_t)cur_tick;
  335. if (wrap_diff < (uint32_t)diff) {
  336. diff = wrap_diff;
  337. t->wrap_flag = 1;
  338. }
  339. }
  340. timer_mod(t->qemu_timer,
  341. qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
  342. }
  343. static void hpet_del_timer(HPETTimer *t)
  344. {
  345. timer_del(t->qemu_timer);
  346. update_irq(t, 0);
  347. }
  348. #ifdef HPET_DEBUG
  349. static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
  350. {
  351. printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
  352. return 0;
  353. }
  354. static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
  355. {
  356. printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
  357. return 0;
  358. }
  359. #endif
  360. static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
  361. unsigned size)
  362. {
  363. HPETState *s = opaque;
  364. uint64_t cur_tick, index;
  365. DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
  366. index = addr;
  367. /*address range of all TN regs*/
  368. if (index >= 0x100 && index <= 0x3ff) {
  369. uint8_t timer_id = (addr - 0x100) / 0x20;
  370. HPETTimer *timer = &s->timer[timer_id];
  371. if (timer_id > s->num_timers) {
  372. DPRINTF("qemu: timer id out of range\n");
  373. return 0;
  374. }
  375. switch ((addr - 0x100) % 0x20) {
  376. case HPET_TN_CFG:
  377. return timer->config;
  378. case HPET_TN_CFG + 4: // Interrupt capabilities
  379. return timer->config >> 32;
  380. case HPET_TN_CMP: // comparator register
  381. return timer->cmp;
  382. case HPET_TN_CMP + 4:
  383. return timer->cmp >> 32;
  384. case HPET_TN_ROUTE:
  385. return timer->fsb;
  386. case HPET_TN_ROUTE + 4:
  387. return timer->fsb >> 32;
  388. default:
  389. DPRINTF("qemu: invalid hpet_ram_readl\n");
  390. break;
  391. }
  392. } else {
  393. switch (index) {
  394. case HPET_ID:
  395. return s->capability;
  396. case HPET_PERIOD:
  397. return s->capability >> 32;
  398. case HPET_CFG:
  399. return s->config;
  400. case HPET_CFG + 4:
  401. DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
  402. return 0;
  403. case HPET_COUNTER:
  404. if (hpet_enabled(s)) {
  405. cur_tick = hpet_get_ticks(s);
  406. } else {
  407. cur_tick = s->hpet_counter;
  408. }
  409. DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
  410. return cur_tick;
  411. case HPET_COUNTER + 4:
  412. if (hpet_enabled(s)) {
  413. cur_tick = hpet_get_ticks(s);
  414. } else {
  415. cur_tick = s->hpet_counter;
  416. }
  417. DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
  418. return cur_tick >> 32;
  419. case HPET_STATUS:
  420. return s->isr;
  421. default:
  422. DPRINTF("qemu: invalid hpet_ram_readl\n");
  423. break;
  424. }
  425. }
  426. return 0;
  427. }
  428. static void hpet_ram_write(void *opaque, hwaddr addr,
  429. uint64_t value, unsigned size)
  430. {
  431. int i;
  432. HPETState *s = opaque;
  433. uint64_t old_val, new_val, val, index;
  434. DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
  435. index = addr;
  436. old_val = hpet_ram_read(opaque, addr, 4);
  437. new_val = value;
  438. /*address range of all TN regs*/
  439. if (index >= 0x100 && index <= 0x3ff) {
  440. uint8_t timer_id = (addr - 0x100) / 0x20;
  441. HPETTimer *timer = &s->timer[timer_id];
  442. DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
  443. if (timer_id > s->num_timers) {
  444. DPRINTF("qemu: timer id out of range\n");
  445. return;
  446. }
  447. switch ((addr - 0x100) % 0x20) {
  448. case HPET_TN_CFG:
  449. DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
  450. if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
  451. update_irq(timer, 0);
  452. }
  453. val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
  454. timer->config = (timer->config & 0xffffffff00000000ULL) | val;
  455. if (new_val & HPET_TN_32BIT) {
  456. timer->cmp = (uint32_t)timer->cmp;
  457. timer->period = (uint32_t)timer->period;
  458. }
  459. if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
  460. hpet_enabled(s)) {
  461. hpet_set_timer(timer);
  462. } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
  463. hpet_del_timer(timer);
  464. }
  465. break;
  466. case HPET_TN_CFG + 4: // Interrupt capabilities
  467. DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
  468. break;
  469. case HPET_TN_CMP: // comparator register
  470. DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
  471. if (timer->config & HPET_TN_32BIT) {
  472. new_val = (uint32_t)new_val;
  473. }
  474. if (!timer_is_periodic(timer)
  475. || (timer->config & HPET_TN_SETVAL)) {
  476. timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
  477. }
  478. if (timer_is_periodic(timer)) {
  479. /*
  480. * FIXME: Clamp period to reasonable min value?
