mc146818rtc.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920
  1. /*
  2. * QEMU MC146818 RTC emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "hw/hw.h"
  25. #include "qemu/timer.h"
  26. #include "sysemu/sysemu.h"
  27. #include "hw/timer/mc146818rtc.h"
  28. #include "qapi/visitor.h"
  29. #ifdef TARGET_I386
  30. #include "hw/i386/apic.h"
  31. #endif
  32. //#define DEBUG_CMOS
  33. //#define DEBUG_COALESCED
  34. #ifdef DEBUG_CMOS
  35. # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
  36. #else
  37. # define CMOS_DPRINTF(format, ...) do { } while (0)
  38. #endif
  39. #ifdef DEBUG_COALESCED
  40. # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
  41. #else
  42. # define DPRINTF_C(format, ...) do { } while (0)
  43. #endif
  44. #define NSEC_PER_SEC 1000000000LL
  45. #define SEC_PER_MIN 60
  46. #define MIN_PER_HOUR 60
  47. #define SEC_PER_HOUR 3600
  48. #define HOUR_PER_DAY 24
  49. #define SEC_PER_DAY 86400
  50. #define RTC_REINJECT_ON_ACK_COUNT 20
  51. #define RTC_CLOCK_RATE 32768
  52. #define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768)
  53. #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
  54. typedef struct RTCState {
  55. ISADevice parent_obj;
  56. MemoryRegion io;
  57. uint8_t cmos_data[128];
  58. uint8_t cmos_index;
  59. int32_t base_year;
  60. uint64_t base_rtc;
  61. uint64_t last_update;
  62. int64_t offset;
  63. qemu_irq irq;
  64. int it_shift;
  65. /* periodic timer */
  66. QEMUTimer *periodic_timer;
  67. int64_t next_periodic_time;
  68. /* update-ended timer */
  69. QEMUTimer *update_timer;
  70. uint64_t next_alarm_time;
  71. uint16_t irq_reinject_on_ack_count;
  72. uint32_t irq_coalesced;
  73. uint32_t period;
  74. QEMUTimer *coalesced_timer;
  75. Notifier clock_reset_notifier;
  76. LostTickPolicy lost_tick_policy;
  77. Notifier suspend_notifier;
  78. } RTCState;
  79. static void rtc_set_time(RTCState *s);
  80. static void rtc_update_time(RTCState *s);
  81. static void rtc_set_cmos(RTCState *s, const struct tm *tm);
  82. static inline int rtc_from_bcd(RTCState *s, int a);
  83. static uint64_t get_next_alarm(RTCState *s);
  84. static inline bool rtc_running(RTCState *s)
  85. {
  86. return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
  87. (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
  88. }
  89. static uint64_t get_guest_rtc_ns(RTCState *s)
  90. {
  91. uint64_t guest_rtc;
  92. uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
  93. guest_rtc = s->base_rtc * NSEC_PER_SEC
  94. + guest_clock - s->last_update + s->offset;
  95. return guest_rtc;
  96. }
  97. #ifdef TARGET_I386
  98. static void rtc_coalesced_timer_update(RTCState *s)
  99. {
  100. if (s->irq_coalesced == 0) {
  101. timer_del(s->coalesced_timer);
  102. } else {
  103. /* divide each RTC interval to 2 - 8 smaller intervals */
  104. int c = MIN(s->irq_coalesced, 7) + 1;
  105. int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
  106. muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
  107. timer_mod(s->coalesced_timer, next_clock);
  108. }
  109. }
  110. static void rtc_coalesced_timer(void *opaque)
  111. {
  112. RTCState *s = opaque;
  113. if (s->irq_coalesced != 0) {
  114. apic_reset_irq_delivered();
  115. s->cmos_data[RTC_REG_C] |= 0xc0;
  116. DPRINTF_C("cmos: injecting from timer\n");
  117. qemu_irq_raise(s->irq);
  118. if (apic_get_irq_delivered()) {
  119. s->irq_coalesced--;
