2
0

kvm-all.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117
  1. /*
  2. * QEMU KVM support
  3. *
  4. * Copyright IBM, Corp. 2008
  5. * Red Hat, Inc. 2008
  6. *
  7. * Authors:
  8. * Anthony Liguori <aliguori@us.ibm.com>
  9. * Glauber Costa <gcosta@redhat.com>
  10. *
  11. * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12. * See the COPYING file in the top-level directory.
  13. *
  14. */
  15. #include <sys/types.h>
  16. #include <sys/ioctl.h>
  17. #include <sys/mman.h>
  18. #include <stdarg.h>
  19. #include <linux/kvm.h>
  20. #include "qemu-common.h"
  21. #include "qemu/atomic.h"
  22. #include "qemu/option.h"
  23. #include "qemu/config-file.h"
  24. #include "sysemu/sysemu.h"
  25. #include "hw/hw.h"
  26. #include "hw/pci/msi.h"
  27. #include "exec/gdbstub.h"
  28. #include "sysemu/kvm.h"
  29. #include "qemu/bswap.h"
  30. #include "exec/memory.h"
  31. #include "exec/ram_addr.h"
  32. #include "exec/address-spaces.h"
  33. #include "qemu/event_notifier.h"
  34. #include "trace.h"
  35. #include "hw/boards.h"
  36. /* This check must be after config-host.h is included */
  37. #ifdef CONFIG_EVENTFD
  38. #include <sys/eventfd.h>
  39. #endif
  40. #ifdef CONFIG_VALGRIND_H
  41. #include <valgrind/memcheck.h>
  42. #endif
  43. /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
  44. #define PAGE_SIZE TARGET_PAGE_SIZE
  45. //#define DEBUG_KVM
  46. #ifdef DEBUG_KVM
  47. #define DPRINTF(fmt, ...) \
  48. do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  49. #else
  50. #define DPRINTF(fmt, ...) \
  51. do { } while (0)
  52. #endif
  53. #define KVM_MSI_HASHTAB_SIZE 256
  54. typedef struct KVMSlot
  55. {
  56. hwaddr start_addr;
  57. ram_addr_t memory_size;
  58. void *ram;
  59. int slot;
  60. int flags;
  61. } KVMSlot;
  62. typedef struct kvm_dirty_log KVMDirtyLog;
  63. struct KVMState
  64. {
  65. KVMSlot *slots;
  66. int nr_slots;
  67. int fd;
  68. int vmfd;
  69. int coalesced_mmio;
  70. struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
  71. bool coalesced_flush_in_progress;
  72. int broken_set_mem_region;
  73. int migration_log;
  74. int vcpu_events;
  75. int robust_singlestep;
  76. int debugregs;
  77. #ifdef KVM_CAP_SET_GUEST_DEBUG
  78. struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
  79. #endif
  80. int pit_state2;
  81. int xsave, xcrs;
  82. int many_ioeventfds;
  83. int intx_set_mask;
  84. /* The man page (and posix) say ioctl numbers are signed int, but
  85. * they're not. Linux, glibc and *BSD all treat ioctl numbers as
  86. * unsigned, and treating them as signed here can break things */
  87. unsigned irq_set_ioctl;
  88. #ifdef KVM_CAP_IRQ_ROUTING
  89. struct kvm_irq_routing *irq_routes;
  90. int nr_allocated_irq_routes;
  91. uint32_t *used_gsi_bitmap;
  92. unsigned int gsi_count;
  93. QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
  94. bool direct_msi;
  95. #endif
  96. };
  97. KVMState *kvm_state;
  98. bool kvm_kernel_irqchip;
  99. bool kvm_async_interrupts_allowed;
  100. bool kvm_halt_in_kernel_allowed;
  101. bool kvm_irqfds_allowed;
  102. bool kvm_msi_via_irqfd_allowed;
  103. bool kvm_gsi_routing_allowed;
  104. bool kvm_gsi_direct_mapping;
  105. bool kvm_allowed;
  106. bool kvm_readonly_mem_allowed;
  107. static const KVMCapabilityInfo kvm_required_capabilites[] = {
  108. KVM_CAP_INFO(USER_MEMORY),
  109. KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
  110. KVM_CAP_LAST_INFO
  111. };
  112. static KVMSlot *kvm_alloc_slot(KVMState *s)
  113. {
  114. int i;
  115. for (i = 0; i < s->nr_slots; i++) {
  116. if (s->slots[i].memory_size == 0) {
  117. return &s->slots[i];
  118. }
  119. }
  120. fprintf(stderr, "%s: no free slot available\n", __func__);
  121. abort();
  122. }
  123. static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
  124. hwaddr start_addr,
  125. hwaddr end_addr)
  126. {
  127. int i;
  128. for (i = 0; i < s->nr_slots; i++) {
  129. KVMSlot *mem = &s->slots[i];
  130. if (start_addr == mem->start_addr &&
  131. end_addr == mem->start_addr + mem->memory_size) {
  132. return mem;
  133. }
  134. }
  135. return NULL;
  136. }
  137. /*
  138. * Find overlapping slot with lowest start address
  139. */
  140. static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
  141. hwaddr start_addr,
  142. hwaddr end_addr)
  143. {
  144. KVMSlot *found = NULL;
  145. int i;
  146. for (i = 0; i < s->nr_slots; i++) {
  147. KVMSlot *mem = &s->slots[i];
  148. if (mem->memory_size == 0 ||
  149. (found && found->start_addr < mem->start_addr)) {
  150. continue;
  151. }
  152. if (end_addr > mem->start_addr &&
  153. start_addr < mem->start_addr + mem->memory_size) {
  154. found = mem;
  155. }
  156. }
  157. return found;
  158. }
  159. int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
  160. hwaddr *phys_addr)
  161. {
  162. int i;
  163. for (i = 0; i < s->nr_slots; i++) {
  164. KVMSlot *mem = &s->slots[i];
  165. if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
  166. *phys_addr = mem->start_addr + (ram - mem->ram);
  167. return 1;
  168. }
  169. }
  170. return 0;
  171. }
  172. static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
  173. {
  174. struct kvm_userspace_memory_region mem;
  175. mem.slot = slot->slot;
  176. mem.guest_phys_addr = slot->start_addr;
  177. mem.userspace_addr = (unsigned long)slot->ram;
  178. mem.flags = slot->flags;
  179. if (s->migration_log) {
  180. mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
  181. }
  182. if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
  183. /* Set the slot size to 0 before setting the slot to the desired
  184. * value. This is needed based on KVM commit 75d61fbc. */
  185. mem.memory_size = 0;
  186. kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
  187. }
  188. mem.memory_size = slot->memory_size;
  189. return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
  190. }
  191. static void kvm_reset_vcpu(void *opaque)
  192. {
  193. CPUState *cpu = opaque;
  194. kvm_arch_reset_vcpu(cpu);
  195. }
  196. int kvm_init_vcpu(CPUState *cpu)
  197. {
  198. KVMState *s = kvm_state;
  199. long mmap_size;
  200. int ret;
  201. DPRINTF("kvm_init_vcpu\n");
  202. ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
  203. if (ret < 0) {
  204. DPRINTF("kvm_create_vcpu failed\n");
  205. goto err;
  206. }
  207. cpu->kvm_fd = ret;
  208. cpu->kvm_state = s;
  209. cpu->kvm_vcpu_dirty = true;
  210. mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
  211. if (mmap_size < 0) {
  212. ret = mmap_size;
  213. DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
  214. goto err;
  215. }
  216. cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
  217. cpu->kvm_fd, 0);
  218. if (cpu->kvm_run == MAP_FAILED) {
  219. ret = -errno;
  220. DPRINTF("mmap'ing vcpu state failed\n");
  221. goto err;
  222. }
  223. if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
  224. s->coalesced_mmio_ring =
  225. (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
  226. }
  227. ret = kvm_arch_init_vcpu(cpu);
  228. if (ret == 0) {
  229. qemu_register_reset(kvm_reset_vcpu, cpu);
  230. kvm_arch_reset_vcpu(cpu);
  231. }
  232. err:
  233. return ret;
  234. }
  235. /*
  236. * dirty pages logging control
  237. */
  238. static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
  239. {
  240. int flags = 0;
  241. flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
  242. if (readonly && kvm_readonly_mem_allowed) {
  243. flags |= KVM_MEM_READONLY;
  244. }
  245. return flags;
