sun4m.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503
  1. /*
  2. * QEMU Sun4m & Sun4d & Sun4c System Emulator
  3. *
  4. * Copyright (c) 2003-2005 Fabrice Bellard
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "hw/sysbus.h"
  25. #include "qemu/error-report.h"
  26. #include "qemu/timer.h"
  27. #include "hw/sparc/sun4m.h"
  28. #include "hw/timer/m48t59.h"
  29. #include "hw/sparc/sparc32_dma.h"
  30. #include "hw/block/fdc.h"
  31. #include "sysemu/sysemu.h"
  32. #include "net/net.h"
  33. #include "hw/boards.h"
  34. #include "hw/nvram/openbios_firmware_abi.h"
  35. #include "hw/scsi/esp.h"
  36. #include "hw/i386/pc.h"
  37. #include "hw/isa/isa.h"
  38. #include "hw/nvram/fw_cfg.h"
  39. #include "hw/char/escc.h"
  40. #include "hw/empty_slot.h"
  41. #include "hw/loader.h"
  42. #include "elf.h"
  43. #include "sysemu/blockdev.h"
  44. #include "trace.h"
  45. /*
  46. * Sun4m architecture was used in the following machines:
  47. *
  48. * SPARCserver 6xxMP/xx
  49. * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
  50. * SPARCclassic X (4/10)
  51. * SPARCstation LX/ZX (4/30)
  52. * SPARCstation Voyager
  53. * SPARCstation 10/xx, SPARCserver 10/xx
  54. * SPARCstation 5, SPARCserver 5
  55. * SPARCstation 20/xx, SPARCserver 20
  56. * SPARCstation 4
  57. *
  58. * See for example: http://www.sunhelp.org/faq/sunref1.html
  59. */
  60. #define KERNEL_LOAD_ADDR 0x00004000
  61. #define CMDLINE_ADDR 0x007ff000
  62. #define INITRD_LOAD_ADDR 0x00800000
  63. #define PROM_SIZE_MAX (1024 * 1024)
  64. #define PROM_VADDR 0xffd00000
  65. #define PROM_FILENAME "openbios-sparc32"
  66. #define CFG_ADDR 0xd00000510ULL
  67. #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
  68. #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
  69. #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
  70. #define MAX_CPUS 16
  71. #define MAX_PILS 16
  72. #define MAX_VSIMMS 4
  73. #define ESCC_CLOCK 4915200
  74. struct sun4m_hwdef {
  75. hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
  76. hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
  77. hwaddr serial_base, fd_base;
  78. hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
  79. hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
  80. hwaddr bpp_base, dbri_base, sx_base;
  81. struct {
  82. hwaddr reg_base, vram_base;
  83. } vsimm[MAX_VSIMMS];
  84. hwaddr ecc_base;
  85. uint64_t max_mem;
  86. const char * const default_cpu_model;
  87. uint32_t ecc_version;
  88. uint32_t iommu_version;
  89. uint16_t machine_id;
  90. uint8_t nvram_machine_id;
  91. };
  92. int DMA_get_channel_mode (int nchan)
  93. {
  94. return 0;
  95. }
  96. int DMA_read_memory (int nchan, void *buf, int pos, int size)
  97. {
  98. return 0;
  99. }
  100. int DMA_write_memory (int nchan, void *buf, int pos, int size)
  101. {
  102. return 0;
  103. }
  104. void DMA_hold_DREQ (int nchan) {}
  105. void DMA_release_DREQ (int nchan) {}
  106. void DMA_schedule(int nchan) {}
  107. void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
  108. {
  109. }
  110. void DMA_register_channel (int nchan,
  111. DMA_transfer_handler transfer_handler,
  112. void *opaque)
  113. {
  114. }
  115. static int fw_cfg_boot_set(void *opaque, const char *boot_device)
  116. {
  117. fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
  118. return 0;
  119. }
  120. static void nvram_init(M48t59State *nvram, uint8_t *macaddr,
  121. const char *cmdline, const char *boot_devices,
  122. ram_addr_t RAM_size, uint32_t kernel_size,
  123. int width, int height, int depth,
  124. int nvram_machine_id, const char *arch)
  125. {
  126. unsigned int i;
  127. uint32_t start, end;
  128. uint8_t image[0x1ff0];
  129. struct OpenBIOS_nvpart_v1 *part_header;
  130. memset(image, '\0', sizeof(image));
  131. start = 0;
  132. // OpenBIOS nvram variables
  133. // Variable partition
  134. part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
  135. part_header->signature = OPENBIOS_PART_SYSTEM;
  136. pstrcpy(part_header->name, sizeof(part_header->name), "system");
  137. end = start + sizeof(struct OpenBIOS_nvpart_v1);
  138. for (i = 0; i < nb_prom_envs; i++)
  139. end = OpenBIOS_set_var(image, end, prom_envs[i]);
  140. // End marker
  141. image[end++] = '\0';
  142. end = start + ((end - start + 15) & ~15);
  143. OpenBIOS_finish_partition(part_header, end - start);
  144. // free partition
  145. start = end;
  146. part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
  147. part_header->signature = OPENBIOS_PART_FREE;
  148. pstrcpy(part_header->name, sizeof(part_header->name), "free");
  149. end = 0x1fd0;
  150. OpenBIOS_finish_partition(part_header, end - start);
  151. Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
  152. nvram_machine_id);
  153. for (i = 0; i < sizeof(image); i++)
  154. m48t59_write(nvram, i, image[i]);
  155. }
  156. static DeviceState *slavio_intctl;
  157. void sun4m_pic_info(Monitor *mon, const QDict *qdict)
  158. {
  159. if (slavio_intctl)
  160. slavio_pic_info(mon, slavio_intctl);
  161. }
  162. void sun4m_irq_info(Monitor *mon, const QDict *qdict)
  163. {
  164. if (slavio_intctl)
  165. slavio_irq_info(mon, slavio_intctl);
  166. }
  167. void cpu_check_irqs(CPUSPARCState *env)
  168. {
  169. CPUState *cs;
  170. if (env->pil_in && (env->interrupt_index == 0 ||
  171. (env->interrupt_index & ~15) == TT_EXTINT)) {
  172. unsigned int i;
  173. for (i = 15; i > 0; i--) {
  174. if (env->pil_in & (1 << i)) {
  175. int old_interrupt = env->interrupt_index;