  120. DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
  121. s->irq_coalesced);
  122. }
  123. }
  124. rtc_coalesced_timer_update(s);
  125. }
  126. #endif
  127. /* handle periodic timer */
  128. static void periodic_timer_update(RTCState *s, int64_t current_time)
  129. {
  130. int period_code, period;
  131. int64_t cur_clock, next_irq_clock;
  132. period_code = s->cmos_data[RTC_REG_A] & 0x0f;
  133. if (period_code != 0
  134. && (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
  135. if (period_code <= 2)
  136. period_code += 7;
  137. /* period in 32 Khz cycles */
  138. period = 1 << (period_code - 1);
  139. #ifdef TARGET_I386
  140. if (period != s->period) {
  141. s->irq_coalesced = (s->irq_coalesced * s->period) / period;
  142. DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
  143. }
  144. s->period = period;
  145. #endif
  146. /* compute 32 khz clock */
  147. cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
  148. next_irq_clock = (cur_clock & ~(period - 1)) + period;
  149. s->next_periodic_time =
  150. muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
  151. timer_mod(s->periodic_timer, s->next_periodic_time);
  152. } else {
  153. #ifdef TARGET_I386
  154. s->irq_coalesced = 0;
  155. #endif
  156. timer_del(s->periodic_timer);
  157. }
  158. }
  159. static void rtc_periodic_timer(void *opaque)
  160. {
  161. RTCState *s = opaque;
  162. periodic_timer_update(s, s->next_periodic_time);
  163. s->cmos_data[RTC_REG_C] |= REG_C_PF;
  164. if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
  165. s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
  166. #ifdef TARGET_I386
  167. if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
  168. if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
  169. s->irq_reinject_on_ack_count = 0;
  170. apic_reset_irq_delivered();
  171. qemu_irq_raise(s->irq);
  172. if (!apic_get_irq_delivered()) {
  173. s->irq_coalesced++;
  174. rtc_coalesced_timer_update(s);
  175. DPRINTF_C("cmos: coalesced irqs increased to %d\n",
  176. s->irq_coalesced);
  177. }
  178. } else
  179. #endif
  180. qemu_irq_raise(s->irq);
  181. }
  182. }
  183. /* handle update-ended timer */
  184. static void check_update_timer(RTCState *s)
  185. {
  186. uint64_t next_update_time;
  187. uint64_t guest_nsec;
  188. int next_alarm_sec;
  189. /* From the data sheet: "Holding the dividers in reset prevents
  190. * interrupts from operating, while setting the SET bit allows"
  191. * them to occur. However, it will prevent an alarm interrupt
  192. * from occurring, because the time of day is not updated.
  193. */
  194. if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
  195. timer_del(s->update_timer);
  196. return;
  197. }
  198. if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
  199. (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
  200. timer_del(s->update_timer);
  201. return;
  202. }
  203. if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
  204. (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
  205. timer_del(s->update_timer);
  206. return;
  207. }
  208. guest_nsec = get_guest_rtc_ns(s) % NSEC_PER_SEC;
  209. /* if UF is clear, reprogram to next second */
  210. next_update_time = qemu_clock_get_ns(rtc_clock)
  211. + NSEC_PER_SEC - guest_nsec;
  212. /* Compute time of next alarm. One second is already accounted
  213. * for in next_update_time.