  246. }
  247. static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
  248. {
  249. KVMState *s = kvm_state;
  250. int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
  251. int old_flags;
  252. old_flags = mem->flags;
  253. flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
  254. mem->flags = flags;
  255. /* If nothing changed effectively, no need to issue ioctl */
  256. if (s->migration_log) {
  257. flags |= KVM_MEM_LOG_DIRTY_PAGES;
  258. }
  259. if (flags == old_flags) {
  260. return 0;
  261. }
  262. return kvm_set_user_memory_region(s, mem);
  263. }
  264. static int kvm_dirty_pages_log_change(hwaddr phys_addr,
  265. ram_addr_t size, bool log_dirty)
  266. {
  267. KVMState *s = kvm_state;
  268. KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
  269. if (mem == NULL) {
  270. fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
  271. TARGET_FMT_plx "\n", __func__, phys_addr,
  272. (hwaddr)(phys_addr + size - 1));
  273. return -EINVAL;
  274. }
  275. return kvm_slot_dirty_pages_log_change(mem, log_dirty);
  276. }
  277. static void kvm_log_start(MemoryListener *listener,
  278. MemoryRegionSection *section)
  279. {
  280. int r;
  281. r = kvm_dirty_pages_log_change(section->offset_within_address_space,
  282. int128_get64(section->size), true);
  283. if (r < 0) {
  284. abort();
  285. }
  286. }
  287. static void kvm_log_stop(MemoryListener *listener,
  288. MemoryRegionSection *section)
  289. {
  290. int r;
  291. r = kvm_dirty_pages_log_change(section->offset_within_address_space,
  292. int128_get64(section->size), false);
  293. if (r < 0) {
  294. abort();
  295. }
  296. }
  297. static int kvm_set_migration_log(int enable)
  298. {
  299. KVMState *s = kvm_state;
  300. KVMSlot *mem;
  301. int i, err;
  302. s->migration_log = enable;
  303. for (i = 0; i < s->nr_slots; i++) {
  304. mem = &s->slots[i];
  305. if (!mem->memory_size) {
  306. continue;
  307. }
  308. if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
  309. continue;
  310. }
  311. err = kvm_set_user_memory_region(s, mem);
  312. if (err) {
  313. return err;
  314. }
  315. }
  316. return 0;
  317. }
  318. /* get kvm's dirty pages bitmap and update qemu's */
  319. static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
  320. unsigned long *bitmap)
  321. {
  322. ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
  323. ram_addr_t pages = int128_get64(section->size) / getpagesize();
  324. cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
  325. return 0;
  326. }
  327. #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
  328. /**
  329. * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
  330. * This function updates qemu's dirty bitmap using
  331. * memory_region_set_dirty(). This means all bits are set
  332. * to dirty.
  333. *
  334. * @start_add: start of logged region.
  335. * @end_addr: end of logged region.
  336. */
  337. static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
  338. {
  339. KVMState *s = kvm_state;
  340. unsigned long size, allocated_size = 0;
  341. KVMDirtyLog d;
  342. KVMSlot *mem;
  343. int ret = 0;
  344. hwaddr start_addr = section->offset_within_address_space;
  345. hwaddr end_addr = start_addr + int128_get64(section->size);
  346. d.dirty_bitmap = NULL;
  347. while (start_addr < end_addr) {
  348. mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
  349. if (mem == NULL) {
  350. break;
  351. }
  352. /* XXX bad kernel interface alert
  353. * For dirty bitmap, kernel allocates array of size aligned to
  354. * bits-per-long. But for case when the kernel is 64bits and
  355. * the userspace is 32bits, userspace can't align to the same
  356. * bits-per-long, since sizeof(long) is different between kernel
  357. * and user space. This way, userspace will provide buffer which
  358. * may be 4 bytes less than the kernel will use, resulting in
  359. * userspace memory corruption (which is not detectable by valgrind
  360. * too, in most cases).
  361. * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
  362. * a hope that sizeof(long) wont become >8 any time soon.
  363. */
  364. size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
  365. /*HOST_LONG_BITS*/ 64) / 8;
  366. if (!d.dirty_bitmap) {
  367. d.dirty_bitmap = g_malloc(size);
  368. } else if (size > allocated_size) {
  369. d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
  370. }
  371. allocated_size = size;
  372. memset(d.dirty_bitmap, 0, allocated_size);
  373. d.slot = mem->slot;
  374. if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
  375. DPRINTF("ioctl failed %d\n", errno);
  376. ret = -1;
  377. break;
  378. }
  379. kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
  380. start_addr = mem->start_addr + mem->memory_size;
  381. }
  382. g_free(d.dirty_bitmap);
  383. return ret;
  384. }
  385. static void kvm_coalesce_mmio_region(MemoryListener *listener,
  386. MemoryRegionSection *secion,
  387. hwaddr start, hwaddr size)
  388. {
  389. KVMState *s = kvm_state;
  390. if (s->coalesced_mmio) {
  391. struct kvm_coalesced_mmio_zone zone;
  392. zone.addr = start;
  393. zone.size = size;
  394. zone.pad = 0;
  395. (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
  396. }
  397. }
  398. static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
  399. MemoryRegionSection *secion,
  400. hwaddr start, hwaddr size)
  401. {
  402. KVMState *s = kvm_state;
  403. if (s->coalesced_mmio) {
  404. struct kvm_coalesced_mmio_zone zone;
  405. zone.addr = start;
  406. zone.size = size;
  407. zone.pad = 0;
  408. (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
  409. }
  410. }
  411. int kvm_check_extension(KVMState *s, unsigned int extension)
  412. {
  413. int ret;
  414. ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
  415. if (ret < 0) {
  416. ret = 0;
  417. }
  418. return ret;
  419. }
  420. static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
  421. bool assign, uint32_t size, bool datamatch)
  422. {
  423. int ret;
  424. struct kvm_ioeventfd iofd;
  425. iofd.datamatch = datamatch ? val : 0;
  426. iofd.addr = addr;
  427. iofd.len = size;
  428. iofd.flags = 0;
  429. iofd.fd = fd;
  430. if (!kvm_enabled()) {
  431. return -ENOSYS;
  432. }
  433. if (datamatch) {
  434. iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
  435. }
  436. if (!assign) {
  437. iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
  438. }
  439. ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
  440. if (ret < 0) {
  441. return -errno;
  442. }
  443. return 0;
  444. }
  445. static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
  446. bool assign, uint32_t size, bool datamatch)
  447. {
  448. struct kvm_ioeventfd kick = {
  449. .datamatch = datamatch ? val : 0,
  450. .addr = addr,
  451. .flags = KVM_IOEVENTFD_FLAG_PIO,
  452. .len = size,
  453. .fd = fd,
  454. };
  455. int r;
  456. if (!kvm_enabled()) {
  457. return -ENOSYS;
  458. }
  459. if (datamatch) {
  460. kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
  461. }
  462. if (!assign) {
  463. kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
  464. }
  465. r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
  466. if (r < 0) {
  467. return r;
  468. }
  469. return 0;
  470. }
  471. static int kvm_check_many_ioeventfds(void)
  472. {
  473. /* Userspace can use ioeventfd for io notification. This requires a host
  474. * that supports eventfd(2) and an I/O thread; since eventfd does not
  475. * support SIGIO it cannot interrupt the vcpu.