  176. env->interrupt_index = TT_EXTINT | i;
  177. if (old_interrupt != env->interrupt_index) {
  178. cs = CPU(sparc_env_get_cpu(env));
  179. trace_sun4m_cpu_interrupt(i);
  180. cpu_interrupt(cs, CPU_INTERRUPT_HARD);
  181. }
  182. break;
  183. }
  184. }
  185. } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
  186. cs = CPU(sparc_env_get_cpu(env));
  187. trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
  188. env->interrupt_index = 0;
  189. cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
  190. }
  191. }
  192. static void cpu_kick_irq(SPARCCPU *cpu)
  193. {
  194. CPUSPARCState *env = &cpu->env;
  195. CPUState *cs = CPU(cpu);
  196. cs->halted = 0;
  197. cpu_check_irqs(env);
  198. qemu_cpu_kick(cs);
  199. }
  200. static void cpu_set_irq(void *opaque, int irq, int level)
  201. {
  202. SPARCCPU *cpu = opaque;
  203. CPUSPARCState *env = &cpu->env;
  204. if (level) {
  205. trace_sun4m_cpu_set_irq_raise(irq);
  206. env->pil_in |= 1 << irq;
  207. cpu_kick_irq(cpu);
  208. } else {
  209. trace_sun4m_cpu_set_irq_lower(irq);
  210. env->pil_in &= ~(1 << irq);
  211. cpu_check_irqs(env);
  212. }
  213. }
  214. static void dummy_cpu_set_irq(void *opaque, int irq, int level)
  215. {
  216. }
  217. static void main_cpu_reset(void *opaque)
  218. {
  219. SPARCCPU *cpu = opaque;
  220. CPUState *cs = CPU(cpu);
  221. cpu_reset(cs);
  222. cs->halted = 0;
  223. }
  224. static void secondary_cpu_reset(void *opaque)
  225. {
  226. SPARCCPU *cpu = opaque;
  227. CPUState *cs = CPU(cpu);
  228. cpu_reset(cs);
  229. cs->halted = 1;
  230. }
  231. static void cpu_halt_signal(void *opaque, int irq, int level)
  232. {
  233. if (level && current_cpu) {
  234. cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
  235. }
  236. }
  237. static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
  238. {
  239. return addr - 0xf0000000ULL;
  240. }
  241. static unsigned long sun4m_load_kernel(const char *kernel_filename,
  242. const char *initrd_filename,
  243. ram_addr_t RAM_size)
  244. {
  245. int linux_boot;
  246. unsigned int i;
  247. long initrd_size, kernel_size;
  248. uint8_t *ptr;
  249. linux_boot = (kernel_filename != NULL);
  250. kernel_size = 0;
  251. if (linux_boot) {
  252. int bswap_needed;
  253. #ifdef BSWAP_NEEDED
  254. bswap_needed = 1;
  255. #else
  256. bswap_needed = 0;
  257. #endif
  258. kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
  259. NULL, NULL, NULL, 1, ELF_MACHINE, 0);
  260. if (kernel_size < 0)
  261. kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
  262. RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
  263. TARGET_PAGE_SIZE);
  264. if (kernel_size < 0)
  265. kernel_size = load_image_targphys(kernel_filename,
  266. KERNEL_LOAD_ADDR,
  267. RAM_size - KERNEL_LOAD_ADDR);
  268. if (kernel_size < 0) {
  269. fprintf(stderr, "qemu: could not load kernel '%s'\n",
  270. kernel_filename);
  271. exit(1);
  272. }
  273. /* load initrd */
  274. initrd_size = 0;
  275. if (initrd_filename) {
  276. initrd_size = load_image_targphys(initrd_filename,
  277. INITRD_LOAD_ADDR,
  278. RAM_size - INITRD_LOAD_ADDR);
  279. if (initrd_size < 0) {
  280. fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
  281. initrd_filename);
  282. exit(1);
  283. }
  284. }
  285. if (initrd_size > 0) {
  286. for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
  287. ptr = rom_ptr(KERNEL_LOAD_ADDR + i);
  288. if (ldl_p(ptr) == 0x48647253) { // HdrS
  289. stl_p(ptr + 16, INITRD_LOAD_ADDR);
  290. stl_p(ptr + 20, initrd_size);
  291. break;
  292. }
  293. }
  294. }
  295. }
  296. return kernel_size;
  297. }
  298. static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
  299. {
  300. DeviceState *dev;
  301. SysBusDevice *s;
  302. dev = qdev_create(NULL, "iommu");
  303. qdev_prop_set_uint32(dev, "version", version);
  304. qdev_init_nofail(dev);
  305. s = SYS_BUS_DEVICE(dev);
  306. sysbus_connect_irq(s, 0, irq);
  307. sysbus_mmio_map(s, 0, addr);
  308. return s;
  309. }
  310. static void *sparc32_dma_init(hwaddr daddr, qemu_irq parent_irq,
  311. void *iommu, qemu_irq *dev_irq, int is_ledma)
  312. {
  313. DeviceState *dev;
  314. SysBusDevice *s;
  315. dev = qdev_create(NULL, "sparc32_dma");
  316. qdev_prop_set_ptr(dev, "iommu_opaque", iommu);
  317. qdev_prop_set_uint32(dev, "is_ledma", is_ledma);
  318. qdev_init_nofail(dev);
  319. s = SYS_BUS_DEVICE(dev);
  320. sysbus_connect_irq(s, 0, parent_irq);
  321. *dev_irq = qdev_get_gpio_in(dev, 0);
  322. sysbus_mmio_map(s, 0, daddr);
  323. return s;
  324. }
  325. static void lance_init(NICInfo *nd, hwaddr leaddr,
  326. void *dma_opaque, qemu_irq irq)
  327. {
  328. DeviceState *dev;
  329. SysBusDevice *s;
  330. qemu_irq reset;
  331. qemu_check_nic_model(&nd_table[0], "lance");
  332. dev = qdev_create(NULL, "lance");
  333. qdev_set_nic_properties(dev, nd);
  334. qdev_prop_set_ptr(dev, "dma", dma_opaque);
  335. qdev_init_nofail(dev);
  336. s = SYS_BUS_DEVICE(dev);
  337. sysbus_mmio_map(s, 0, leaddr);
  338. sysbus_connect_irq(s, 0, irq);
  339. reset = qdev_get_gpio_in(dev, 0);
  340. qdev_connect_gpio_out(dma_opaque, 0, reset);
  341. }
  342. static DeviceState *slavio_intctl_init(hwaddr addr,
  343. hwaddr addrg,
  344. qemu_irq **parent_irq)
  345. {
  346. DeviceState *dev;
  347. SysBusDevice *s;
  348. unsigned int i, j;
  349. dev = qdev_create(NULL, "slavio_intctl");
  350. qdev_init_nofail(dev);
  351. s = SYS_BUS_DEVICE(dev);
  352. for (i = 0; i < MAX_CPUS; i++) {
  353. for (j = 0; j < MAX_PILS; j++) {