  214. */
  215. next_alarm_sec = get_next_alarm(s);
  216. s->next_alarm_time = next_update_time + (next_alarm_sec - 1) * NSEC_PER_SEC;
  217. if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
  218. /* UF is set, but AF is clear. Program the timer to target
  219. * the alarm time. */
  220. next_update_time = s->next_alarm_time;
  221. }
  222. if (next_update_time != timer_expire_time_ns(s->update_timer)) {
  223. timer_mod(s->update_timer, next_update_time);
  224. }
  225. }
  226. static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
  227. {
  228. if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
  229. hour %= 12;
  230. if (s->cmos_data[RTC_HOURS] & 0x80) {
  231. hour += 12;
  232. }
  233. }
  234. return hour;
  235. }
  236. static uint64_t get_next_alarm(RTCState *s)
  237. {
  238. int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
  239. int32_t hour, min, sec;
  240. rtc_update_time(s);
  241. alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
  242. alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
  243. alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
  244. alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
  245. cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
  246. cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
  247. cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
  248. cur_hour = convert_hour(s, cur_hour);
  249. if (alarm_hour == -1) {
  250. alarm_hour = cur_hour;
  251. if (alarm_min == -1) {
  252. alarm_min = cur_min;
  253. if (alarm_sec == -1) {
  254. alarm_sec = cur_sec + 1;
  255. } else if (cur_sec > alarm_sec) {
  256. alarm_min++;
  257. }
  258. } else if (cur_min == alarm_min) {
  259. if (alarm_sec == -1) {
  260. alarm_sec = cur_sec + 1;
  261. } else {
  262. if (cur_sec > alarm_sec) {
  263. alarm_hour++;
  264. }
  265. }
  266. if (alarm_sec == SEC_PER_MIN) {
  267. /* wrap to next hour, minutes is not in don't care mode */
  268. alarm_sec = 0;
  269. alarm_hour++;
  270. }
  271. } else if (cur_min > alarm_min) {
  272. alarm_hour++;
  273. }
  274. } else if (cur_hour == alarm_hour) {
  275. if (alarm_min == -1) {
  276. alarm_min = cur_min;
  277. if (alarm_sec == -1) {
  278. alarm_sec = cur_sec + 1;
  279. } else if (cur_sec > alarm_sec) {
  280. alarm_min++;
  281. }
  282. if (alarm_sec == SEC_PER_MIN) {
  283. alarm_sec = 0;
  284. alarm_min++;
  285. }
  286. /* wrap to next day, hour is not in don't care mode */
  287. alarm_min %= MIN_PER_HOUR;
  288. } else if (cur_min == alarm_min) {
  289. if (alarm_sec == -1) {
  290. alarm_sec = cur_sec + 1;
  291. }
  292. /* wrap to next day, hours+minutes not in don't care mode */
  293. alarm_sec %= SEC_PER_MIN;
  294. }
  295. }
  296. /* values that are still don't care fire at the next min/sec */
  297. if (alarm_min == -1) {
  298. alarm_min = 0;
  299. }
  300. if (alarm_sec == -1) {
  301. alarm_sec = 0;
  302. }
  303. /* keep values in range */
  304. if (alarm_sec == SEC_PER_MIN) {
  305. alarm_sec = 0;
  306. alarm_min++;
  307. }
  308. if (alarm_min == MIN_PER_HOUR) {
  309. alarm_min = 0;
  310. alarm_hour++;
  311. }
  312. alarm_hour %= HOUR_PER_DAY;
  313. hour = alarm_hour - cur_hour;
  314. min = hour * MIN_PER_HOUR + alarm_min - cur_min;
  315. sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
  316. return sec <= 0 ? sec + SEC_PER_DAY : sec;
  317. }
  318. static void rtc_update_timer(void *opaque)
  319. {
  320. RTCState *s = opaque;
  321. int32_t irqs = REG_C_UF;
  322. int32_t new_irqs;
  323. assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
  324. /* UIP might have been latched, update time and clear it. */
  325. rtc_update_time(s);
  326. s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
  327. if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
  328. irqs |= REG_C_AF;
  329. if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
  330. qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
  331. }
  332. }
  333. new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
  334. s->cmos_data[RTC_REG_C] |= irqs;
  335. if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
  336. s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
  337. qemu_irq_raise(s->irq);
  338. }
  339. check_update_timer(s);
  340. }
  341. static void cmos_ioport_write(void *opaque, hwaddr addr,
  342. uint64_t data, unsigned size)
  343. {
  344. RTCState *s = opaque;
  345. if ((addr & 1) == 0) {
  346. s->cmos_index = data & 0x7f;
  347. } else {
  348. CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
  349. s->cmos_index, data);
  350. switch(s->cmos_index) {
  351. case RTC_SECONDS_ALARM:
  352. case RTC_MINUTES_ALARM:
  353. case RTC_HOURS_ALARM:
  354. s->cmos_data[s->cmos_index] = data;
  355. check_update_timer(s);
  356. break;
  357. case RTC_IBM_PS2_CENTURY_BYTE:
  358. s->cmos_index = RTC_CENTURY;
  359. /* fall through */
  360. case RTC_CENTURY:
  361. case RTC_SECONDS:
  362. case RTC_MINUTES:
  363. case RTC_HOURS:
  364. case RTC_DAY_OF_WEEK:
  365. case RTC_DAY_OF_MONTH:
  366. case RTC_MONTH:
  367. case RTC_YEAR:
  368. s->cmos_data[s->cmos_index] = data;
  369. /* if in set mode, do not update the time */
  370. if (rtc_running(s)) {
  371. rtc_set_time(s);
  372. check_update_timer(s);
  373. }
  374. break;
  375. case RTC_REG_A:
  376. if ((data & 0x60) == 0x60) {
  377. if (rtc_running(s)) {
  378. rtc_update_time(s);
  379. }
  380. /* What happens to UIP when divider reset is enabled is
  381. * unclear from the datasheet. Shouldn't matter much
  382. * though.