  476. *
  477. * Older kernels have a 6 device limit on the KVM io bus. Find out so we
  478. * can avoid creating too many ioeventfds.
  479. */
  480. #if defined(CONFIG_EVENTFD)
  481. int ioeventfds[7];
  482. int i, ret = 0;
  483. for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
  484. ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
  485. if (ioeventfds[i] < 0) {
  486. break;
  487. }
  488. ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
  489. if (ret < 0) {
  490. close(ioeventfds[i]);
  491. break;
  492. }
  493. }
  494. /* Decide whether many devices are supported or not */
  495. ret = i == ARRAY_SIZE(ioeventfds);
  496. while (i-- > 0) {
  497. kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
  498. close(ioeventfds[i]);
  499. }
  500. return ret;
  501. #else
  502. return 0;
  503. #endif
  504. }
  505. static const KVMCapabilityInfo *
  506. kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
  507. {
  508. while (list->name) {
  509. if (!kvm_check_extension(s, list->value)) {
  510. return list;
  511. }
  512. list++;
  513. }
  514. return NULL;
  515. }
  516. static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
  517. {
  518. KVMState *s = kvm_state;
  519. KVMSlot *mem, old;
  520. int err;
  521. MemoryRegion *mr = section->mr;
  522. bool log_dirty = memory_region_is_logging(mr);
  523. bool writeable = !mr->readonly && !mr->rom_device;
  524. bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
  525. hwaddr start_addr = section->offset_within_address_space;
  526. ram_addr_t size = int128_get64(section->size);
  527. void *ram = NULL;
  528. unsigned delta;
  529. /* kvm works in page size chunks, but the function may be called
  530. with sub-page size and unaligned start address. */
  531. delta = TARGET_PAGE_ALIGN(size) - size;
  532. if (delta > size) {
  533. return;
  534. }
  535. start_addr += delta;
  536. size -= delta;
  537. size &= TARGET_PAGE_MASK;
  538. if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
  539. return;
  540. }
  541. if (!memory_region_is_ram(mr)) {
  542. if (writeable || !kvm_readonly_mem_allowed) {
  543. return;
  544. } else if (!mr->romd_mode) {
  545. /* If the memory device is not in romd_mode, then we actually want
  546. * to remove the kvm memory slot so all accesses will trap. */
  547. add = false;
  548. }
  549. }
  550. ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
  551. while (1) {
  552. mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
  553. if (!mem) {
  554. break;
  555. }
  556. if (add && start_addr >= mem->start_addr &&
  557. (start_addr + size <= mem->start_addr + mem->memory_size) &&
  558. (ram - start_addr == mem->ram - mem->start_addr)) {
  559. /* The new slot fits into the existing one and comes with
  560. * identical parameters - update flags and done. */
  561. kvm_slot_dirty_pages_log_change(mem, log_dirty);
  562. return;
  563. }
  564. old = *mem;
  565. if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
  566. kvm_physical_sync_dirty_bitmap(section);
  567. }
  568. /* unregister the overlapping slot */
  569. mem->memory_size = 0;
  570. err = kvm_set_user_memory_region(s, mem);
  571. if (err) {
  572. fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
  573. __func__, strerror(-err));
  574. abort();
  575. }
  576. /* Workaround for older KVM versions: we can't join slots, even not by
  577. * unregistering the previous ones and then registering the larger
  578. * slot. We have to maintain the existing fragmentation. Sigh.
  579. *
  580. * This workaround assumes that the new slot starts at the same
  581. * address as the first existing one. If not or if some overlapping
  582. * slot comes around later, we will fail (not seen in practice so far)
  583. * - and actually require a recent KVM version. */
  584. if (s->broken_set_mem_region &&
  585. old.start_addr == start_addr && old.memory_size < size && add) {
  586. mem = kvm_alloc_slot(s);
  587. mem->memory_size = old.memory_size;
  588. mem->start_addr = old.start_addr;
  589. mem->ram = old.ram;
  590. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  591. err = kvm_set_user_memory_region(s, mem);
  592. if (err) {
  593. fprintf(stderr, "%s: error updating slot: %s\n", __func__,
  594. strerror(-err));
  595. abort();
  596. }
  597. start_addr += old.memory_size;
  598. ram += old.memory_size;
  599. size -= old.memory_size;
  600. continue;
  601. }
  602. /* register prefix slot */
  603. if (old.start_addr < start_addr) {
  604. mem = kvm_alloc_slot(s);
  605. mem->memory_size = start_addr - old.start_addr;
  606. mem->start_addr = old.start_addr;
  607. mem->ram = old.ram;
  608. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  609. err = kvm_set_user_memory_region(s, mem);
  610. if (err) {
  611. fprintf(stderr, "%s: error registering prefix slot: %s\n",
  612. __func__, strerror(-err));
  613. #ifdef TARGET_PPC
  614. fprintf(stderr, "%s: This is probably because your kernel's " \
  615. "PAGE_SIZE is too big. Please try to use 4k " \
  616. "PAGE_SIZE!\n", __func__);
  617. #endif
  618. abort();
  619. }
  620. }
  621. /* register suffix slot */
  622. if (old.start_addr + old.memory_size > start_addr + size) {
  623. ram_addr_t size_delta;
  624. mem = kvm_alloc_slot(s);
  625. mem->start_addr = start_addr + size;
  626. size_delta = mem->start_addr - old.start_addr;
  627. mem->memory_size = old.memory_size - size_delta;
  628. mem->ram = old.ram + size_delta;
  629. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  630. err = kvm_set_user_memory_region(s, mem);
  631. if (err) {
  632. fprintf(stderr, "%s: error registering suffix slot: %s\n",
  633. __func__, strerror(-err));
  634. abort();
  635. }
  636. }
  637. }
  638. /* in case the KVM bug workaround already "consumed" the new slot */
  639. if (!size) {
  640. return;
  641. }
  642. if (!add) {
  643. return;
  644. }
  645. mem = kvm_alloc_slot(s);
  646. mem->memory_size = size;
  647. mem->start_addr = start_addr;
  648. mem->ram = ram;
  649. mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
  650. err = kvm_set_user_memory_region(s, mem);
  651. if (err) {
  652. fprintf(stderr, "%s: error registering slot: %s\n", __func__,
  653. strerror(-err));
  654. abort();
  655. }
  656. }
  657. static void kvm_region_add(MemoryListener *listener,
  658. MemoryRegionSection *section)
  659. {
  660. memory_region_ref(section->mr);
  661. kvm_set_phys_mem(section, true);
  662. }
  663. static void kvm_region_del(MemoryListener *listener,
  664. MemoryRegionSection *section)
  665. {
  666. kvm_set_phys_mem(section, false);
  667. memory_region_unref(section->mr);
  668. }
  669. static void kvm_log_sync(MemoryListener *listener,
  670. MemoryRegionSection *section)
  671. {
  672. int r;
  673. r = kvm_physical_sync_dirty_bitmap(section);
  674. if (r < 0) {
  675. abort();
  676. }
  677. }
  678. static void kvm_log_global_start(struct MemoryListener *listener)