  354. sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
  355. }
  356. }
  357. sysbus_mmio_map(s, 0, addrg);
  358. for (i = 0; i < MAX_CPUS; i++) {
  359. sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
  360. }
  361. return dev;
  362. }
  363. #define SYS_TIMER_OFFSET 0x10000ULL
  364. #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
  365. static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
  366. qemu_irq *cpu_irqs, unsigned int num_cpus)
  367. {
  368. DeviceState *dev;
  369. SysBusDevice *s;
  370. unsigned int i;
  371. dev = qdev_create(NULL, "slavio_timer");
  372. qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
  373. qdev_init_nofail(dev);
  374. s = SYS_BUS_DEVICE(dev);
  375. sysbus_connect_irq(s, 0, master_irq);
  376. sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
  377. for (i = 0; i < MAX_CPUS; i++) {
  378. sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
  379. sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
  380. }
  381. }
  382. static qemu_irq slavio_system_powerdown;
  383. static void slavio_powerdown_req(Notifier *n, void *opaque)
  384. {
  385. qemu_irq_raise(slavio_system_powerdown);
  386. }
  387. static Notifier slavio_system_powerdown_notifier = {
  388. .notify = slavio_powerdown_req
  389. };
  390. #define MISC_LEDS 0x01600000
  391. #define MISC_CFG 0x01800000
  392. #define MISC_DIAG 0x01a00000
  393. #define MISC_MDM 0x01b00000
  394. #define MISC_SYS 0x01f00000
  395. static void slavio_misc_init(hwaddr base,
  396. hwaddr aux1_base,
  397. hwaddr aux2_base, qemu_irq irq,
  398. qemu_irq fdc_tc)
  399. {
  400. DeviceState *dev;
  401. SysBusDevice *s;
  402. dev = qdev_create(NULL, "slavio_misc");
  403. qdev_init_nofail(dev);
  404. s = SYS_BUS_DEVICE(dev);
  405. if (base) {
  406. /* 8 bit registers */
  407. /* Slavio control */
  408. sysbus_mmio_map(s, 0, base + MISC_CFG);
  409. /* Diagnostics */
  410. sysbus_mmio_map(s, 1, base + MISC_DIAG);
  411. /* Modem control */
  412. sysbus_mmio_map(s, 2, base + MISC_MDM);
  413. /* 16 bit registers */
  414. /* ss600mp diag LEDs */
  415. sysbus_mmio_map(s, 3, base + MISC_LEDS);
  416. /* 32 bit registers */
  417. /* System control */
  418. sysbus_mmio_map(s, 4, base + MISC_SYS);
  419. }
  420. if (aux1_base) {
  421. /* AUX 1 (Misc System Functions) */
  422. sysbus_mmio_map(s, 5, aux1_base);
  423. }
  424. if (aux2_base) {
  425. /* AUX 2 (Software Powerdown Control) */
  426. sysbus_mmio_map(s, 6, aux2_base);
  427. }
  428. sysbus_connect_irq(s, 0, irq);
  429. sysbus_connect_irq(s, 1, fdc_tc);
  430. slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
  431. qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
  432. }
  433. static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
  434. {
  435. DeviceState *dev;
  436. SysBusDevice *s;
  437. dev = qdev_create(NULL, "eccmemctl");
  438. qdev_prop_set_uint32(dev, "version", version);
  439. qdev_init_nofail(dev);
  440. s = SYS_BUS_DEVICE(dev);
  441. sysbus_connect_irq(s, 0, irq);
  442. sysbus_mmio_map(s, 0, base);
  443. if (version == 0) { // SS-600MP only
  444. sysbus_mmio_map(s, 1, base + 0x1000);
  445. }
  446. }
  447. static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
  448. {
  449. DeviceState *dev;
  450. SysBusDevice *s;
  451. dev = qdev_create(NULL, "apc");
  452. qdev_init_nofail(dev);
  453. s = SYS_BUS_DEVICE(dev);
  454. /* Power management (APC) XXX: not a Slavio device */
  455. sysbus_mmio_map(s, 0, power_base);
  456. sysbus_connect_irq(s, 0, cpu_halt);
  457. }
  458. static void tcx_init(hwaddr addr, int vram_size, int width,
  459. int height, int depth)
  460. {
  461. DeviceState *dev;
  462. SysBusDevice *s;
  463. dev = qdev_create(NULL, "SUNW,tcx");
  464. qdev_prop_set_uint32(dev, "vram_size", vram_size);
  465. qdev_prop_set_uint16(dev, "width", width);
  466. qdev_prop_set_uint16(dev, "height", height);
  467. qdev_prop_set_uint16(dev, "depth", depth);
  468. qdev_prop_set_uint64(dev, "prom_addr", addr);
  469. qdev_init_nofail(dev);
  470. s = SYS_BUS_DEVICE(dev);
  471. /* FCode ROM */
  472. sysbus_mmio_map(s, 0, addr);
  473. /* 8-bit plane */
  474. sysbus_mmio_map(s, 1, addr + 0x00800000ULL);
  475. /* DAC */
  476. sysbus_mmio_map(s, 2, addr + 0x00200000ULL);
  477. /* TEC (dummy) */
  478. sysbus_mmio_map(s, 3, addr + 0x00700000ULL);
  479. /* THC 24 bit: NetBSD writes here even with 8-bit display: dummy */
  480. sysbus_mmio_map(s, 4, addr + 0x00301000ULL);
  481. if (depth == 24) {
  482. /* 24-bit plane */
  483. sysbus_mmio_map(s, 5, addr + 0x02000000ULL);
  484. /* Control plane */
  485. sysbus_mmio_map(s, 6, addr + 0x0a000000ULL);
  486. } else {
  487. /* THC 8 bit (dummy) */
  488. sysbus_mmio_map(s, 5, addr + 0x00300000ULL);
  489. }
  490. }
  491. static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
  492. int height, int depth)
  493. {
  494. DeviceState *dev;
  495. SysBusDevice *s;
  496. dev = qdev_create(NULL, "cgthree");
  497. qdev_prop_set_uint32(dev, "vram-size", vram_size);
  498. qdev_prop_set_uint16(dev, "width", width);
  499. qdev_prop_set_uint16(dev, "height", height);
  500. qdev_prop_set_uint16(dev, "depth", depth);
  501. qdev_prop_set_uint64(dev, "prom-addr", addr);
  502. qdev_init_nofail(dev);
  503. s = SYS_BUS_DEVICE(dev);
  504. /* FCode ROM */
  505. sysbus_mmio_map(s, 0, addr);
  506. /* DAC */
  507. sysbus_mmio_map(s, 1, addr + 0x400000ULL);
  508. /* 8-bit plane */
  509. sysbus_mmio_map(s, 2, addr + 0x800000ULL);
  510. sysbus_connect_irq(s, 0, irq);
  511. }