  383. */
  384. s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
  385. } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
  386. (data & 0x70) <= 0x20) {
  387. /* when the divider reset is removed, the first update cycle
  388. * begins one-half second later*/
  389. if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
  390. s->offset = 500000000;
  391. rtc_set_time(s);
  392. }
  393. s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
  394. }
  395. /* UIP bit is read only */
  396. s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
  397. (s->cmos_data[RTC_REG_A] & REG_A_UIP);
  398. periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
  399. check_update_timer(s);
  400. break;
  401. case RTC_REG_B:
  402. if (data & REG_B_SET) {
  403. /* update cmos to when the rtc was stopping */
  404. if (rtc_running(s)) {
  405. rtc_update_time(s);
  406. }
  407. /* set mode: reset UIP mode */
  408. s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
  409. data &= ~REG_B_UIE;
  410. } else {
  411. /* if disabling set mode, update the time */
  412. if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
  413. (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
  414. s->offset = get_guest_rtc_ns(s) % NSEC_PER_SEC;
  415. rtc_set_time(s);
  416. }
  417. }
  418. /* if an interrupt flag is already set when the interrupt
  419. * becomes enabled, raise an interrupt immediately. */
  420. if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
  421. s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
  422. qemu_irq_raise(s->irq);
  423. } else {
  424. s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
  425. qemu_irq_lower(s->irq);
  426. }
  427. s->cmos_data[RTC_REG_B] = data;
  428. periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
  429. check_update_timer(s);
  430. break;
  431. case RTC_REG_C:
  432. case RTC_REG_D:
  433. /* cannot write to them */
  434. break;
  435. default:
  436. s->cmos_data[s->cmos_index] = data;
  437. break;
  438. }
  439. }
  440. }
  441. static inline int rtc_to_bcd(RTCState *s, int a)
  442. {
  443. if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
  444. return a;
  445. } else {
  446. return ((a / 10) << 4) | (a % 10);
  447. }
  448. }
  449. static inline int rtc_from_bcd(RTCState *s, int a)
  450. {
  451. if ((a & 0xc0) == 0xc0) {
  452. return -1;
  453. }
  454. if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
  455. return a;
  456. } else {
  457. return ((a >> 4) * 10) + (a & 0x0f);
  458. }
  459. }
  460. static void rtc_get_time(RTCState *s, struct tm *tm)
  461. {
  462. tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
  463. tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
  464. tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
  465. if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
  466. tm->tm_hour %= 12;
  467. if (s->cmos_data[RTC_HOURS] & 0x80) {
  468. tm->tm_hour += 12;
  469. }
  470. }
  471. tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
  472. tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
  473. tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
  474. tm->tm_year =
  475. rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
  476. rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
  477. }
  478. static void rtc_set_time(RTCState *s)
  479. {
  480. struct tm tm;
  481. rtc_get_time(s, &tm);
  482. s->base_rtc = mktimegm(&tm);
  483. s->last_update = qemu_clock_get_ns(rtc_clock);
  484. rtc_change_mon_event(&tm);
  485. }
  486. static void rtc_set_cmos(RTCState *s, const struct tm *tm)
  487. {
  488. int year;
  489. s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
  490. s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
  491. if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
  492. /* 24 hour format */
  493. s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
  494. } else {
  495. /* 12 hour format */
  496. int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
  497. s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
  498. if (tm->tm_hour >= 12)