  679. {
  680. int r;
  681. r = kvm_set_migration_log(1);
  682. assert(r >= 0);
  683. }
  684. static void kvm_log_global_stop(struct MemoryListener *listener)
  685. {
  686. int r;
  687. r = kvm_set_migration_log(0);
  688. assert(r >= 0);
  689. }
  690. static void kvm_mem_ioeventfd_add(MemoryListener *listener,
  691. MemoryRegionSection *section,
  692. bool match_data, uint64_t data,
  693. EventNotifier *e)
  694. {
  695. int fd = event_notifier_get_fd(e);
  696. int r;
  697. r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
  698. data, true, int128_get64(section->size),
  699. match_data);
  700. if (r < 0) {
  701. fprintf(stderr, "%s: error adding ioeventfd: %s\n",
  702. __func__, strerror(-r));
  703. abort();
  704. }
  705. }
  706. static void kvm_mem_ioeventfd_del(MemoryListener *listener,
  707. MemoryRegionSection *section,
  708. bool match_data, uint64_t data,
  709. EventNotifier *e)
  710. {
  711. int fd = event_notifier_get_fd(e);
  712. int r;
  713. r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
  714. data, false, int128_get64(section->size),
  715. match_data);
  716. if (r < 0) {
  717. abort();
  718. }
  719. }
  720. static void kvm_io_ioeventfd_add(MemoryListener *listener,
  721. MemoryRegionSection *section,
  722. bool match_data, uint64_t data,
  723. EventNotifier *e)
  724. {
  725. int fd = event_notifier_get_fd(e);
  726. int r;
  727. r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
  728. data, true, int128_get64(section->size),
  729. match_data);
  730. if (r < 0) {
  731. fprintf(stderr, "%s: error adding ioeventfd: %s\n",
  732. __func__, strerror(-r));
  733. abort();
  734. }
  735. }
  736. static void kvm_io_ioeventfd_del(MemoryListener *listener,
  737. MemoryRegionSection *section,
  738. bool match_data, uint64_t data,
  739. EventNotifier *e)
  740. {
  741. int fd = event_notifier_get_fd(e);
  742. int r;
  743. r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
  744. data, false, int128_get64(section->size),
  745. match_data);
  746. if (r < 0) {
  747. abort();
  748. }
  749. }
  750. static MemoryListener kvm_memory_listener = {
  751. .region_add = kvm_region_add,
  752. .region_del = kvm_region_del,
  753. .log_start = kvm_log_start,
  754. .log_stop = kvm_log_stop,
  755. .log_sync = kvm_log_sync,
  756. .log_global_start = kvm_log_global_start,
  757. .log_global_stop = kvm_log_global_stop,
  758. .eventfd_add = kvm_mem_ioeventfd_add,
  759. .eventfd_del = kvm_mem_ioeventfd_del,
  760. .coalesced_mmio_add = kvm_coalesce_mmio_region,
  761. .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
  762. .priority = 10,
  763. };
  764. static MemoryListener kvm_io_listener = {
  765. .eventfd_add = kvm_io_ioeventfd_add,
  766. .eventfd_del = kvm_io_ioeventfd_del,
  767. .priority = 10,
  768. };
  769. static void kvm_handle_interrupt(CPUState *cpu, int mask)
  770. {
  771. cpu->interrupt_request |= mask;
  772. if (!qemu_cpu_is_self(cpu)) {
  773. qemu_cpu_kick(cpu);
  774. }
  775. }
  776. int kvm_set_irq(KVMState *s, int irq, int level)
  777. {
  778. struct kvm_irq_level event;
  779. int ret;
  780. assert(kvm_async_interrupts_enabled());
  781. event.level = level;
  782. event.irq = irq;
  783. ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
  784. if (ret < 0) {
  785. perror("kvm_set_irq");
  786. abort();
  787. }
  788. return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
  789. }
  790. #ifdef KVM_CAP_IRQ_ROUTING
  791. typedef struct KVMMSIRoute {
  792. struct kvm_irq_routing_entry kroute;
  793. QTAILQ_ENTRY(KVMMSIRoute) entry;
  794. } KVMMSIRoute;
  795. static void set_gsi(KVMState *s, unsigned int gsi)
  796. {
  797. s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
  798. }
  799. static void clear_gsi(KVMState *s, unsigned int gsi)
  800. {
  801. s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
  802. }
  803. void kvm_init_irq_routing(KVMState *s)
  804. {
  805. int gsi_count, i;
  806. gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
  807. if (gsi_count > 0) {
  808. unsigned int gsi_bits, i;
  809. /* Round up so we can search ints using ffs */
  810. gsi_bits = ALIGN(gsi_count, 32);
  811. s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
  812. s->gsi_count = gsi_count;
  813. /* Mark any over-allocated bits as already in use */
  814. for (i = gsi_count; i < gsi_bits; i++) {
  815. set_gsi(s, i);
  816. }
  817. }
  818. s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
  819. s->nr_allocated_irq_routes = 0;
  820. if (!s->direct_msi) {
  821. for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
  822. QTAILQ_INIT(&s->msi_hashtab[i]);
  823. }
  824. }
  825. kvm_arch_init_irq_routing(s);
  826. }
  827. void kvm_irqchip_commit_routes(KVMState *s)
  828. {
  829. int ret;
  830. s->irq_routes->flags = 0;
  831. ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
  832. assert(ret == 0);
  833. }
  834. static void kvm_add_routing_entry(KVMState *s,
  835. struct kvm_irq_routing_entry *entry)
  836. {
  837. struct kvm_irq_routing_entry *new;
  838. int n, size;
  839. if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
  840. n = s->nr_allocated_irq_routes * 2;
  841. if (n < 64) {
  842. n = 64;
  843. }
  844. size = sizeof(struct kvm_irq_routing);
  845. size += n * sizeof(*new);
  846. s->irq_routes = g_realloc(s->irq_routes, size);
  847. s->nr_allocated_irq_routes = n;
  848. }
  849. n = s->irq_routes->nr++;
  850. new = &s->irq_routes->entries[n];
  851. *new = *entry;
  852. set_gsi(s, entry->gsi);
  853. }
  854. static int kvm_update_routing_entry(KVMState *s,
  855. struct kvm_irq_routing_entry *new_entry)
  856. {
  857. struct kvm_irq_routing_entry *entry;
  858. int n;
  859. for (n = 0; n < s->irq_routes->nr; n++) {
  860. entry = &s->irq_routes->entries[n];
  861. if (entry->gsi != new_entry->gsi) {
  862. continue;
  863. }
  864. if(!memcmp(entry, new_entry, sizeof *entry)) {
  865. return 0;
  866. }
  867. *entry = *new_entry;
  868. kvm_irqchip_commit_routes(s);
  869. return 0;
  870. }
  871. return -ESRCH;
  872. }
  873. void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
  874. {
  875. struct kvm_irq_routing_entry e = {};
  876. assert(pin < s->gsi_count);
  877. e.gsi = irq;
  878. e.type = KVM_IRQ_ROUTING_IRQCHIP;
  879. e.flags = 0;
  880. e.u.irqchip.irqchip = irqchip;
  881. e.u.irqchip.pin = pin;
  882. kvm_add_routing_entry(s, &e);
  883. }
  884. void kvm_irqchip_release_virq(KVMState *s, int virq)
  885. {
  886. struct kvm_irq_routing_entry *e;
  887. int i;
  888. if (kvm_gsi_direct_mapping()) {
  889. return;
  890. }
  891. for (i = 0; i < s->irq_routes->nr; i++) {
  892. e = &s->irq_routes->entries[i];
  893. if (e->gsi == virq) {
  894. s->irq_routes->nr--;
  895. *e = s->irq_routes->entries[s->irq_routes->nr];
  896. }
  897. }
  898. clear_gsi(s, virq);
  899. }
  900. static unsigned int kvm_hash_msi(uint32_t data)
  901. {