  481. * Clamp period to reasonable max value
  482. */
  483. new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
  484. timer->period =
  485. (timer->period & 0xffffffff00000000ULL) | new_val;
  486. }
  487. timer->config &= ~HPET_TN_SETVAL;
  488. if (hpet_enabled(s)) {
  489. hpet_set_timer(timer);
  490. }
  491. break;
  492. case HPET_TN_CMP + 4: // comparator register high order
  493. DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
  494. if (!timer_is_periodic(timer)
  495. || (timer->config & HPET_TN_SETVAL)) {
  496. timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
  497. } else {
  498. /*
  499. * FIXME: Clamp period to reasonable min value?
  500. * Clamp period to reasonable max value
  501. */
  502. new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
  503. timer->period =
  504. (timer->period & 0xffffffffULL) | new_val << 32;
  505. }
  506. timer->config &= ~HPET_TN_SETVAL;
  507. if (hpet_enabled(s)) {
  508. hpet_set_timer(timer);
  509. }
  510. break;
  511. case HPET_TN_ROUTE:
  512. timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
  513. break;
  514. case HPET_TN_ROUTE + 4:
  515. timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
  516. break;
  517. default:
  518. DPRINTF("qemu: invalid hpet_ram_writel\n");
  519. break;
  520. }
  521. return;
  522. } else {
  523. switch (index) {
  524. case HPET_ID:
  525. return;
  526. case HPET_CFG:
  527. val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
  528. s->config = (s->config & 0xffffffff00000000ULL) | val;
  529. if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
  530. /* Enable main counter and interrupt generation. */
  531. s->hpet_offset =
  532. ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  533. for (i = 0; i < s->num_timers; i++) {
  534. if ((&s->timer[i])->cmp != ~0ULL) {
  535. hpet_set_timer(&s->timer[i]);
  536. }
  537. }
  538. } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
  539. /* Halt main counter and disable interrupt generation. */
  540. s->hpet_counter = hpet_get_ticks(s);
  541. for (i = 0; i < s->num_timers; i++) {
  542. hpet_del_timer(&s->timer[i]);
  543. }
  544. }
  545. /* i8254 and RTC output pins are disabled
  546. * when HPET is in legacy mode */
  547. if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
  548. qemu_set_irq(s->pit_enabled, 0);
  549. qemu_irq_lower(s->irqs[0]);
  550. qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
  551. } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
  552. qemu_irq_lower(s->irqs[0]);
  553. qemu_set_irq(s->pit_enabled, 1);
  554. qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
  555. }
  556. break;
  557. case HPET_CFG + 4:
  558. DPRINTF("qemu: invalid HPET_CFG+4 write\n");
  559. break;
  560. case HPET_STATUS:
  561. val = new_val & s->isr;
  562. for (i = 0; i < s->num_timers; i++) {
  563. if (val & (1 << i)) {
  564. update_irq(&s->timer[i], 0);
  565. }
  566. }
  567. break;
  568. case HPET_COUNTER:
  569. if (hpet_enabled(s)) {
  570. DPRINTF("qemu: Writing counter while HPET enabled!\n");
  571. }
  572. s->hpet_counter =
  573. (s->hpet_counter & 0xffffffff00000000ULL) | value;
  574. DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
  575. value, s->hpet_counter);
  576. break;
  577. case HPET_COUNTER + 4:
  578. if (hpet_enabled(s)) {
  579. DPRINTF("qemu: Writing counter while HPET enabled!\n");
  580. }
  581. s->hpet_counter =
  582. (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
  583. DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
  584. value, s->hpet_counter);
  585. break;
  586. default:
  587. DPRINTF("qemu: invalid hpet_ram_writel\n");
  588. break;
  589. }
  590. }
  591. }
  592. static const MemoryRegionOps hpet_ram_ops = {
  593. .read = hpet_ram_read,
  594. .write = hpet_ram_write,
  595. .valid = {
  596. .min_access_size = 4,
  597. .max_access_size = 4,
  598. },
  599. .endianness = DEVICE_NATIVE_ENDIAN,
  600. };
  601. static void hpet_reset(DeviceState *d)