  499. s->cmos_data[RTC_HOURS] |= 0x80;
  500. }
  501. s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
  502. s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
  503. s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
  504. year = tm->tm_year + 1900 - s->base_year;
  505. s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
  506. s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
  507. }
  508. static void rtc_update_time(RTCState *s)
  509. {
  510. struct tm ret;
  511. time_t guest_sec;
  512. int64_t guest_nsec;
  513. guest_nsec = get_guest_rtc_ns(s);
  514. guest_sec = guest_nsec / NSEC_PER_SEC;
  515. gmtime_r(&guest_sec, &ret);
  516. /* Is SET flag of Register B disabled? */
  517. if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
  518. rtc_set_cmos(s, &ret);
  519. }
  520. }
  521. static int update_in_progress(RTCState *s)
  522. {
  523. int64_t guest_nsec;
  524. if (!rtc_running(s)) {
  525. return 0;
  526. }
  527. if (timer_pending(s->update_timer)) {
  528. int64_t next_update_time = timer_expire_time_ns(s->update_timer);
  529. /* Latch UIP until the timer expires. */
  530. if (qemu_clock_get_ns(rtc_clock) >=
  531. (next_update_time - UIP_HOLD_LENGTH)) {
  532. s->cmos_data[RTC_REG_A] |= REG_A_UIP;
  533. return 1;
  534. }
  535. }
  536. guest_nsec = get_guest_rtc_ns(s);
  537. /* UIP bit will be set at last 244us of every second. */
  538. if ((guest_nsec % NSEC_PER_SEC) >= (NSEC_PER_SEC - UIP_HOLD_LENGTH)) {
  539. return 1;
  540. }
  541. return 0;
  542. }
  543. static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
  544. unsigned size)
  545. {
  546. RTCState *s = opaque;
  547. int ret;
  548. if ((addr & 1) == 0) {
  549. return 0xff;
  550. } else {
  551. switch(s->cmos_index) {
  552. case RTC_IBM_PS2_CENTURY_BYTE:
  553. s->cmos_index = RTC_CENTURY;
  554. /* fall through */
  555. case RTC_CENTURY:
  556. case RTC_SECONDS:
  557. case RTC_MINUTES:
  558. case RTC_HOURS:
  559. case RTC_DAY_OF_WEEK:
  560. case RTC_DAY_OF_MONTH:
  561. case RTC_MONTH:
  562. case RTC_YEAR:
  563. /* if not in set mode, calibrate cmos before
  564. * reading*/
  565. if (rtc_running(s)) {
  566. rtc_update_time(s);
  567. }
  568. ret = s->cmos_data[s->cmos_index];
  569. break;
  570. case RTC_REG_A:
  571. if (update_in_progress(s)) {
  572. s->cmos_data[s->cmos_index] |= REG_A_UIP;
  573. } else {
  574. s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
  575. }
  576. ret = s->cmos_data[s->cmos_index];
  577. break;
  578. case RTC_REG_C:
  579. ret = s->cmos_data[s->cmos_index];
  580. qemu_irq_lower(s->irq);
  581. s->cmos_data[RTC_REG_C] = 0x00;
  582. if (ret & (REG_C_UF | REG_C_AF)) {
  583. check_update_timer(s);
  584. }
  585. #ifdef TARGET_I386
  586. if(s->irq_coalesced &&
  587. (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
  588. s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
  589. s->irq_reinject_on_ack_count++;
  590. s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
  591. apic_reset_irq_delivered();
  592. DPRINTF_C("cmos: injecting on ack\n");
  593. qemu_irq_raise(s->irq);
  594. if (apic_get_irq_delivered()) {
  595. s->irq_coalesced--;
  596. DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
  597. s->irq_coalesced);
  598. }
  599. }
  600. #endif
  601. break;
  602. default:
  603. ret = s->cmos_data[s->cmos_index];
  604. break;
  605. }
  606. CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
  607. s->cmos_index, ret);
  608. return ret;
  609. }
  610. }
  611. void rtc_set_memory(ISADevice *dev, int addr, int val)
  612. {
  613. RTCState *s = MC146818_RTC(dev);
  614. if (addr >= 0 && addr <= 127)
  615. s->cmos_data[addr] = val;
  616. }
  617. int rtc_get_memory(ISADevice *dev, int addr)
  618. {
  619. RTCState *s = MC146818_RTC(dev);
  620. assert(addr >= 0 && addr <= 127);
  621. return s->cmos_data[addr];
  622. }
  623. static void rtc_set_date_from_host(ISADevice *dev)
  624. {
  625. RTCState *s = MC146818_RTC(dev);
  626. struct tm tm;
  627. qemu_get_timedate(&tm, 0);
  628. s->base_rtc = mktimegm(&tm);
  629. s->last_update = qemu_clock_get_ns(rtc_clock);