  902. /* This is optimized for IA32 MSI layout. However, no other arch shall
  903. * repeat the mistake of not providing a direct MSI injection API. */
  904. return data & 0xff;
  905. }
  906. static void kvm_flush_dynamic_msi_routes(KVMState *s)
  907. {
  908. KVMMSIRoute *route, *next;
  909. unsigned int hash;
  910. for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
  911. QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
  912. kvm_irqchip_release_virq(s, route->kroute.gsi);
  913. QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
  914. g_free(route);
  915. }
  916. }
  917. }
  918. static int kvm_irqchip_get_virq(KVMState *s)
  919. {
  920. uint32_t *word = s->used_gsi_bitmap;
  921. int max_words = ALIGN(s->gsi_count, 32) / 32;
  922. int i, bit;
  923. bool retry = true;
  924. again:
  925. /* Return the lowest unused GSI in the bitmap */
  926. for (i = 0; i < max_words; i++) {
  927. bit = ffs(~word[i]);
  928. if (!bit) {
  929. continue;
  930. }
  931. return bit - 1 + i * 32;
  932. }
  933. if (!s->direct_msi && retry) {
  934. retry = false;
  935. kvm_flush_dynamic_msi_routes(s);
  936. goto again;
  937. }
  938. return -ENOSPC;
  939. }
  940. static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
  941. {
  942. unsigned int hash = kvm_hash_msi(msg.data);
  943. KVMMSIRoute *route;
  944. QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
  945. if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
  946. route->kroute.u.msi.address_hi == (msg.address >> 32) &&
  947. route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
  948. return route;
  949. }
  950. }
  951. return NULL;
  952. }
  953. int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
  954. {
  955. struct kvm_msi msi;
  956. KVMMSIRoute *route;
  957. if (s->direct_msi) {
  958. msi.address_lo = (uint32_t)msg.address;
  959. msi.address_hi = msg.address >> 32;
  960. msi.data = le32_to_cpu(msg.data);
  961. msi.flags = 0;
  962. memset(msi.pad, 0, sizeof(msi.pad));
  963. return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
  964. }
  965. route = kvm_lookup_msi_route(s, msg);
  966. if (!route) {
  967. int virq;
  968. virq = kvm_irqchip_get_virq(s);
  969. if (virq < 0) {
  970. return virq;
  971. }
  972. route = g_malloc0(sizeof(KVMMSIRoute));
  973. route->kroute.gsi = virq;
  974. route->kroute.type = KVM_IRQ_ROUTING_MSI;
  975. route->kroute.flags = 0;
  976. route->kroute.u.msi.address_lo = (uint32_t)msg.address;
  977. route->kroute.u.msi.address_hi = msg.address >> 32;
  978. route->kroute.u.msi.data = le32_to_cpu(msg.data);
  979. kvm_add_routing_entry(s, &route->kroute);
  980. kvm_irqchip_commit_routes(s);
  981. QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
  982. entry);
  983. }
  984. assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
  985. return kvm_set_irq(s, route->kroute.gsi, 1);
  986. }
  987. int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
  988. {
  989. struct kvm_irq_routing_entry kroute = {};
  990. int virq;
  991. if (kvm_gsi_direct_mapping()) {
  992. return msg.data & 0xffff;
  993. }
  994. if (!kvm_gsi_routing_enabled()) {
  995. return -ENOSYS;
  996. }
  997. virq = kvm_irqchip_get_virq(s);
  998. if (virq < 0) {
  999. return virq;
  1000. }
  1001. kroute.gsi = virq;
  1002. kroute.type = KVM_IRQ_ROUTING_MSI;
  1003. kroute.flags = 0;
  1004. kroute.u.msi.address_lo = (uint32_t)msg.address;
  1005. kroute.u.msi.address_hi = msg.address >> 32;
  1006. kroute.u.msi.data = le32_to_cpu(msg.data);
  1007. kvm_add_routing_entry(s, &kroute);
  1008. kvm_irqchip_commit_routes(s);
  1009. return virq;
  1010. }
  1011. int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
  1012. {
  1013. struct kvm_irq_routing_entry kroute = {};
  1014. if (kvm_gsi_direct_mapping()) {
  1015. return 0;
  1016. }
  1017. if (!kvm_irqchip_in_kernel()) {
  1018. return -ENOSYS;
  1019. }
  1020. kroute.gsi = virq;
  1021. kroute.type = KVM_IRQ_ROUTING_MSI;
  1022. kroute.flags = 0;
  1023. kroute.u.msi.address_lo = (uint32_t)msg.address;
  1024. kroute.u.msi.address_hi = msg.address >> 32;
  1025. kroute.u.msi.data = le32_to_cpu(msg.data);
  1026. return kvm_update_routing_entry(s, &kroute);
  1027. }
  1028. static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
  1029. bool assign)
  1030. {
  1031. struct kvm_irqfd irqfd = {
  1032. .fd = fd,
  1033. .gsi = virq,
  1034. .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
  1035. };
  1036. if (rfd != -1) {
  1037. irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
  1038. irqfd.resamplefd = rfd;
  1039. }
  1040. if (!kvm_irqfds_enabled()) {
  1041. return -ENOSYS;
  1042. }
  1043. return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
  1044. }
  1045. #else /* !KVM_CAP_IRQ_ROUTING */
  1046. void kvm_init_irq_routing(KVMState *s)
  1047. {
  1048. }
  1049. void kvm_irqchip_release_virq(KVMState *s, int virq)
  1050. {
  1051. }
  1052. int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
  1053. {
  1054. abort();
  1055. }
  1056. int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
  1057. {
  1058. return -ENOSYS;
  1059. }
  1060. static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
  1061. {
  1062. abort();
  1063. }
  1064. int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
  1065. {
  1066. return -ENOSYS;
  1067. }
  1068. #endif /* !KVM_CAP_IRQ_ROUTING */
  1069. int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
  1070. EventNotifier *rn, int virq)
  1071. {
  1072. return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
  1073. rn ? event_notifier_get_fd(rn) : -1, virq, true);
  1074. }
  1075. int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
  1076. {
  1077. return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
  1078. false);
  1079. }
  1080. static int kvm_irqchip_create(KVMState *s)
  1081. {
  1082. int ret;
  1083. if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
  1084. !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
  1085. return 0;
  1086. }
  1087. /* First probe and see if there's a arch-specific hook to create the
  1088. * in-kernel irqchip for us */
  1089. ret = kvm_arch_irqchip_create(s);
  1090. if (ret < 0) {
  1091. return ret;
  1092. } else if (ret == 0) {
  1093. ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
  1094. if (ret < 0) {
  1095. fprintf(stderr, "Create kernel irqchip failed\n");
  1096. return ret;
  1097. }
  1098. }
  1099. kvm_kernel_irqchip = true;
  1100. /* If we have an in-kernel IRQ chip then we must have asynchronous
  1101. * interrupt delivery (though the reverse is not necessarily true)
  1102. */
  1103. kvm_async_interrupts_allowed = true;
  1104. kvm_halt_in_kernel_allowed = true;
  1105. kvm_init_irq_routing(s);
  1106. return 0;
  1107. }
  1108. /* Find number of supported CPUs using the recommended
  1109. * procedure from the kernel API documentation to cope with
  1110. * older kernels that may be missing capabilities.