  512. /* NCR89C100/MACIO Internal ID register */
  513. #define TYPE_MACIO_ID_REGISTER "macio_idreg"
  514. static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
  515. static void idreg_init(hwaddr addr)
  516. {
  517. DeviceState *dev;
  518. SysBusDevice *s;
  519. dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER);
  520. qdev_init_nofail(dev);
  521. s = SYS_BUS_DEVICE(dev);
  522. sysbus_mmio_map(s, 0, addr);
  523. cpu_physical_memory_write_rom(&address_space_memory,
  524. addr, idreg_data, sizeof(idreg_data));
  525. }
  526. #define MACIO_ID_REGISTER(obj) \
  527. OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
  528. typedef struct IDRegState {
  529. SysBusDevice parent_obj;
  530. MemoryRegion mem;
  531. } IDRegState;
  532. static int idreg_init1(SysBusDevice *dev)
  533. {
  534. IDRegState *s = MACIO_ID_REGISTER(dev);
  535. memory_region_init_ram(&s->mem, OBJECT(s),
  536. "sun4m.idreg", sizeof(idreg_data));
  537. vmstate_register_ram_global(&s->mem);
  538. memory_region_set_readonly(&s->mem, true);
  539. sysbus_init_mmio(dev, &s->mem);
  540. return 0;
  541. }
  542. static void idreg_class_init(ObjectClass *klass, void *data)
  543. {
  544. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  545. k->init = idreg_init1;
  546. }
  547. static const TypeInfo idreg_info = {
  548. .name = TYPE_MACIO_ID_REGISTER,
  549. .parent = TYPE_SYS_BUS_DEVICE,
  550. .instance_size = sizeof(IDRegState),
  551. .class_init = idreg_class_init,
  552. };
  553. #define TYPE_TCX_AFX "tcx_afx"
  554. #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
  555. typedef struct AFXState {
  556. SysBusDevice parent_obj;
  557. MemoryRegion mem;
  558. } AFXState;
  559. /* SS-5 TCX AFX register */
  560. static void afx_init(hwaddr addr)
  561. {
  562. DeviceState *dev;
  563. SysBusDevice *s;
  564. dev = qdev_create(NULL, TYPE_TCX_AFX);
  565. qdev_init_nofail(dev);
  566. s = SYS_BUS_DEVICE(dev);
  567. sysbus_mmio_map(s, 0, addr);
  568. }
  569. static int afx_init1(SysBusDevice *dev)
  570. {
  571. AFXState *s = TCX_AFX(dev);
  572. memory_region_init_ram(&s->mem, OBJECT(s), "sun4m.afx", 4);
  573. vmstate_register_ram_global(&s->mem);
  574. sysbus_init_mmio(dev, &s->mem);
  575. return 0;
  576. }
  577. static void afx_class_init(ObjectClass *klass, void *data)
  578. {
  579. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  580. k->init = afx_init1;
  581. }
  582. static const TypeInfo afx_info = {
  583. .name = TYPE_TCX_AFX,
  584. .parent = TYPE_SYS_BUS_DEVICE,
  585. .instance_size = sizeof(AFXState),
  586. .class_init = afx_class_init,
  587. };
  588. #define TYPE_OPENPROM "openprom"
  589. #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
  590. typedef struct PROMState {
  591. SysBusDevice parent_obj;
  592. MemoryRegion prom;
  593. } PROMState;
  594. /* Boot PROM (OpenBIOS) */
  595. static uint64_t translate_prom_address(void *opaque, uint64_t addr)
  596. {
  597. hwaddr *base_addr = (hwaddr *)opaque;
  598. return addr + *base_addr - PROM_VADDR;
  599. }
  600. static void prom_init(hwaddr addr, const char *bios_name)
  601. {
  602. DeviceState *dev;
  603. SysBusDevice *s;
  604. char *filename;
  605. int ret;
  606. dev = qdev_create(NULL, TYPE_OPENPROM);
  607. qdev_init_nofail(dev);
  608. s = SYS_BUS_DEVICE(dev);
  609. sysbus_mmio_map(s, 0, addr);
  610. /* load boot prom */
  611. if (bios_name == NULL) {
  612. bios_name = PROM_FILENAME;
  613. }
  614. filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
  615. if (filename) {
  616. ret = load_elf(filename, translate_prom_address, &addr, NULL,
  617. NULL, NULL, 1, ELF_MACHINE, 0);
  618. if (ret < 0 || ret > PROM_SIZE_MAX) {
  619. ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
  620. }
  621. g_free(filename);
  622. } else {
  623. ret = -1;
  624. }
  625. if (ret < 0 || ret > PROM_SIZE_MAX) {
  626. fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
  627. exit(1);
  628. }
  629. }
  630. static int prom_init1(SysBusDevice *dev)
  631. {
  632. PROMState *s = OPENPROM(dev);
  633. memory_region_init_ram(&s->prom, OBJECT(s), "sun4m.prom", PROM_SIZE_MAX);
  634. vmstate_register_ram_global(&s->prom);
  635. memory_region_set_readonly(&s->prom, true);
  636. sysbus_init_mmio(dev, &s->prom);
  637. return 0;
  638. }
  639. static Property prom_properties[] = {
  640. {/* end of property list */},
  641. };
  642. static void prom_class_init(ObjectClass *klass, void *data)
  643. {
  644. DeviceClass *dc = DEVICE_CLASS(klass);
  645. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  646. k->init = prom_init1;
  647. dc->props = prom_properties;
  648. }
  649. static const TypeInfo prom_info = {
  650. .name = TYPE_OPENPROM,
  651. .parent = TYPE_SYS_BUS_DEVICE,
  652. .instance_size = sizeof(PROMState),
  653. .class_init = prom_class_init,
  654. };
  655. #define TYPE_SUN4M_MEMORY "memory"
  656. #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
  657. typedef struct RamDevice {
  658. SysBusDevice parent_obj;
  659. MemoryRegion ram;
  660. uint64_t size;
  661. } RamDevice;
  662. /* System RAM */
  663. static int ram_init1(SysBusDevice *dev)
  664. {
  665. RamDevice *d = SUN4M_RAM(dev);
  666. memory_region_init_ram(&d->ram, OBJECT(d), "sun4m.ram", d->size);
  667. vmstate_register_ram_global(&d->ram);
  668. sysbus_init_mmio(dev, &d->ram);
  669. return 0;
  670. }
  671. static void ram_init(hwaddr addr, ram_addr_t RAM_size,
  672. uint64_t max_mem)
  673. {
  674. DeviceState *dev;
  675. SysBusDevice *s;
  676. RamDevice *d;