  602. {
  603. HPETState *s = HPET(d);
  604. SysBusDevice *sbd = SYS_BUS_DEVICE(d);
  605. int i;
  606. for (i = 0; i < s->num_timers; i++) {
  607. HPETTimer *timer = &s->timer[i];
  608. hpet_del_timer(timer);
  609. timer->cmp = ~0ULL;
  610. timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
  611. if (s->flags & (1 << HPET_MSI_SUPPORT)) {
  612. timer->config |= HPET_TN_FSB_CAP;
  613. }
  614. /* advertise availability of ioapic int */
  615. timer->config |= (uint64_t)s->intcap << 32;
  616. timer->period = 0ULL;
  617. timer->wrap_flag = 0;
  618. }
  619. qemu_set_irq(s->pit_enabled, 1);
  620. s->hpet_counter = 0ULL;
  621. s->hpet_offset = 0ULL;
  622. s->config = 0ULL;
  623. hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
  624. hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
  625. /* to document that the RTC lowers its output on reset as well */
  626. s->rtc_irq_level = 0;
  627. }
  628. static void hpet_handle_legacy_irq(void *opaque, int n, int level)
  629. {
  630. HPETState *s = HPET(opaque);
  631. if (n == HPET_LEGACY_PIT_INT) {
  632. if (!hpet_in_legacy_mode(s)) {
  633. qemu_set_irq(s->irqs[0], level);
  634. }
  635. } else {
  636. s->rtc_irq_level = level;
  637. if (!hpet_in_legacy_mode(s)) {
  638. qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
  639. }
  640. }
  641. }
  642. static void hpet_init(Object *obj)
  643. {
  644. SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
  645. HPETState *s = HPET(obj);
  646. /* HPET Area */
  647. memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", 0x400);
  648. sysbus_init_mmio(sbd, &s->iomem);
  649. }
  650. static void hpet_realize(DeviceState *dev, Error **errp)
  651. {
  652. SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
  653. HPETState *s = HPET(dev);
  654. int i;
  655. HPETTimer *timer;
  656. if (!s->intcap) {
  657. error_printf("Hpet's intcap not initialized.\n");
  658. }
  659. if (hpet_cfg.count == UINT8_MAX) {
  660. /* first instance */
  661. hpet_cfg.count = 0;
  662. }
  663. if (hpet_cfg.count == 8) {
  664. error_setg(errp, "Only 8 instances of HPET is allowed");
  665. return;
  666. }
  667. s->hpet_id = hpet_cfg.count++;
  668. for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
  669. sysbus_init_irq(sbd, &s->irqs[i]);
  670. }
  671. if (s->num_timers < HPET_MIN_TIMERS) {
  672. s->num_timers = HPET_MIN_TIMERS;
  673. } else if (s->num_timers > HPET_MAX_TIMERS) {
  674. s->num_timers = HPET_MAX_TIMERS;
  675. }
  676. for (i = 0; i < HPET_MAX_TIMERS; i++) {
  677. timer = &s->timer[i];
  678. timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
  679. timer->tn = i;
  680. timer->state = s;
  681. }
  682. /* 64-bit main counter; LegacyReplacementRoute. */
  683. s->capability = 0x8086a001ULL;
  684. s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
  685. s->capability |= ((HPET_CLK_PERIOD) << 32);
  686. qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
  687. qdev_init_gpio_out(dev, &s->pit_enabled, 1);
  688. }
  689. static Property hpet_device_properties[] = {
  690. DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
  691. DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
  692. DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
  693. DEFINE_PROP_END_OF_LIST(),
  694. };
  695. static void hpet_device_class_init(ObjectClass *klass, void *data)
  696. {
  697. DeviceClass *dc = DEVICE_CLASS(klass);
  698. dc->realize = hpet_realize;
  699. dc->reset = hpet_reset;
  700. dc->vmsd = &vmstate_hpet;
  701. dc->props = hpet_device_properties;
  702. }
  703. static const TypeInfo hpet_device_info = {
  704. .name = TYPE_HPET,
  705. .parent = TYPE_SYS_BUS_DEVICE,
  706. .instance_size = sizeof(HPETState),
  707. .instance_init = hpet_init,
  708. .class_init = hpet_device_class_init,
  709. };
  710. static void hpet_register_types(void)
  711. {
  712. type_register_static(&hpet_device_info);
  713. }
  714. type_init(hpet_register_types)