  1111. */
  1112. static int kvm_recommended_vcpus(KVMState *s)
  1113. {
  1114. int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
  1115. return (ret) ? ret : 4;
  1116. }
  1117. static int kvm_max_vcpus(KVMState *s)
  1118. {
  1119. int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
  1120. return (ret) ? ret : kvm_recommended_vcpus(s);
  1121. }
  1122. int kvm_init(QEMUMachine *machine)
  1123. {
  1124. static const char upgrade_note[] =
  1125. "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
  1126. "(see http://sourceforge.net/projects/kvm).\n";
  1127. struct {
  1128. const char *name;
  1129. int num;
  1130. } num_cpus[] = {
  1131. { "SMP", smp_cpus },
  1132. { "hotpluggable", max_cpus },
  1133. { NULL, }
  1134. }, *nc = num_cpus;
  1135. int soft_vcpus_limit, hard_vcpus_limit;
  1136. KVMState *s;
  1137. const KVMCapabilityInfo *missing_cap;
  1138. int ret;
  1139. int i, type = 0;
  1140. const char *kvm_type;
  1141. s = g_malloc0(sizeof(KVMState));
  1142. /*
  1143. * On systems where the kernel can support different base page
  1144. * sizes, host page size may be different from TARGET_PAGE_SIZE,
  1145. * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
  1146. * page size for the system though.
  1147. */
  1148. assert(TARGET_PAGE_SIZE <= getpagesize());
  1149. page_size_init();
  1150. #ifdef KVM_CAP_SET_GUEST_DEBUG
  1151. QTAILQ_INIT(&s->kvm_sw_breakpoints);
  1152. #endif
  1153. s->vmfd = -1;
  1154. s->fd = qemu_open("/dev/kvm", O_RDWR);
  1155. if (s->fd == -1) {
  1156. fprintf(stderr, "Could not access KVM kernel module: %m\n");
  1157. ret = -errno;
  1158. goto err;
  1159. }
  1160. ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
  1161. if (ret < KVM_API_VERSION) {
  1162. if (ret > 0) {
  1163. ret = -EINVAL;
  1164. }
  1165. fprintf(stderr, "kvm version too old\n");
  1166. goto err;
  1167. }
  1168. if (ret > KVM_API_VERSION) {
  1169. ret = -EINVAL;
  1170. fprintf(stderr, "kvm version not supported\n");
  1171. goto err;
  1172. }
  1173. s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
  1174. /* If unspecified, use the default value */
  1175. if (!s->nr_slots) {
  1176. s->nr_slots = 32;
  1177. }
  1178. s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
  1179. for (i = 0; i < s->nr_slots; i++) {
  1180. s->slots[i].slot = i;
  1181. }
  1182. /* check the vcpu limits */
  1183. soft_vcpus_limit = kvm_recommended_vcpus(s);
  1184. hard_vcpus_limit = kvm_max_vcpus(s);
  1185. while (nc->name) {
  1186. if (nc->num > soft_vcpus_limit) {
  1187. fprintf(stderr,
  1188. "Warning: Number of %s cpus requested (%d) exceeds "
  1189. "the recommended cpus supported by KVM (%d)\n",
  1190. nc->name, nc->num, soft_vcpus_limit);
  1191. if (nc->num > hard_vcpus_limit) {
  1192. fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
  1193. "the maximum cpus supported by KVM (%d)\n",
  1194. nc->name, nc->num, hard_vcpus_limit);
  1195. exit(1);
  1196. }
  1197. }
  1198. nc++;
  1199. }
  1200. kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
  1201. if (machine->kvm_type) {
  1202. type = machine->kvm_type(kvm_type);
  1203. } else if (kvm_type) {
  1204. fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
  1205. goto err;
  1206. }
  1207. do {
  1208. ret = kvm_ioctl(s, KVM_CREATE_VM, type);
  1209. } while (ret == -EINTR);
  1210. if (ret < 0) {
  1211. fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
  1212. strerror(-ret));
  1213. #ifdef TARGET_S390X
  1214. fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
  1215. "your host kernel command line\n");
  1216. #endif
  1217. goto err;
  1218. }
  1219. s->vmfd = ret;
  1220. missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
  1221. if (!missing_cap) {
  1222. missing_cap =
  1223. kvm_check_extension_list(s, kvm_arch_required_capabilities);
  1224. }
  1225. if (missing_cap) {
  1226. ret = -EINVAL;
  1227. fprintf(stderr, "kvm does not support %s\n%s",
  1228. missing_cap->name, upgrade_note);
  1229. goto err;
  1230. }
  1231. s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
  1232. s->broken_set_mem_region = 1;
  1233. ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
  1234. if (ret > 0) {
  1235. s->broken_set_mem_region = 0;
  1236. }
  1237. #ifdef KVM_CAP_VCPU_EVENTS
  1238. s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
  1239. #endif
  1240. s->robust_singlestep =
  1241. kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
  1242. #ifdef KVM_CAP_DEBUGREGS
  1243. s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
  1244. #endif
  1245. #ifdef KVM_CAP_XSAVE
  1246. s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
  1247. #endif
  1248. #ifdef KVM_CAP_XCRS
  1249. s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
  1250. #endif
  1251. #ifdef KVM_CAP_PIT_STATE2
  1252. s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
  1253. #endif
  1254. #ifdef KVM_CAP_IRQ_ROUTING
  1255. s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
  1256. #endif
  1257. s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
  1258. s->irq_set_ioctl = KVM_IRQ_LINE;
  1259. if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
  1260. s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
  1261. }
  1262. #ifdef KVM_CAP_READONLY_MEM
  1263. kvm_readonly_mem_allowed =
  1264. (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
  1265. #endif
  1266. ret = kvm_arch_init(s);
  1267. if (ret < 0) {
  1268. goto err;
  1269. }
  1270. ret = kvm_irqchip_create(s);
  1271. if (ret < 0) {
  1272. goto err;
  1273. }
  1274. kvm_state = s;
  1275. memory_listener_register(&kvm_memory_listener, &address_space_memory);
  1276. memory_listener_register(&kvm_io_listener, &address_space_io);
  1277. s->many_ioeventfds = kvm_check_many_ioeventfds();
  1278. cpu_interrupt_handler = kvm_handle_interrupt;
  1279. return 0;
  1280. err:
  1281. if (s->vmfd >= 0) {
  1282. close(s->vmfd);
  1283. }
  1284. if (s->fd != -1) {
  1285. close(s->fd);
  1286. }
  1287. g_free(s->slots);
  1288. g_free(s);
  1289. return ret;
  1290. }
  1291. static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
  1292. uint32_t count)
  1293. {
  1294. int i;
  1295. uint8_t *ptr = data;
  1296. for (i = 0; i < count; i++) {
  1297. address_space_rw(&address_space_io, port, ptr, size,
  1298. direction == KVM_EXIT_IO_OUT);
  1299. ptr += size;
  1300. }
  1301. }
  1302. static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
  1303. {
  1304. fprintf(stderr, "KVM internal error. Suberror: %d\n",
  1305. run->internal.suberror);
  1306. if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
  1307. int i;
  1308. for (i = 0; i < run->internal.ndata; ++i) {
  1309. fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
  1310. i, (uint64_t)run->internal.data[i]);
  1311. }
  1312. }
  1313. if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
  1314. fprintf(stderr, "emulation failure\n");
  1315. if (!kvm_arch_stop_on_emulation_error(cpu)) {
  1316. cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
  1317. return EXCP_INTERRUPT;
  1318. }
  1319. }
  1320. /* FIXME: Should trigger a qmp message to let management know
  1321. * something went wrong.