  677. /* allocate RAM */
  678. if ((uint64_t)RAM_size > max_mem) {
  679. fprintf(stderr,
  680. "qemu: Too much memory for this machine: %d, maximum %d\n",
  681. (unsigned int)(RAM_size / (1024 * 1024)),
  682. (unsigned int)(max_mem / (1024 * 1024)));
  683. exit(1);
  684. }
  685. dev = qdev_create(NULL, "memory");
  686. s = SYS_BUS_DEVICE(dev);
  687. d = SUN4M_RAM(dev);
  688. d->size = RAM_size;
  689. qdev_init_nofail(dev);
  690. sysbus_mmio_map(s, 0, addr);
  691. }
  692. static Property ram_properties[] = {
  693. DEFINE_PROP_UINT64("size", RamDevice, size, 0),
  694. DEFINE_PROP_END_OF_LIST(),
  695. };
  696. static void ram_class_init(ObjectClass *klass, void *data)
  697. {
  698. DeviceClass *dc = DEVICE_CLASS(klass);
  699. SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
  700. k->init = ram_init1;
  701. dc->props = ram_properties;
  702. }
  703. static const TypeInfo ram_info = {
  704. .name = TYPE_SUN4M_MEMORY,
  705. .parent = TYPE_SYS_BUS_DEVICE,
  706. .instance_size = sizeof(RamDevice),
  707. .class_init = ram_class_init,
  708. };
  709. static void cpu_devinit(const char *cpu_model, unsigned int id,
  710. uint64_t prom_addr, qemu_irq **cpu_irqs)
  711. {
  712. CPUState *cs;
  713. SPARCCPU *cpu;
  714. CPUSPARCState *env;
  715. cpu = cpu_sparc_init(cpu_model);
  716. if (cpu == NULL) {
  717. fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
  718. exit(1);
  719. }
  720. env = &cpu->env;
  721. cpu_sparc_set_id(env, id);
  722. if (id == 0) {
  723. qemu_register_reset(main_cpu_reset, cpu);
  724. } else {
  725. qemu_register_reset(secondary_cpu_reset, cpu);
  726. cs = CPU(cpu);
  727. cs->halted = 1;
  728. }
  729. *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
  730. env->prom_addr = prom_addr;
  731. }
  732. static void dummy_fdc_tc(void *opaque, int irq, int level)
  733. {
  734. }
  735. static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
  736. QEMUMachineInitArgs *args)
  737. {
  738. const char *cpu_model = args->cpu_model;
  739. unsigned int i;
  740. void *iommu, *espdma, *ledma, *nvram;
  741. qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS],
  742. espdma_irq, ledma_irq;
  743. qemu_irq esp_reset, dma_enable;
  744. qemu_irq fdc_tc;
  745. qemu_irq *cpu_halt;
  746. unsigned long kernel_size;
  747. DriveInfo *fd[MAX_FD];
  748. FWCfgState *fw_cfg;
  749. unsigned int num_vsimms;
  750. /* init CPUs */
  751. if (!cpu_model)
  752. cpu_model = hwdef->default_cpu_model;
  753. for(i = 0; i < smp_cpus; i++) {
  754. cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]);
  755. }
  756. for (i = smp_cpus; i < MAX_CPUS; i++)
  757. cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
  758. /* set up devices */
  759. ram_init(0, args->ram_size, hwdef->max_mem);
  760. /* models without ECC don't trap when missing ram is accessed */
  761. if (!hwdef->ecc_base) {
  762. empty_slot_init(args->ram_size, hwdef->max_mem - args->ram_size);
  763. }
  764. prom_init(hwdef->slavio_base, bios_name);
  765. slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
  766. hwdef->intctl_base + 0x10000ULL,
  767. cpu_irqs);
  768. for (i = 0; i < 32; i++) {
  769. slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
  770. }
  771. for (i = 0; i < MAX_CPUS; i++) {
  772. slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
  773. }
  774. if (hwdef->idreg_base) {
  775. idreg_init(hwdef->idreg_base);
  776. }
  777. if (hwdef->afx_base) {
  778. afx_init(hwdef->afx_base);
  779. }
  780. iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
  781. slavio_irq[30]);
  782. if (hwdef->iommu_pad_base) {
  783. /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
  784. Software shouldn't use aliased addresses, neither should it crash
  785. when does. Using empty_slot instead of aliasing can help with
  786. debugging such accesses */
  787. empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
  788. }
  789. espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[18],
  790. iommu, &espdma_irq, 0);
  791. ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
  792. slavio_irq[16], iommu, &ledma_irq, 1);
  793. if (graphic_depth != 8 && graphic_depth != 24) {
  794. error_report("Unsupported depth: %d", graphic_depth);
  795. exit (1);
  796. }
  797. num_vsimms = 0;
  798. if (num_vsimms == 0) {
  799. if (vga_interface_type == VGA_CG3) {
  800. if (graphic_depth != 8) {
  801. error_report("Unsupported depth: %d", graphic_depth);
  802. exit(1);
  803. }
  804. if (!(graphic_width == 1024 && graphic_height == 768) &&
  805. !(graphic_width == 1152 && graphic_height == 900)) {
  806. error_report("Unsupported resolution: %d x %d", graphic_width,
  807. graphic_height);
  808. exit(1);
  809. }
  810. /* sbus irq 5 */
  811. cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
  812. graphic_width, graphic_height, graphic_depth);
  813. } else {
  814. /* If no display specified, default to TCX */
  815. if (graphic_depth != 8 && graphic_depth != 24) {
  816. error_report("Unsupported depth: %d", graphic_depth);
  817. exit(1);
  818. }
  819. if (!(graphic_width == 1024 && graphic_height == 768)) {
  820. error_report("Unsupported resolution: %d x %d",
  821. graphic_width, graphic_height);
  822. exit(1);
  823. }
  824. tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height,
  825. graphic_depth);
  826. }
  827. }
  828. for (i = num_vsimms; i < MAX_VSIMMS; i++) {
  829. /* vsimm registers probed by OBP */
  830. if (hwdef->vsimm[i].reg_base) {
  831. empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