  630. s->offset = 0;
  631. /* set the CMOS date */
  632. rtc_set_cmos(s, &tm);
  633. }
  634. static int rtc_post_load(void *opaque, int version_id)
  635. {
  636. RTCState *s = opaque;
  637. if (version_id <= 2) {
  638. rtc_set_time(s);
  639. s->offset = 0;
  640. check_update_timer(s);
  641. }
  642. #ifdef TARGET_I386
  643. if (version_id >= 2) {
  644. if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
  645. rtc_coalesced_timer_update(s);
  646. }
  647. }
  648. #endif
  649. return 0;
  650. }
  651. static const VMStateDescription vmstate_rtc = {
  652. .name = "mc146818rtc",
  653. .version_id = 3,
  654. .minimum_version_id = 1,
  655. .minimum_version_id_old = 1,
  656. .post_load = rtc_post_load,
  657. .fields = (VMStateField []) {
  658. VMSTATE_BUFFER(cmos_data, RTCState),
  659. VMSTATE_UINT8(cmos_index, RTCState),
  660. VMSTATE_UNUSED(7*4),
  661. VMSTATE_TIMER(periodic_timer, RTCState),
  662. VMSTATE_INT64(next_periodic_time, RTCState),
  663. VMSTATE_UNUSED(3*8),
  664. VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
  665. VMSTATE_UINT32_V(period, RTCState, 2),
  666. VMSTATE_UINT64_V(base_rtc, RTCState, 3),
  667. VMSTATE_UINT64_V(last_update, RTCState, 3),
  668. VMSTATE_INT64_V(offset, RTCState, 3),
  669. VMSTATE_TIMER_V(update_timer, RTCState, 3),
  670. VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
  671. VMSTATE_END_OF_LIST()
  672. }
  673. };
  674. static void rtc_notify_clock_reset(Notifier *notifier, void *data)
  675. {
  676. RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
  677. int64_t now = *(int64_t *)data;
  678. rtc_set_date_from_host(ISA_DEVICE(s));
  679. periodic_timer_update(s, now);
  680. check_update_timer(s);
  681. #ifdef TARGET_I386
  682. if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
  683. rtc_coalesced_timer_update(s);
  684. }
  685. #endif
  686. }
  687. /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
  688. BIOS will read it and start S3 resume at POST Entry */
  689. static void rtc_notify_suspend(Notifier *notifier, void *data)
  690. {
  691. RTCState *s = container_of(notifier, RTCState, suspend_notifier);
  692. rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
  693. }
  694. static void rtc_reset(void *opaque)
  695. {
  696. RTCState *s = opaque;
  697. s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
  698. s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
  699. check_update_timer(s);
  700. qemu_irq_lower(s->irq);
  701. #ifdef TARGET_I386
  702. if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
  703. s->irq_coalesced = 0;
  704. }
  705. #endif
  706. }
  707. static const MemoryRegionOps cmos_ops = {
  708. .read = cmos_ioport_read,
  709. .write = cmos_ioport_write,
  710. .impl = {
  711. .min_access_size = 1,
  712. .max_access_size = 1,
  713. },
  714. .endianness = DEVICE_LITTLE_ENDIAN,
  715. };
  716. static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
  717. const char *name, Error **errp)
  718. {
  719. RTCState *s = MC146818_RTC(obj);
  720. struct tm current_tm;
  721. rtc_update_time(s);
  722. rtc_get_time(s, &current_tm);
  723. visit_start_struct(v, NULL, "struct tm", name, 0, errp);
  724. visit_type_int32(v, &current_tm.tm_year, "tm_year", errp);
  725. visit_type_int32(v, &current_tm.tm_mon, "tm_mon", errp);
  726. visit_type_int32(v, &current_tm.tm_mday, "tm_mday", errp);
  727. visit_type_int32(v, &current_tm.tm_hour, "tm_hour", errp);
  728. visit_type_int32(v, &current_tm.tm_min, "tm_min", errp);
  729. visit_type_int32(v, &current_tm.tm_sec, "tm_sec", errp);
  730. visit_end_struct(v, errp);
  731. }
  732. static void rtc_realizefn(DeviceState *dev, Error **errp)
  733. {
  734. ISADevice *isadev = ISA_DEVICE(dev);
  735. RTCState *s = MC146818_RTC(dev);
  736. int base = 0x70;
  737. s->cmos_data[RTC_REG_A] = 0x26;
  738. s->cmos_data[RTC_REG_B] = 0x02;
  739. s->cmos_data[RTC_REG_C] = 0x00;
  740. s->cmos_data[RTC_REG_D] = 0x80;
  741. /* This is for historical reasons. The default base year qdev property
  742. * was set to 2000 for most machine types before the century byte was
  743. * implemented.