  1322. */
  1323. return -1;
  1324. }
  1325. void kvm_flush_coalesced_mmio_buffer(void)
  1326. {
  1327. KVMState *s = kvm_state;
  1328. if (s->coalesced_flush_in_progress) {
  1329. return;
  1330. }
  1331. s->coalesced_flush_in_progress = true;
  1332. if (s->coalesced_mmio_ring) {
  1333. struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
  1334. while (ring->first != ring->last) {
  1335. struct kvm_coalesced_mmio *ent;
  1336. ent = &ring->coalesced_mmio[ring->first];
  1337. cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
  1338. smp_wmb();
  1339. ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
  1340. }
  1341. }
  1342. s->coalesced_flush_in_progress = false;
  1343. }
  1344. static void do_kvm_cpu_synchronize_state(void *arg)
  1345. {
  1346. CPUState *cpu = arg;
  1347. if (!cpu->kvm_vcpu_dirty) {
  1348. kvm_arch_get_registers(cpu);
  1349. cpu->kvm_vcpu_dirty = true;
  1350. }
  1351. }
  1352. void kvm_cpu_synchronize_state(CPUState *cpu)
  1353. {
  1354. if (!cpu->kvm_vcpu_dirty) {
  1355. run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
  1356. }
  1357. }
  1358. void kvm_cpu_synchronize_post_reset(CPUState *cpu)
  1359. {
  1360. kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
  1361. cpu->kvm_vcpu_dirty = false;
  1362. }
  1363. void kvm_cpu_synchronize_post_init(CPUState *cpu)
  1364. {
  1365. kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
  1366. cpu->kvm_vcpu_dirty = false;
  1367. }
  1368. int kvm_cpu_exec(CPUState *cpu)
  1369. {
  1370. struct kvm_run *run = cpu->kvm_run;
  1371. int ret, run_ret;
  1372. DPRINTF("kvm_cpu_exec()\n");
  1373. if (kvm_arch_process_async_events(cpu)) {
  1374. cpu->exit_request = 0;
  1375. return EXCP_HLT;
  1376. }
  1377. do {
  1378. if (cpu->kvm_vcpu_dirty) {
  1379. kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
  1380. cpu->kvm_vcpu_dirty = false;
  1381. }
  1382. kvm_arch_pre_run(cpu, run);
  1383. if (cpu->exit_request) {
  1384. DPRINTF("interrupt exit requested\n");
  1385. /*
  1386. * KVM requires us to reenter the kernel after IO exits to complete
  1387. * instruction emulation. This self-signal will ensure that we
  1388. * leave ASAP again.
  1389. */
  1390. qemu_cpu_kick_self();
  1391. }
  1392. qemu_mutex_unlock_iothread();
  1393. run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
  1394. qemu_mutex_lock_iothread();
  1395. kvm_arch_post_run(cpu, run);
  1396. if (run_ret < 0) {
  1397. if (run_ret == -EINTR || run_ret == -EAGAIN) {
  1398. DPRINTF("io window exit\n");
  1399. ret = EXCP_INTERRUPT;
  1400. break;
  1401. }
  1402. fprintf(stderr, "error: kvm run failed %s\n",
  1403. strerror(-run_ret));
  1404. abort();
  1405. }
  1406. trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
  1407. switch (run->exit_reason) {
  1408. case KVM_EXIT_IO:
  1409. DPRINTF("handle_io\n");
  1410. kvm_handle_io(run->io.port,
  1411. (uint8_t *)run + run->io.data_offset,
  1412. run->io.direction,
  1413. run->io.size,
  1414. run->io.count);
  1415. ret = 0;
  1416. break;
  1417. case KVM_EXIT_MMIO:
  1418. DPRINTF("handle_mmio\n");
  1419. cpu_physical_memory_rw(run->mmio.phys_addr,
  1420. run->mmio.data,
  1421. run->mmio.len,
  1422. run->mmio.is_write);
  1423. ret = 0;
  1424. break;
  1425. case KVM_EXIT_IRQ_WINDOW_OPEN:
  1426. DPRINTF("irq_window_open\n");
  1427. ret = EXCP_INTERRUPT;
  1428. break;
  1429. case KVM_EXIT_SHUTDOWN:
  1430. DPRINTF("shutdown\n");
  1431. qemu_system_reset_request();
  1432. ret = EXCP_INTERRUPT;
  1433. break;
  1434. case KVM_EXIT_UNKNOWN:
  1435. fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
  1436. (uint64_t)run->hw.hardware_exit_reason);
  1437. ret = -1;
  1438. break;
  1439. case KVM_EXIT_INTERNAL_ERROR:
  1440. ret = kvm_handle_internal_error(cpu, run);
  1441. break;
  1442. default:
  1443. DPRINTF("kvm_arch_handle_exit\n");
  1444. ret = kvm_arch_handle_exit(cpu, run);
  1445. break;
  1446. }
  1447. } while (ret == 0);
  1448. if (ret < 0) {
  1449. cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
  1450. vm_stop(RUN_STATE_INTERNAL_ERROR);
  1451. }
  1452. cpu->exit_request = 0;
  1453. return ret;
  1454. }
  1455. int kvm_ioctl(KVMState *s, int type, ...)
  1456. {
  1457. int ret;
  1458. void *arg;
  1459. va_list ap;
  1460. va_start(ap, type);
  1461. arg = va_arg(ap, void *);
  1462. va_end(ap);
  1463. trace_kvm_ioctl(type, arg);
  1464. ret = ioctl(s->fd, type, arg);
  1465. if (ret == -1) {
  1466. ret = -errno;
  1467. }
  1468. return ret;
  1469. }
  1470. int kvm_vm_ioctl(KVMState *s, int type, ...)
  1471. {
  1472. int ret;
  1473. void *arg;
  1474. va_list ap;
  1475. va_start(ap, type);
  1476. arg = va_arg(ap, void *);
  1477. va_end(ap);
  1478. trace_kvm_vm_ioctl(type, arg);
  1479. ret = ioctl(s->vmfd, type, arg);
  1480. if (ret == -1) {
  1481. ret = -errno;
  1482. }
  1483. return ret;
  1484. }
  1485. int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
  1486. {
  1487. int ret;
  1488. void *arg;
  1489. va_list ap;
  1490. va_start(ap, type);
  1491. arg = va_arg(ap, void *);
  1492. va_end(ap);
  1493. trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
  1494. ret = ioctl(cpu->kvm_fd, type, arg);
  1495. if (ret == -1) {
  1496. ret = -errno;
  1497. }
  1498. return ret;
  1499. }
  1500. int kvm_device_ioctl(int fd, int type, ...)