  832. }
  833. }
  834. if (hwdef->sx_base) {
  835. empty_slot_init(hwdef->sx_base, 0x2000);
  836. }
  837. lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq);
  838. nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 8);
  839. slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
  840. slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14],
  841. display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1);
  842. /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
  843. Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
  844. escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15],
  845. serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
  846. cpu_halt = qemu_allocate_irqs(cpu_halt_signal, NULL, 1);
  847. if (hwdef->apc_base) {
  848. apc_init(hwdef->apc_base, cpu_halt[0]);
  849. }
  850. if (hwdef->fd_base) {
  851. /* there is zero or one floppy drive */
  852. memset(fd, 0, sizeof(fd));
  853. fd[0] = drive_get(IF_FLOPPY, 0, 0);
  854. sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
  855. &fdc_tc);
  856. } else {
  857. fdc_tc = *qemu_allocate_irqs(dummy_fdc_tc, NULL, 1);
  858. }
  859. slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
  860. slavio_irq[30], fdc_tc);
  861. if (drive_get_max_bus(IF_SCSI) > 0) {
  862. fprintf(stderr, "qemu: too many SCSI bus\n");
  863. exit(1);
  864. }
  865. esp_init(hwdef->esp_base, 2,
  866. espdma_memory_read, espdma_memory_write,
  867. espdma, espdma_irq, &esp_reset, &dma_enable);
  868. qdev_connect_gpio_out(espdma, 0, esp_reset);
  869. qdev_connect_gpio_out(espdma, 1, dma_enable);
  870. if (hwdef->cs_base) {
  871. sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
  872. slavio_irq[5]);
  873. }
  874. if (hwdef->dbri_base) {
  875. /* ISDN chip with attached CS4215 audio codec */
  876. /* prom space */
  877. empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
  878. /* reg space */
  879. empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
  880. }
  881. if (hwdef->bpp_base) {
  882. /* parallel port */
  883. empty_slot_init(hwdef->bpp_base, 0x20);
  884. }
  885. kernel_size = sun4m_load_kernel(args->kernel_filename,
  886. args->initrd_filename,
  887. args->ram_size);
  888. nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, args->kernel_cmdline,
  889. args->boot_order, args->ram_size, kernel_size, graphic_width,
  890. graphic_height, graphic_depth, hwdef->nvram_machine_id,
  891. "Sun4m");
  892. if (hwdef->ecc_base)
  893. ecc_init(hwdef->ecc_base, slavio_irq[28],
  894. hwdef->ecc_version);
  895. fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
  896. fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
  897. fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
  898. fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
  899. fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
  900. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
  901. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
  902. fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
  903. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
  904. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
  905. if (args->kernel_cmdline) {
  906. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
  907. pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
  908. args->kernel_cmdline);
  909. fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, args->kernel_cmdline);
  910. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
  911. strlen(args->kernel_cmdline) + 1);
  912. } else {
  913. fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
  914. fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
  915. }
  916. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
  917. fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
  918. fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, args->boot_order[0]);
  919. qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
  920. }
  921. enum {
  922. ss5_id = 32,
  923. vger_id,
  924. lx_id,
  925. ss4_id,
  926. scls_id,
  927. sbook_id,
  928. ss10_id = 64,
  929. ss20_id,
  930. ss600mp_id,
  931. };
  932. static const struct sun4m_hwdef sun4m_hwdefs[] = {
  933. /* SS-5 */
  934. {
  935. .iommu_base = 0x10000000,
  936. .iommu_pad_base = 0x10004000,
  937. .iommu_pad_len = 0x0fffb000,
  938. .tcx_base = 0x50000000,
  939. .cs_base = 0x6c000000,
  940. .slavio_base = 0x70000000,
  941. .ms_kb_base = 0x71000000,
  942. .serial_base = 0x71100000,
  943. .nvram_base = 0x71200000,
  944. .fd_base = 0x71400000,
  945. .counter_base = 0x71d00000,
  946. .intctl_base = 0x71e00000,
  947. .idreg_base = 0x78000000,
  948. .dma_base = 0x78400000,
  949. .esp_base = 0x78800000,
  950. .le_base = 0x78c00000,
  951. .apc_base = 0x6a000000,
  952. .afx_base = 0x6e000000,
  953. .aux1_base = 0x71900000,
  954. .aux2_base = 0x71910000,
  955. .nvram_machine_id = 0x80,
  956. .machine_id = ss5_id,
  957. .iommu_version = 0x05000000,
  958. .max_mem = 0x10000000,
  959. .default_cpu_model = "Fujitsu MB86904",
  960. },
  961. /* SS-10 */
  962. {
  963. .iommu_base = 0xfe0000000ULL,
  964. .tcx_base = 0xe20000000ULL,
  965. .slavio_base = 0xff0000000ULL,
  966. .ms_kb_base = 0xff1000000ULL,
  967. .serial_base = 0xff1100000ULL,
  968. .nvram_base = 0xff1200000ULL,
  969. .fd_base = 0xff1700000ULL,
  970. .counter_base = 0xff1300000ULL,
  971. .intctl_base = 0xff1400000ULL,
  972. .idreg_base = 0xef0000000ULL,
  973. .dma_base = 0xef0400000ULL,
  974. .esp_base = 0xef0800000ULL,