  744. *
  745. * This if statement means that the century byte will be always 0
  746. * (at least until 2079...) for base_year = 1980, but will be set
  747. * correctly for base_year = 2000.
  748. */
  749. if (s->base_year == 2000) {
  750. s->base_year = 0;
  751. }
  752. rtc_set_date_from_host(isadev);
  753. #ifdef TARGET_I386
  754. switch (s->lost_tick_policy) {
  755. case LOST_TICK_POLICY_SLEW:
  756. s->coalesced_timer =
  757. timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
  758. break;
  759. case LOST_TICK_POLICY_DISCARD:
  760. break;
  761. default:
  762. error_setg(errp, "Invalid lost tick policy.");
  763. return;
  764. }
  765. #endif
  766. s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
  767. s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
  768. check_update_timer(s);
  769. s->clock_reset_notifier.notify = rtc_notify_clock_reset;
  770. qemu_clock_register_reset_notifier(rtc_clock,
  771. &s->clock_reset_notifier);
  772. s->suspend_notifier.notify = rtc_notify_suspend;
  773. qemu_register_suspend_notifier(&s->suspend_notifier);
  774. memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
  775. isa_register_ioport(isadev, &s->io, base);
  776. qdev_set_legacy_instance_id(dev, base, 3);
  777. qemu_register_reset(rtc_reset, s);
  778. object_property_add(OBJECT(s), "date", "struct tm",
  779. rtc_get_date, NULL, NULL, s, NULL);
  780. }
  781. ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
  782. {
  783. DeviceState *dev;
  784. ISADevice *isadev;
  785. RTCState *s;
  786. isadev = isa_create(bus, TYPE_MC146818_RTC);
  787. dev = DEVICE(isadev);
  788. s = MC146818_RTC(isadev);
  789. qdev_prop_set_int32(dev, "base_year", base_year);
  790. qdev_init_nofail(dev);
  791. if (intercept_irq) {
  792. s->irq = intercept_irq;
  793. } else {
  794. isa_init_irq(isadev, &s->irq, RTC_ISA_IRQ);
  795. }
  796. return isadev;
  797. }
  798. static Property mc146818rtc_properties[] = {
  799. DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
  800. DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
  801. lost_tick_policy, LOST_TICK_POLICY_DISCARD),
  802. DEFINE_PROP_END_OF_LIST(),
  803. };
  804. static void rtc_class_initfn(ObjectClass *klass, void *data)
  805. {
  806. DeviceClass *dc = DEVICE_CLASS(klass);
  807. dc->realize = rtc_realizefn;
  808. dc->vmsd = &vmstate_rtc;
  809. dc->props = mc146818rtc_properties;
  810. /* Reason: needs to be wired up by rtc_init() */
  811. dc->cannot_instantiate_with_device_add_yet = true;
  812. }
  813. static const TypeInfo mc146818rtc_info = {
  814. .name = TYPE_MC146818_RTC,
  815. .parent = TYPE_ISA_DEVICE,
  816. .instance_size = sizeof(RTCState),
  817. .class_init = rtc_class_initfn,
  818. };
  819. static void mc146818rtc_register_types(void)
  820. {
  821. type_register_static(&mc146818rtc_info);
  822. }
  823. type_init(mc146818rtc_register_types)