  1501. {
  1502. int ret;
  1503. void *arg;
  1504. va_list ap;
  1505. va_start(ap, type);
  1506. arg = va_arg(ap, void *);
  1507. va_end(ap);
  1508. trace_kvm_device_ioctl(fd, type, arg);
  1509. ret = ioctl(fd, type, arg);
  1510. if (ret == -1) {
  1511. ret = -errno;
  1512. }
  1513. return ret;
  1514. }
  1515. int kvm_has_sync_mmu(void)
  1516. {
  1517. return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
  1518. }
  1519. int kvm_has_vcpu_events(void)
  1520. {
  1521. return kvm_state->vcpu_events;
  1522. }
  1523. int kvm_has_robust_singlestep(void)
  1524. {
  1525. return kvm_state->robust_singlestep;
  1526. }
  1527. int kvm_has_debugregs(void)
  1528. {
  1529. return kvm_state->debugregs;
  1530. }
  1531. int kvm_has_xsave(void)
  1532. {
  1533. return kvm_state->xsave;
  1534. }
  1535. int kvm_has_xcrs(void)
  1536. {
  1537. return kvm_state->xcrs;
  1538. }
  1539. int kvm_has_pit_state2(void)
  1540. {
  1541. return kvm_state->pit_state2;
  1542. }
  1543. int kvm_has_many_ioeventfds(void)
  1544. {
  1545. if (!kvm_enabled()) {
  1546. return 0;
  1547. }
  1548. return kvm_state->many_ioeventfds;
  1549. }
  1550. int kvm_has_gsi_routing(void)
  1551. {
  1552. #ifdef KVM_CAP_IRQ_ROUTING
  1553. return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
  1554. #else
  1555. return false;
  1556. #endif
  1557. }
  1558. int kvm_has_intx_set_mask(void)
  1559. {
  1560. return kvm_state->intx_set_mask;
  1561. }
  1562. void kvm_setup_guest_memory(void *start, size_t size)
  1563. {
  1564. #ifdef CONFIG_VALGRIND_H
  1565. VALGRIND_MAKE_MEM_DEFINED(start, size);
  1566. #endif
  1567. if (!kvm_has_sync_mmu()) {
  1568. int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
  1569. if (ret) {
  1570. perror("qemu_madvise");
  1571. fprintf(stderr,
  1572. "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
  1573. exit(1);
  1574. }
  1575. }
  1576. }
  1577. #ifdef KVM_CAP_SET_GUEST_DEBUG
  1578. struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
  1579. target_ulong pc)
  1580. {
  1581. struct kvm_sw_breakpoint *bp;
  1582. QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
  1583. if (bp->pc == pc) {
  1584. return bp;
  1585. }
  1586. }
  1587. return NULL;
  1588. }
  1589. int kvm_sw_breakpoints_active(CPUState *cpu)
  1590. {
  1591. return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
  1592. }
  1593. struct kvm_set_guest_debug_data {
  1594. struct kvm_guest_debug dbg;
  1595. CPUState *cpu;
  1596. int err;
  1597. };
  1598. static void kvm_invoke_set_guest_debug(void *data)
  1599. {
  1600. struct kvm_set_guest_debug_data *dbg_data = data;
  1601. dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
  1602. &dbg_data->dbg);
  1603. }
  1604. int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
  1605. {
  1606. struct kvm_set_guest_debug_data data;
  1607. data.dbg.control = reinject_trap;
  1608. if (cpu->singlestep_enabled) {
  1609. data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
  1610. }
  1611. kvm_arch_update_guest_debug(cpu, &data.dbg);
  1612. data.cpu = cpu;
  1613. run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
  1614. return data.err;
  1615. }
  1616. int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
  1617. target_ulong len, int type)
  1618. {
  1619. struct kvm_sw_breakpoint *bp;
  1620. int err;
  1621. if (type == GDB_BREAKPOINT_SW) {
  1622. bp = kvm_find_sw_breakpoint(cpu, addr);
  1623. if (bp) {
  1624. bp->use_count++;
  1625. return 0;
  1626. }
  1627. bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
  1628. if (!bp) {
  1629. return -ENOMEM;
  1630. }
  1631. bp->pc = addr;
  1632. bp->use_count = 1;
  1633. err = kvm_arch_insert_sw_breakpoint(cpu, bp);
  1634. if (err) {
  1635. g_free(bp);
  1636. return err;
  1637. }
  1638. QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
  1639. } else {
  1640. err = kvm_arch_insert_hw_breakpoint(addr, len, type);
  1641. if (err) {
  1642. return err;
  1643. }
  1644. }
  1645. CPU_FOREACH(cpu) {
  1646. err = kvm_update_guest_debug(cpu, 0);
  1647. if (err) {
  1648. return err;
  1649. }
  1650. }
  1651. return 0;
  1652. }
  1653. int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
  1654. target_ulong len, int type)
  1655. {
  1656. struct kvm_sw_breakpoint *bp;
  1657. int err;
  1658. if (type == GDB_BREAKPOINT_SW) {
  1659. bp = kvm_find_sw_breakpoint(cpu, addr);
  1660. if (!bp) {
  1661. return -ENOENT;
  1662. }
  1663. if (bp->use_count > 1) {
  1664. bp->use_count--;
  1665. return 0;
  1666. }
  1667. err = kvm_arch_remove_sw_breakpoint(cpu, bp);
  1668. if (err) {
  1669. return err;
  1670. }
  1671. QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
  1672. g_free(bp);
  1673. } else {
  1674. err = kvm_arch_remove_hw_breakpoint(addr, len, type);
  1675. if (err) {
  1676. return err;
  1677. }
  1678. }
  1679. CPU_FOREACH(cpu) {
  1680. err = kvm_update_guest_debug(cpu, 0);
  1681. if (err) {
  1682. return err;
  1683. }
  1684. }
  1685. return 0;
  1686. }
  1687. void kvm_remove_all_breakpoints(CPUState *cpu)
  1688. {
  1689. struct kvm_sw_breakpoint *bp, *next;
  1690. KVMState *s = cpu->kvm_state;
  1691. CPUState *tmpcpu;
  1692. QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
  1693. if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
  1694. /* Try harder to find a CPU that currently sees the breakpoint. */
  1695. CPU_FOREACH(tmpcpu) {
  1696. if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
  1697. break;
  1698. }
  1699. }
  1700. }
  1701. QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
  1702. g_free(bp);
  1703. }
  1704. kvm_arch_remove_all_hw_breakpoints();
  1705. CPU_FOREACH(cpu) {
  1706. kvm_update_guest_debug(cpu, 0);
  1707. }
  1708. }
  1709. #else /* !KVM_CAP_SET_GUEST_DEBUG */
  1710. int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
  1711. {
  1712. return -EINVAL;
  1713. }
  1714. int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
  1715. target_ulong len, int type)
  1716. {
  1717. return -EINVAL;
  1718. }
  1719. int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
  1720. target_ulong len, int type)
  1721. {
  1722. return -EINVAL;
  1723. }
  1724. void kvm_remove_all_breakpoints(CPUState *cpu)
  1725. {
  1726. }
  1727. #endif /* !KVM_CAP_SET_GUEST_DEBUG */
  1728. int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
  1729. {
  1730. struct kvm_signal_mask *sigmask;
  1731. int r;
  1732. if (!sigset) {
  1733. return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
  1734. }
  1735. sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
  1736. sigmask->len = 8;
  1737. memcpy(sigmask->sigset, sigset, sizeof(*sigset));
  1738. r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
  1739. g_free(sigmask);
  1740. return r;
  1741. }
  1742. int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
  1743. {
  1744. return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
  1745. }
  1746. int kvm_on_sigbus(int code, void *addr)
  1747. {
  1748. return kvm_arch_on_sigbus(code, addr);
  1749. }
  1750. int kvm_create_device(KVMState *s, uint64_t type, bool test)
  1751. {
  1752. int ret;
  1753. struct kvm_create_device create_dev;
  1754. create_dev.type = type;
  1755. create_dev.fd = -1;
  1756. create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
  1757. if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
  1758. return -ENOTSUP;
  1759. }
  1760. ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
  1761. if (ret) {
  1762. return ret;
  1763. }
  1764. return test ? 0 : create_dev.fd;
  1765. }