  975. .le_base = 0xef0c00000ULL,
  976. .apc_base = 0xefa000000ULL, // XXX should not exist
  977. .aux1_base = 0xff1800000ULL,
  978. .aux2_base = 0xff1a01000ULL,
  979. .ecc_base = 0xf00000000ULL,
  980. .ecc_version = 0x10000000, // version 0, implementation 1
  981. .nvram_machine_id = 0x72,
  982. .machine_id = ss10_id,
  983. .iommu_version = 0x03000000,
  984. .max_mem = 0xf00000000ULL,
  985. .default_cpu_model = "TI SuperSparc II",
  986. },
  987. /* SS-600MP */
  988. {
  989. .iommu_base = 0xfe0000000ULL,
  990. .tcx_base = 0xe20000000ULL,
  991. .slavio_base = 0xff0000000ULL,
  992. .ms_kb_base = 0xff1000000ULL,
  993. .serial_base = 0xff1100000ULL,
  994. .nvram_base = 0xff1200000ULL,
  995. .counter_base = 0xff1300000ULL,
  996. .intctl_base = 0xff1400000ULL,
  997. .dma_base = 0xef0081000ULL,
  998. .esp_base = 0xef0080000ULL,
  999. .le_base = 0xef0060000ULL,
  1000. .apc_base = 0xefa000000ULL, // XXX should not exist
  1001. .aux1_base = 0xff1800000ULL,
  1002. .aux2_base = 0xff1a01000ULL, // XXX should not exist
  1003. .ecc_base = 0xf00000000ULL,
  1004. .ecc_version = 0x00000000, // version 0, implementation 0
  1005. .nvram_machine_id = 0x71,
  1006. .machine_id = ss600mp_id,
  1007. .iommu_version = 0x01000000,
  1008. .max_mem = 0xf00000000ULL,
  1009. .default_cpu_model = "TI SuperSparc II",
  1010. },
  1011. /* SS-20 */
  1012. {
  1013. .iommu_base = 0xfe0000000ULL,
  1014. .tcx_base = 0xe20000000ULL,
  1015. .slavio_base = 0xff0000000ULL,
  1016. .ms_kb_base = 0xff1000000ULL,
  1017. .serial_base = 0xff1100000ULL,
  1018. .nvram_base = 0xff1200000ULL,
  1019. .fd_base = 0xff1700000ULL,
  1020. .counter_base = 0xff1300000ULL,
  1021. .intctl_base = 0xff1400000ULL,
  1022. .idreg_base = 0xef0000000ULL,
  1023. .dma_base = 0xef0400000ULL,
  1024. .esp_base = 0xef0800000ULL,
  1025. .le_base = 0xef0c00000ULL,
  1026. .bpp_base = 0xef4800000ULL,
  1027. .apc_base = 0xefa000000ULL, // XXX should not exist
  1028. .aux1_base = 0xff1800000ULL,
  1029. .aux2_base = 0xff1a01000ULL,
  1030. .dbri_base = 0xee0000000ULL,
  1031. .sx_base = 0xf80000000ULL,
  1032. .vsimm = {
  1033. {
  1034. .reg_base = 0x9c000000ULL,
  1035. .vram_base = 0xfc000000ULL
  1036. }, {
  1037. .reg_base = 0x90000000ULL,
  1038. .vram_base = 0xf0000000ULL
  1039. }, {
  1040. .reg_base = 0x94000000ULL
  1041. }, {
  1042. .reg_base = 0x98000000ULL
  1043. }
  1044. },
  1045. .ecc_base = 0xf00000000ULL,
  1046. .ecc_version = 0x20000000, // version 0, implementation 2
  1047. .nvram_machine_id = 0x72,
  1048. .machine_id = ss20_id,
  1049. .iommu_version = 0x13000000,
  1050. .max_mem = 0xf00000000ULL,
  1051. .default_cpu_model = "TI SuperSparc II",
  1052. },
  1053. /* Voyager */
  1054. {
  1055. .iommu_base = 0x10000000,
  1056. .tcx_base = 0x50000000,
  1057. .slavio_base = 0x70000000,
  1058. .ms_kb_base = 0x71000000,
  1059. .serial_base = 0x71100000,
  1060. .nvram_base = 0x71200000,
  1061. .fd_base = 0x71400000,
  1062. .counter_base = 0x71d00000,
  1063. .intctl_base = 0x71e00000,
  1064. .idreg_base = 0x78000000,
  1065. .dma_base = 0x78400000,
  1066. .esp_base = 0x78800000,
  1067. .le_base = 0x78c00000,
  1068. .apc_base = 0x71300000, // pmc
  1069. .aux1_base = 0x71900000,
  1070. .aux2_base = 0x71910000,
  1071. .nvram_machine_id = 0x80,
  1072. .machine_id = vger_id,
  1073. .iommu_version = 0x05000000,
  1074. .max_mem = 0x10000000,
  1075. .default_cpu_model = "Fujitsu MB86904",
  1076. },
  1077. /* LX */
  1078. {
  1079. .iommu_base = 0x10000000,
  1080. .iommu_pad_base = 0x10004000,
  1081. .iommu_pad_len = 0x0fffb000,
  1082. .tcx_base = 0x50000000,
  1083. .slavio_base = 0x70000000,
  1084. .ms_kb_base = 0x71000000,
  1085. .serial_base = 0x71100000,
  1086. .nvram_base = 0x71200000,
  1087. .fd_base = 0x71400000,
  1088. .counter_base = 0x71d00000,
  1089. .intctl_base = 0x71e00000,
  1090. .idreg_base = 0x78000000,
  1091. .dma_base = 0x78400000,
  1092. .esp_base = 0x78800000,
  1093. .le_base = 0x78c00000,
  1094. .aux1_base = 0x71900000,
  1095. .aux2_base = 0x71910000,
  1096. .nvram_machine_id = 0x80,
  1097. .machine_id = lx_id,
  1098. .iommu_version = 0x04000000,
  1099. .max_mem = 0x10000000,
  1100. .default_cpu_model = "TI MicroSparc I",
  1101. },
  1102. /* SS-4 */
  1103. {
  1104. .iommu_base = 0x10000000,
  1105. .tcx_base = 0x50000000,
  1106. .cs_base = 0x6c000000,
  1107. .slavio_base = 0x70000000,
  1108. .ms_kb_base = 0x71000000,
  1109. .serial_base = 0x71100000,
  1110. .nvram_base = 0x71200000,
  1111. .fd_base = 0x71400000,
  1112. .counter_base = 0x71d00000,
  1113. .intctl_base = 0x71e00000,
  1114. .idreg_base = 0x78000000,
  1115. .dma_base = 0x78400000,
  1116. .esp_base = 0x78800000,
  1117. .le_base = 0x78c00000,
  1118. .apc_base = 0x6a000000,
  1119. .aux1_base = 0x71900000,
  1120. .aux2_base = 0x71910000,
  1121. .nvram_machine_id = 0x80,
  1122. .machine_id = ss4_id,
  1123. .iommu_version = 0x05000000,
  1124. .max_mem = 0x10000000,
  1125. .default_cpu_model = "Fujitsu MB86904",
  1126. },
  1127. /* SPARCClassic */
  1128. {
  1129. .iommu_base = 0x10000000,
  1130. .tcx_base = 0x50000000,
  1131. .slavio_base = 0x70000000,
  1132. .ms_kb_base = 0x71000000,
  1133. .serial_base = 0x71100000,
  1134. .nvram_base = 0x71200000,
  1135. .fd_base = 0x71400000,
  1136. .counter_base = 0x71d00000,
  1137. .intctl_base = 0x71e00000,
  1138. .idreg_base = 0x78000000,
  1139. .dma_base = 0x78400000,
  1140. .esp_base = 0x78800000,
  1141. .le_base = 0x78c00000,
  1142. .apc_base = 0x6a000000,
  1143. .aux1_base = 0x71900000,
  1144. .aux2_base = 0x71910000,
  1145. .nvram_machine_id = 0x80,
  1146. .machine_id = scls_id,
  1147. .iommu_version = 0x05000000,
  1148. .max_mem = 0x10000000,
  1149. .default_cpu_model = "TI MicroSparc I",
  1150. },
  1151. /* SPARCbook */
  1152. {
  1153. .iommu_base = 0x10000000,
  1154. .tcx_base = 0x50000000, // XXX
  1155. .slavio_base = 0x70000000,
  1156. .ms_kb_base = 0x71000000,
  1157. .serial_base = 0x71100000,
  1158. .nvram_base = 0x71200000,
  1159. .fd_base = 0x71400000,
  1160. .counter_base = 0x71d00000,
  1161. .intctl_base = 0x71e00000,
  1162. .idreg_base = 0x78000000,
  1163. .dma_base = 0x78400000,
  1164. .esp_base = 0x78800000,
  1165. .le_base = 0x78c00000,
  1166. .apc_base = 0x6a000000,
  1167. .aux1_base = 0x71900000,
  1168. .aux2_base = 0x71910000,
  1169. .nvram_machine_id = 0x80,
  1170. .machine_id = sbook_id,
  1171. .iommu_version = 0x05000000,
  1172. .max_mem = 0x10000000,
  1173. .default_cpu_model = "TI MicroSparc I",
  1174. },
  1175. };
  1176. /* SPARCstation 5 hardware initialisation */
  1177. static void ss5_init(QEMUMachineInitArgs *args)
  1178. {
  1179. sun4m_hw_init(&sun4m_hwdefs[0], args);
  1180. }
  1181. /* SPARCstation 10 hardware initialisation */
  1182. static void ss10_init(QEMUMachineInitArgs *args)
  1183. {
  1184. sun4m_hw_init(&sun4m_hwdefs[1], args);
  1185. }
  1186. /* SPARCserver 600MP hardware initialisation */
  1187. static void ss600mp_init(QEMUMachineInitArgs *args)
  1188. {
  1189. sun4m_hw_init(&sun4m_hwdefs[2], args);
  1190. }
  1191. /* SPARCstation 20 hardware initialisation */
  1192. static void ss20_init(QEMUMachineInitArgs *args)
  1193. {
  1194. sun4m_hw_init(&sun4m_hwdefs[3], args);
  1195. }
  1196. /* SPARCstation Voyager hardware initialisation */
  1197. static void vger_init(QEMUMachineInitArgs *args)
  1198. {
  1199. sun4m_hw_init(&sun4m_hwdefs[4], args);
  1200. }
  1201. /* SPARCstation LX hardware initialisation */
  1202. static void ss_lx_init(QEMUMachineInitArgs *args)
  1203. {
  1204. sun4m_hw_init(&sun4m_hwdefs[5], args);
  1205. }
  1206. /* SPARCstation 4 hardware initialisation */
  1207. static void ss4_init(QEMUMachineInitArgs *args)
  1208. {
  1209. sun4m_hw_init(&sun4m_hwdefs[6], args);
  1210. }
  1211. /* SPARCClassic hardware initialisation */
  1212. static void scls_init(QEMUMachineInitArgs *args)
  1213. {
  1214. sun4m_hw_init(&sun4m_hwdefs[7], args);
  1215. }
  1216. /* SPARCbook hardware initialisation */
  1217. static void sbook_init(QEMUMachineInitArgs *args)
  1218. {
  1219. sun4m_hw_init(&sun4m_hwdefs[8], args);
  1220. }
  1221. static QEMUMachine ss5_machine = {
  1222. .name = "SS-5",
  1223. .desc = "Sun4m platform, SPARCstation 5",
  1224. .init = ss5_init,
  1225. .block_default_type = IF_SCSI,
  1226. .is_default = 1,
  1227. .default_boot_order = "c",
  1228. };
  1229. static QEMUMachine ss10_machine = {
  1230. .name = "SS-10",
  1231. .desc = "Sun4m platform, SPARCstation 10",
  1232. .init = ss10_init,
  1233. .block_default_type = IF_SCSI,
  1234. .max_cpus = 4,
  1235. .default_boot_order = "c",
  1236. };
  1237. static QEMUMachine ss600mp_machine = {
  1238. .name = "SS-600MP",
  1239. .desc = "Sun4m platform, SPARCserver 600MP",
  1240. .init = ss600mp_init,
  1241. .block_default_type = IF_SCSI,
  1242. .max_cpus = 4,
  1243. .default_boot_order = "c",
  1244. };
  1245. static QEMUMachine ss20_machine = {
  1246. .name = "SS-20",
  1247. .desc = "Sun4m platform, SPARCstation 20",
  1248. .init = ss20_init,
  1249. .block_default_type = IF_SCSI,
  1250. .max_cpus = 4,
  1251. .default_boot_order = "c",
  1252. };
  1253. static QEMUMachine voyager_machine = {
  1254. .name = "Voyager",
  1255. .desc = "Sun4m platform, SPARCstation Voyager",
  1256. .init = vger_init,
  1257. .block_default_type = IF_SCSI,
  1258. .default_boot_order = "c",
  1259. };
  1260. static QEMUMachine ss_lx_machine = {
  1261. .name = "LX",
  1262. .desc = "Sun4m platform, SPARCstation LX",
  1263. .init = ss_lx_init,
  1264. .block_default_type = IF_SCSI,
  1265. .default_boot_order = "c",
  1266. };
  1267. static QEMUMachine ss4_machine = {
  1268. .name = "SS-4",
  1269. .desc = "Sun4m platform, SPARCstation 4",
  1270. .init = ss4_init,
  1271. .block_default_type = IF_SCSI,
  1272. .default_boot_order = "c",
  1273. };
  1274. static QEMUMachine scls_machine = {
  1275. .name = "SPARCClassic",
  1276. .desc = "Sun4m platform, SPARCClassic",
  1277. .init = scls_init,
  1278. .block_default_type = IF_SCSI,
  1279. .default_boot_order = "c",
  1280. };
  1281. static QEMUMachine sbook_machine = {
  1282. .name = "SPARCbook",
  1283. .desc = "Sun4m platform, SPARCbook",
  1284. .init = sbook_init,
  1285. .block_default_type = IF_SCSI,
  1286. .default_boot_order = "c",
  1287. };
  1288. static void sun4m_register_types(void)
  1289. {
  1290. type_register_static(&idreg_info);
  1291. type_register_static(&afx_info);
  1292. type_register_static(&prom_info);
  1293. type_register_static(&ram_info);
  1294. }
  1295. static void sun4m_machine_init(void)
  1296. {
  1297. qemu_register_machine(&ss5_machine);
  1298. qemu_register_machine(&ss10_machine);
  1299. qemu_register_machine(&ss600mp_machine);
  1300. qemu_register_machine(&ss20_machine);
  1301. qemu_register_machine(&voyager_machine);
  1302. qemu_register_machine(&ss_lx_machine);
  1303. qemu_register_machine(&ss4_machine);
  1304. qemu_register_machine(&scls_machine);
  1305. qemu_register_machine(&sbook_machine);
  1306. }
  1307. type_init(sun4m_register_types)
  1308. machine_init(sun4m_machine_init);